
HAL Id: hal-01257317
https://hal.science/hal-01257317

Submitted on 16 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelization via Constrained Storage Mapping
Optimization

Albert Cohen

To cite this version:
Albert Cohen. Parallelization via Constrained Storage Mapping Optimization. International Sympo-
sium on High Performance Computing (ISHPC), May 1999, Kyoto, Japan. pp.83–94. �hal-01257317�

https://hal.science/hal-01257317
https://hal.archives-ouvertes.fr

Parallelization via Constrained Storage Mapping

Optimization

Albert Cohen

PRiSM, Universit�e de Versailles, 45 avenue des

�

Etats-Unis, 78035 Versailles, France

Albert.Cohen@prism.uvsq.fr

Abstract. A key problem for parallelizing compilers is to �nd the good

tradeo� between memory expansion and parallelism. This paper is a

new step towards solving this problem. A framework for parallel execu-

tion order and storage mapping computation is designed, allowing time

and space optimization. Constrained expansion|a theoretical model for

expansion strategies|is shown to be very useful in this context.

1 Introduction

Data dependences are known to hamper automatic parallelization of imperative

programs and their e�cient compilation on modern processors or supercom-

puters. A general method to reduce the number of memory-based dependences

is to disambiguate memory accesses in assigning distinct memory locations to

non-con
icting writes, i.e. to expand data structures.

In the extreme case, each memory location is written at most once, and the

program is said to be in single-assignment form. Unfortunately, when the control

ow cannot be predicted at compile-time, some run-time computation is needed

to preserve the original data
ow: �-functions may be needed to \merge" data

de�nitions due to several incoming control paths [5].

Parallelization via memory expansion thus requires both moderation in the

expansion degree, and e�ciency in the run-time computation of �-functions. In

our framework, moderation is achieved from two complementary directions:

� Adding constraints to limitmemory expansion, like static expansion avoiding

�-functions [1], privatization [14, 11], or array static single assignment [9].

All these techniques allow partial removal of memory-based dependences,

but may extract less parallelism than conversion to single assignment form.

� Applying storage mapping optimization techniques [4]. Some of these are

either schedule-independent [13] or schedule-dependent [10]|yielding bet-

ter optimizations|whether they require former computation of a parallel

execution order (scheduling, tiling, etc.) or not.

Trying to get the best of both directions is the goal of this paper. Our contri-

bution is to show the bene�t of combining them into a uni�ed framework for

memory expansion. We present an intra-procedural algorithm applying to any

imperative program and most loop nest parallelization techniques.

The paper is organized as follows: Section 2 studies a motivating example

showing what we want to achieve. Section 3 introduces the general concepts, be-

fore we formally de�ne correct constrained storage mappings in Section 4. Then,

Section 5 presents our expansion algorithm. We draw conclusions in Section 7.

2 Motivating Example

We study the pseudo-code in Figure 1.a. Such nested loops with conditionals

appear in many kernels, but most parallelization techniques fail to generate

e�cient code for these programs. Each iteration of a loop spawns instances of

statements included in the loop body. In the example program, instances of T

are denoted by hT; i; ji, instances of S by hS; i; j; ki, and instances of R by hR; ii,

for 1 � i; j � m and 1 � k � n. (\P (i; j)" is a boolean function of i and j.)

real x

for i=1 to m do

for j=1 to m do

if (P (i; j)) then

T x = 0

for k=1 to n do

S x = x � � �

end for

end if

end for

R � � � = x � � �

end for

Fig.1.a. Original program

real D

T

[1..m, 1..m], D

S

[1..m, 1..m, 1..n]

for i=1 to m do

for j=1 to m do

if (P (i; j)) then

T D

T

[i, j] = 0

for k=1 to n do

S D

S

[i, j, k] = if (k=1) then D

T

[i, j]

else D

S

[i, j, k-1] � � �

end for

end if

end for

R � � � = �(hS; i; 1; ni; : : : ; hS; i;m;nig) � � �

end for

Fig.1.b. Single assignment form

Fig. 1. Motivating example

2.1 Instance-wise Reaching De�nition Analysis

We believe that an e�cient parallelization framework must rely on a precise

description of the
ow of data. Here comes Instance-wise Reaching De�nition

Analysis (IRDA): It computes for each value read in memory, the run-time

instance which produced the value. This write is the (reaching) de�nition of the

read access|the use. Any IRDA is suitable to our purpose, but Fuzzy Array

Data-
ow Analysis (FADA) [2] is prefered for its high precision on unrestricted

loop nests. Value-based Dependence Analysis [15] is also suitable.

