Spectral synthesis in de Branges spaces

Abstract : We solve completely the spectral synthesis problem for reproducing kernels in the de Branges spaces $\mathcal{H}(E)$. Namely, we describe the de Branges spaces $\mathcal{H}(E)$ such that all $M$-bases of reproducing kernels (i.e., complete and minimal systems $\{k_\lambda\}_{\lambda\in\Lambda}$ with complete biorthogonal $\{g_\lambda\}_{\lambda\in\Lambda}$) are strong $M$-bases (i.e., every mixed system $\{k_\lambda\}_{\lambda\in\Lambda\setminus\tilde \Lambda} \cup\{g_\lambda\}_{\lambda\in \tilde \Lambda}$ is also complete). Surprisingly this property takes place only for two essentially different classes of de Branges spaces: spaces with finite spectral measure and spaces which are isomorphic to Fock-type spaces of entire functions. The first class goes back to de Branges himself, the second class appeared in a recent work of A. Borichev and Yu. Lyubarskii. Moreover, we are able to give a complete characterisation of this second class in terms of the spectral data for $\mathcal{H}(E)$. In addition, we obtain some results about possible codimension of mixed systems for a fixed de Branges space $\mathcal{H}(E)$, and prove that any minimal system of reproducing kernels in $\mathcal{H}(E)$ is contained in an exact system of reproducing kernels.
Type de document :
Article dans une revue
Geometric And Functional Analysis, Springer Verlag, 2015, 25 (2), pp.417-452. 〈10.1007/s00039-015-0322-y〉
Liste complète des métadonnées

Contributeur : Aigle I2m <>
Soumis le : lundi 18 janvier 2016 - 15:30:25
Dernière modification le : dimanche 25 février 2018 - 14:48:02

Lien texte intégral




Anton Baranov, Yurii Belov, Alexander Borichev. Spectral synthesis in de Branges spaces. Geometric And Functional Analysis, Springer Verlag, 2015, 25 (2), pp.417-452. 〈10.1007/s00039-015-0322-y〉. 〈hal-01258039〉



Consultations de la notice