On this example, assume n is non-negative and predicate \P (i; j)" evaluates

to true at least one time for each iteration of the outer loop. FADA tells us that

the reaching de�nition of the read access hS; i; j; ki to x is hT; i; ji when k = 1

and hS; i; j; k�1i when k > 1. We only get an approximate result for de�nitions

that may reach hR; ii: Those are fhS; i; j; ni : 1 � j � mg. Indeed, the value of

x may only come from S (since n > 0) for the same i (since T executes at least

one time for each iteration of the outer loop), and for k = n.

2.2 Conversion to Single Assignment Form

Obviously, memory-based dependences on x hampers direct parallelization via

scheduling or tiling. Our intent is to expand scalar x so as to get rid of as many

dependences as possible. The extreme expansion case is single-assignment (SA)

form, where all dependences due to memory reuse are removed.

Reaching de�nition analysis is at the core of SA algorithms in tracking values

in expanded data-structures. Figure 1.b shows our program converted to SA

form, using the result of IRDA. The unique �-function implements a run-time

choice between values produced by hS; i; 1; ni; : : : ; hS; i;m; ni.

2.3 Parallelization

SA removed enough dependences to make the two outer loops parallel, see Fig-

ure 2.a. Function � is computed at run-time using array Last

j

. It holds the last

value of j when x was assigned. This information allows value recovery in R.

But this parallel program is unusable on any architecture. The main reason is

memory usage: Variable x has been replaced by a huge three-dimensional array,

plus two smaller arrays. This code is approximately �ve times slower than the

original program on a single processor (when arrays hold in memory).

real D

T

[1..m, 1..m], D

S

[1..m, 1..m, 1..n]

integer Last

j

[1..m]

PARALLEL for i=1 to m do

Last

j

[i] = ?

PARALLEL for j=1 to m do

if (P (i; j)) then

T D

T

[i, j] = 0

for k=1 to n do

S D

S

[i, j, k] = if (k=1) then D

T

[i, j]

else D

S

[i, j, k-1] � � �

end for

Last

j

[i] = max (Last

j

[i], j)

end if

end for

R � � � = D

S

[i, Last

j

[i], n] � � �

end for

Fig.2.a. Parallel SA

real D

TS

[1..m, 1..m]

integer Last

j

[1..m]

PARALLEL for i=1 to m do

Last

j

[i] = ?

PARALLEL for j=1 to m do

if (P (i; j)) then

T D

TS

[i, j] = 0

for k=1 to n do

S D

TS

[i, j] = D

TS

[i, j] � � �

end for

Last

j

[i] = max (Last

j

[i], j)

end if

end for

R � � � = D

TS

[i, Last

j

[i]] � � �

end for

Fig.2.b. Parallel SMO

Fig. 2. Parallelization of the motivating example

2.4 Storage Mapping Optimization

This shows the need for a memory usage optimization technique. Storage map-

ping optimization (SMO) [4, 13, 10] consists in reducing memory usage as much

as possible as soon as a parallel execution order has been crafted, see Figure 2.b.

A single two-dimensional array can be used, while keeping the two outer loops

parallel. Run-time computation of function � with array Last seems very cheap

at �rst glance; But execution of Last

j

= max (Last

j

, j) hides synchroniza-

tions behind the \maximum" computation! As usual, it results a very bad scal-

ing: Good accelerations are obtained for a very small number of processors, then

speed-up drops dramatically because of synchronizations.

Figure 3 gives execution time and speed-up for the parallel program, com-

pared to the original (not expanded) one. We used the mp library on an SGI

Origin 2000, with m = 64 and n = 2048, and simple expressions for \� � �" parts.

0

20

40

60

80

100

120

140

1 2 4 8 16 32

T
im

e
(m

s)

Processors

Sequential
SMO

0.25

0.5

1

2

4

1 2 4 8 16 32

S
pe

ed
-u

p
 (

pa
ra

lle
l /

 o
rig

in
al

)

Processors

Optimal
SMO

Fig. 3. Performance results for storage mapping optimization

2.5 Tuning Between Expansion and Parallelism

This bad result shows the need for a �ner parallelization scheme. The question is

to �nd a good tradeo� between expansion overhead and parallelism extraction.

If we target widely-used parallel computers, the processor number is likely to be

less than 100, but SA form extracted two parallel loops involvingm

2

processors!

The intuition is that we uselessly spilled memory and run-time overhead.

One would prefer a pragmatic expansion scheme, such as maximal static

expansion (MSE) [1], or privatization [14,11]. Choosing static expansion has

the bene�t that no �-function is necessary any more: x can be safely expanded

along outermost and innermost loops, but expansion along j is forbidden|it

requires a �-function thus violates the static constraint. Now, only the outer

loop is parallel, see Figure 4. We get much better scaling, see Figure 4. However,

on a single processor the program still runs two times slower than the original

one. This is probably due to bad locality of the innermost loop.

2.6 Storage Mapping Optimization Again

Maximal static expansion expanded x along the innermost loop, but it was of no

interest regarding parallelism extraction. Combined MSE and storage mapping

optimization solves the problem, see Figure 5. Scaling is excellent and paral-

lelization overhead is very low: The parallel program runs 31:5 times faster than

the original one on 32 processors (for m = 64 and n = 2048).

This example shows the use of combining constrained expansions|such as

privatization and static expansion|with storage mapping optimization tech-

niques, to improve parallelization of general loop nests (with unrestricted condi-

tionals and array subscripts). In the following, we present an algorithm useful for

automatic parallelization of imperative programs. Although this algorithm can-

not itself choose the \best" parallelization, it aims to simultaneous optimization

of expansion and parallelization constraints.

real x[1..m, 0..n]

PARALLEL for i=1 to m do

for j=1 to m do

if (P (i; j)) then

T x[i, 0] = 0

for k=1 to n do

S x[i, k] = x[i, k-1] � � �

end for

end if

end for

R � � � = x[i, n] � � �

end for

0.5

1

2

4

8

16

32

1 2 4 8 16 32

S
pe

ed
-u

p
 (

pa
ra

lle
l /

 o
rig

in
al

)

Processors

Optimal
MSE

Fig. 4. Maximal static expansion

real x[1..m]

PARALLEL for i=1 to m do

for j=1 to m do

if (P (i; j)) then

T x[i] = 0

for k=1 to n do

S x[i] = x[i] � � �

end for

end if

end for

R � � � = x[i] � � �

end for

0.5

1

2

4

8

16

32

1 2 4 8 16 32

S
pe

ed
-u

p
 (

pa
ra

lle
l /

 o
rig

in
al

)

Processors

Optimal
MSE + SMO

Fig. 5. Maximal static expansion combined with storage mapping optimization.

3 Problem Statement

Let us start with some vocabulary. Our transformation techniques should be

able to distinguish between the distinct run-time instances of a statement. A

run-time statement instance is called an operation.

The sequential execution order of the program de�nes a total order over op-

erations, call it �. Each statement can involve several array or scalar references,

at most one of these being in left-hand side: A pair (o; r) of a statement instance

(an operation) and a reference in the statement is called an access. The set of

all accesses is denoted by A. It can be decomposed into: The set of all reads

R|i.e. accesses performing some read in memory|and the set of all writes W.

3.1 Parallelization Scheme

Imperative programs are seen as pairs (�; f

e

), where � is the sequential order

over all operations and f

e

maps every access to the memory location it either

reads or writes. Subscript e models a given execution of the program: f

e

may

depend on input data or initial values of variables. Function f

e

is the storage

mapping of the program. In this model, parallelization means construction of

a program (�

0

; f

0

e

) where �

0

is a sub-order of �. Obviously, �

0

and f

0

e

must

satisfy several properties in order to preserve the sequential program semantics.

Building a new storage mapping f

0

e

from f

e

is calledmemory expansion. To stress

the point that we deal with operations (i.e. run-time instances of statements), we

will talk about sources instead of de�nitions. In our sense, reaching de�nition

analysis computes a subset of the program dependences. The source relation

� computed by IRDA is a pessimistic (a.k.a. conservative) approximation the

actual source function �

e

that depends on the execution.

Similarly, we have to handle undecidable \con
ict equations" of the form

f

e

(v) = f

e

(w) and f

e

(v) 6= f

e

(w), since f

e

depends on the execution. Therefore,

we suppose that pessimistic (a.k.a. conservative) approximations l and 6l are

made available by a previous stage of program analysis (e.g. as a side-e�ect of

IRDA).

Moreover, we need a mathematical representation to handle functions and re-

lations over accesses and operations. Since we target parallelizing compilers, this

representation must support basic algebraic operations, allow to decide whether

a set is empty, whether some access can be the source of another, etc. For all

these reasons|and the fact our preferred reaching de�nition analysis is FADA

[2]|we choose a�ne relations as an abstraction. Tools like Omega [12] are well

suited to handle such relations.

3.2 Introducing Constrained Expansion

The motivating example shows the bene�ts of putting an a priori limit to ex-

pansion. Static expansion [1] is a good example of constrained expansion. The

idea is to avoid dynamic restoration of the data
ow by the mean of a relation

between writes that possibly de�ne the same read: vRw , 9u 2 R : v�u^w�u.

Whenever two sources of the same read assign the same memory location in

the original program, they must still do so in the expanded one. Since \writ-

ing in the same memory location" is an equivalence relation, we actually use

R

�

, the transitive closure of R. The resulting constraint for f

0

e

to be static is

8e; 8v; w 2W : vR

�

w ^ f

e

(v) = f

e

(w)) f

0

e

(v) = f

0

e

(w).

What about other expansion schemes ? The goal of constrained expansion is

to design pragmatic techniques that does not expand variables when the incurred

overhead is \two strong". To generalize static expansion, we suppose that some

equivalence relation � on writes is available from previous compilation stages.

A storage mapping constrained by � is any mapping f

0

e

s.t.

8e; 8v; w 2W : v � w ^ f

e

(v) = f

e

(w) =) f

0

e

(v) = f

0

e

(w): (1)

It is di�cult to decide whether to forbid expansion of some variable or not, and

building of constraint � is the purpose of Section 6. We leave for Section 5 all dis-

cussion about picking the right parallel order. Indeed, the two problems are part

of the same bi-criteria optimization problem: Tuning expansion and parallelism

for performance. We do not present here a solution to this complex problem.

The algorithm described in the next sections should be seen as an integrated

tool for parallelization, as soon as the \strategy" has been chosen|what expan-

sion constraints, what kind of schedule, tiling, etc. Most of these strategies have

already shown useful and practical for some programs, the main contribution

is their integration in an automatic optimization process. The summary of our

optimization framework is presented in Figure 6.

(scheduling, tiling, etc.)

(storage mapping optimization)

Correct parallel execution order �

0

Expansion constrained by �

Correct optimized expansion

ParallelismExpansion

Data-
ow execution order

Sequential program �Original data structures

Single-assignment form

Fig. 6. What we want to achieve

4 Formalization of the Correctness

We de�ne correct parallelizations in Sections 4.1 and 4.2 then state our opti-

mization problem in Section 4.3.

4.1 What is a Correct Parallel Execution Order?

Memory expansion|partially|removes dependences due to memory reuse. Sup-

pose �

exp

approximates the dependence relation of (�; f

0

e

), the expanded program

with sequential execution order. (�

exp

matches � when the program is converted

to SA form.) Any parallel order �

0

(over operations) compatible with dependence

relation �

exp

(over accesses) preserve the original semantics:

8(o

1

; r

1

); (o

2

; r

2

) 2 A : (o

1

; r

1

)�

exp

(o

2

; r

2

) =) o

1

�

0

o

2

: (2)

Computation of relation �

exp

from expansion f

0

e

is done in Section 4.3.

4.2 What is a Correct Expansion?

Given parallel order �

0

, we are looking for correct expansions allowing parallel

execution to preserve original semantics. Our task is to formalize memory reuse

constraints enforced by �

0

. We need a new (symmetric) relation ./:

v ./ w

def

()

�

9u 2 R : v�u ^ w 6�

0

v ^ u 6�

0

w ^ (u � w _ w � v _ v 6l w)

�

_

�

9u 2 R : w�u ^ v 6�

0

w ^ u 6�

0

v ^ (u � v _ v � w _w 6l v)

�

: (3)

We proved in [4] that the expansion is correct if the following condition holds.

8e; 8v; w 2W : v ./ w =) f

0

e

(v) 6= f

0

e

(w): (4)

This result requires the source v of a read u and an other write w to assign

di�erent memory locations, when: In the parallel program, w executes between

v and u, And in the original one, either w does not execute between v and u or

w assigns a di�erent memory location from v (v 6l w).

4.3 Computing Parallel Execution Orders and Expansions

We formalized the parallelization correctness with an expansion constraint (1)

and two correctness criteria (2) and (4). Let us show how solving these equations

simultaneously yields a suitable parallel program (�

0

; f

0

e

).

Maximal constrained expansion: Following the lines of [1], we are interested

in removing as many dependences as possible, without violating the expansion

constraint. We can prove|like Lemma 1 in [1]|that a constrained expansion

is maximal|i.e. assigns the largest number of memory locations while verifying

(1)|i� 8e; 8v; w 2W : v � w ^ f

e

(v) = f

e

(w), f

0

e

(v) = f

0

e

(w).

Still following [1], we assume that f

0

e

= (f

e

; �), where � is constant on equiv-

alence classes of �. Indeed, if f

e

(v) = f

e

(w), condition f

0

e

(v) = f

0

e

(w) becomes

equivalent to �(v) = �(w). Using \con
ict equation" approximation l our max-

imal constrained expansion criterion becomes:

8v; w 2W; v l w : v � w () �(v) = �(w) (5)

Computing � resumes to enumerating equivalence classes of �: For any access

v in a class of l (operations that \may" hit the same memory location), �(v)

can be de�ned via a representative of the equivalence class of v for relation �.

Computing the lexicographical minimum is a simple way to �nd representatives.

Parallel execution order: It is time to recompute dependences �

exp

of pro-

gram (�; f

0

e

): An access w depends on v if they hit the same memory location,

v executes before w, and at least one is a write. Then, applying equation (5):

8v; w 2 A : v�

exp

w

def

() v�w _ (v l w ^ v � w ^ v � w)

_ (v l fu : u�wg ^ v � fu : u�wg ^ v � w)

_ (fu : u�vg l w ^ fu : u�vg � w ^ v � w) (6)

We rely on classical algorithms to compute �

0

from �

exp

[6{8, 3].

Reducing memory usage: Knowing (f

0

e

;�

0

), we could stop and say we have

successfully parallelized our program; But nothing ensures that f

0

e

is an \eco-

nomical" storage mapping (remember the motivating example). We must build

a new expansion from �

0

that minimizes memory usage while satisfying (4).

It is exactly what the partial expansion algorithm presented in [4] has been

crafted for. Following the lines of [10], it generates a new array D

S

for every as-

signment statement S, then replaces the left-hand side by D

S

[x mod E

S

], where

x denotes an iteration vector. Vector E

S

is computed from (4) using a new graph-

coloring algorithm, see [4,10]. When every array D

S

has been built, renaming is

performed (to merge arrays) using a greedy graph-coloring algorithm.

Instead of generating code, one can redesign the output of this algorithm

to compute an equivalence relation � over writes: The \color" relation. When

v � w, it is correct to have f

0

e

(v) = f

0

e

(w). Let Stmt(u) (resp. Index(u)) be the

statement (resp. iteration vector) associated with access u. Let NewArray(S) be

the name of the new array assigned by S (after partial expansion):

8v; w 2W : v � w

def

() NewArray(Stmt(v)) = NewArray(Stmt(w))

^ Index(v) mod E

Stmt(v)

= Index(w) mod E

Stmt(w)

:

Relation� satis�es expansion correctness equation (4), but annoyingly, noth-

ing ensures that expansion constraint (1) is still satis�ed. We have to compute

a new equivalence relation from � and �.

Figure 7 shows that � [� is not su�cient: Consider three writes u, v and

w s.t. f

e

(u) = f

e

(v) = f

e

(w), u � v and v � w. (5) enforces f

0

e

(u) = f

0

e

(v)

since u � v. Moreover, to spare memory, we should apply coloration � and set

f

0

e

(v) = f

0

e

(w). Then, no expansion is done and parallel order �

0

may be violated.

w if (� � �) then x = � � �

r

w

� � � = � � � x � � �

u x = � � �

v if (� � �) then x = � � �

r

uv

� � � = � � � x � � �

Original program,

�(r

w

) = fwg and

�(r

uv

) = fu; vg.

u x = � � �

w if (� � �) then x = � � �

r

w

� � � = � � � x � � �

v if (� � �) then x = � � �

r

uv

� � � = � � � x � � �

Wrong expansion when moving u

to the top: r

w

may read the value

produced by u.

u y = � � �

w if (� � �) then x = � � �

r

w

� � � = � � � x � � �

v if (� � �) then y = � � �

r

uv

� � � = � � � y � � �

Correct when assigning

y in u and v and

moving u to the top.

Fig. 7. Strange interplay of expansion constraint and correctness coloration

To avoid this pitfall, coloration relation must be used with care. One may

safely set f

0

e

(u) = f

0

e

(v) when for all u

0

� u, v

0

� v: u

0

� v

0

(i.e. u

0

and v

0

share

the same color). Consider the following relation over writes:

8v; w 2W : v

�

� w () v � w _ (8v

0

; w

0

: v

0

� v ^ w

0

� w =) v

0

� w

0

):

The good thing is that relation

�

� is an equivalence! The proof is simple since

both � and � are equivalence relations. Moreover, choosing f

0

e

(v) = f

0

e

(w) when

v

�

� w and f

0

e

(v) 6= f

0

e

(w) when its not the case ensures that f

0

e

satis�es both the

expansion constraint and the expansion correctness criterion. The result is:

Theorem 1. Storage mapping f

0

e

of the form (f

e

; �) such that

8v; w 2W; v l w : v

�

� w () �(v) = �(w)

is the minimal storage mapping, according to relation �, allowing the parallel

execution order �

0

to preserve the program semantics. (Meaning that it uses the

fewer memory locations possible, � being the only information about permitting

two accesses to assign the same memory location or not.)

Theorem 1 gives us an automatic method to minimize memory usage, according

to a given parallel order and a prede�ned expansion constraint.

5 Code Generation Algorithm

We start with a summary of the optimization problem.

Section 4 yields the system:

8

>

>

>

>

<

>

>

>

>

:

Constraints on f

0

e

= (f

e

; �):

v l w ^ v � w) �(v) = �(w)

v l w ^ v ./ w) �(v) 6= �(w)

Constraints on �

0

:

(o

1

; r

1

)�

exp

(o

2

; r

2

)) o

1

�

0

o

2

Figure beside shows the acyclic

graph allowing computation of

relations and mappings involved in

this system. Section 6 discusses

constraint building issues, while

scheduling and tiling integration is

studied in [4].

f

0

e

= (f

e

; �) and code generation for (f

0

e

;�

0

)

Enumeration of equivalence classes

�

�

�

�

Coloration

./

�

0

Scheduling, etc.

�

exp

�

Static analysis (IRDA, etc.)

�

Program (f

e

;�)

IRDA

l 6l �

Section 6

Expansion scheme (static expansion, etc.)

The algorithm to solve this system enhances the one proposed in [4] to handle

constrained expansion.We use the notations Stmt(hS; xi) = S and Index(hS; xi) =

x, Array(S) is the name of the original data structure assigned by statement S,

and Subscript(u) is the subscript (program text) associated with access u. Inputs

are the sequential program, the result of an IRDA, the expansion constraint, and

pessimistic approximations l and 6l.

1. Compute parallel order �

0

from �, l, �, and �, by �rst computing de-

pendence relation �

exp

then applying your prefered parallelization algorithm

(scheduling, tiling, etc.).

2. Compute relation ./ from �, 6l, � and �

0

.

3. Compute function � from ./ applying the graph-coloring algorithm in [4].

4. Compute function � by enumerating equivalence classes of �, in every class

of l. See [1] for details.

5. For each statement S whose iteration vector is x: Replace the original left-

hand side with Array(S)[Subscript(hS; xi), �(hS; xi)].

6. Each reference r in right-hand side becomes Array(Stmt(u))[Subscript(u),

�(u)] when �(hS; xi; r) = fug, and with a conditional expression thereof

when �(hS; xi; r) is a non-singleton set, see [4].

7. Any array declaration A[...] becomes A[..., max

u2W^Array(u)=A

�(u)].

Eventually, several methods compute �-functions at run-time [4, 5, 9].

6 Building Expansion Constraints

Our goal here is not to choose the right constraint suitable to expand a given

program; But it does not mean leaving the user compute relation �!

As shown in Section 3.2, enforcing the expansion to be static corresponds to

setting �= R

�

. The constraint is thus built from IRDA results [1].

Another example is privatization, seen as expansion along some surrounding

loops, without renaming. Consider two accesses u and v writing into the same

memory location. After privatization, u and v assign the same location if their

iteration vectors coincide on the components associated with privatized loops:

u � v () Index(u)[privatized loops] = Index(v)[privatized loops];

where Index(u)[privatized loops] holds counters of privatized loops for u.

Building the constraint for array SSA is even simpler. Instances of the same

statement assigning the same memory location must still do so in the expanded

program (only variable renaming is performed):

u � v () Stmt(u) = Stmt(v);

These three practical examples give the insight that building � from the

formal de�nition of an expansion strategy is not di�cult. New expansion strate-

gies should be designed and expressed as constraints|statement-by-statement,

user-de�ned, knowledge-based, and especially architecture dependent (number of

processors, memory hierarchy, communication model) constraints.

7 Conclusion and Perspectives

Expanding data structures is a classical transformation to cut memory-based

dependences. The questions are (1) \What is the good expansion for my favorite

program and architecture?", and (2) \What is the good parallel loop reorder-

ing algorithm?". We believe that better performance could be achieved if both

questions are handled simultaneously.

This paper introduces expansion constraints to tune between expansion over-

head (time and space) and parallelism extraction. When the parallel order has

been built, storage optimization is performed to reduce memory usage. We de-

signed a kind of integrated tool for parallelization, taking the expansion strategy

and parallel order computation algorithm as input from an other part of the

compiler, or even the user. Our techniques are either novel or generalize previ-

ous work to unrestricted nests of loops.

We advocate for the use of constrained expansion in parallelizing compil-

ers, since its integration with other parallelization techniques (scheduling, tiling,

storage mapping optimization, etc.) has been shown possible by this work. The

goal is now to design pragmatic constraints and to propose a real bi-criteria

optimization algorithm for expansion overhead and parallelism extraction.

Acknowledgments: Thanks to Denis Barthou, Jean-Fran�cois Collard, Vincent Lefeb-

vre, Paul Feautrier, and Laurent Vibert, for their help and support. Access to the SGI

Origin 2000 was provided by the Universit�e Louis Pasteur, Strasbourg.

References

1. D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. InACM Symp.

on Principles of Programming Languages (PoPL), pages 98{106, San Diego, CA,

January 1998.

2. D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array data
ow analysis. Journal

of Parallel and Distributed Computing, 40:210{226, 1997.

3. L. Carter, J. Ferrante, and S. Flynn Hummel. E�cient multiprocessor parallelism

via hierarchical tiling. In SIAM Conference on Parallel Processing for Scienti�c

Computing, 1995.

4. A. Cohen and V. Lefebvre. Optimization of storage mappings for parallel programs.

Technical Report 1998/46, PRiSM, U. of Versailles, 1998.

5. J.-F. Collard. The advantages of reaching de�nition analyses in Array (S) SA.

In Proc. Workshop on Languages and Compilers for Parallel Computi ng, Chapel

Hill, NC, August 1998. Springer-Verlag.

6. A. Darte and F. Vivien. Optimal �ne and medium grain parallelism detection

in polyhedral reduced dependence graphs. Int. Journal of Parallel Programming,

25(6):447{496, December 1997.

7. P. Feautrier. Some e�cient solution to the a�ne scheduling problem, part II,

multidimensional time. Int. J. of Parallel Programming, 21(6), December 1992.

8. F. Irigoin and R. Triolet. Supernode partitioning. In ACM Symp. on Principles

of Programming Languages (PoPL), volume 15, pages 319{328, San Diego, Cal.,

January 1988.

9. K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In ACM

Symp. on Principles of Programming Languages (PoPL), pages 107{120, San Diego

(CA), January 1998.

10. V. Lefebvre and P. Feautrier. Automatic storage management for parallel pro-

grams. Journal on Parallel Computing, 24:649{671, 1998.

11. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data
ow analysis and its

use in array privatization. In Proc. of ACM Conf. on Principles of Programming

Languages, pages 2{15, January 1993.

12. W. Pugh. A practical algorithm for exact array dependence analysis. Communi-

cations of the ACM, 35(8):27{47, August 1992.

13. M. Mills Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independant

storage mapping for loops. In ACM Int. Conf. on Arch. Support for Prog. Lang.

and Oper. Sys. (ASPLOS-VIII), 1998.

14. P. Tu and D. Padua. Automatic array privatization. In Proc. Sixth Workshop on

Languages and Compilers for Parallel Computing, number 768 in Lecture Notes in

Computer Science, pages 500{521, August 1993. Portland, Oregon.

15. D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis,

University of Maryland, 1995.

