Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases

To cite this version:

HAL Id: hal-01257127
https://hal.archives-ouvertes.fr/hal-01257127
Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact j.bakker@elsevier.com immediately prior to returning your corrections.</td>
</tr>
<tr>
<td>Q2</td>
<td>The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.</td>
</tr>
<tr>
<td>Q3</td>
<td>The country name has been inserted for the affiliation `6’. Please check, and correct if necessary.</td>
</tr>
<tr>
<td>Q4</td>
<td>The affiliations <code>7’ and </code>11’ were identical, the latter has been removed, and hence the affiliation link the author `Rolf Gebhardt' has been changed, accordingly. Please check, and correct if necessary.</td>
</tr>
<tr>
<td>Q5</td>
<td>One or more sponsor names may have been edited to a standard format that enables better searching and identification of your article. Please check and correct if necessary.</td>
</tr>
<tr>
<td>Q6</td>
<td>The country names of the Grant Sponsors are provided below. Please check and correct if necessary. <code>BMBF' - </code>Germany'.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases

Ahmed Ghallab *, Géraldine Cellière, Sebastian G. Henkel, Dominik Driesch, Stefan Hoehme, Ute Hofmann, Sebastian Zellmer, Patricio Godoy, Agapios Sachinidis, Meinolf Blaszkewicz, Raymond Reif, Rosemarie Marchan, Lars Kuepfer, Dieter Häussinger, Dirk Drasdo, Rolf Gebhardt, Jan G. Hengstler *
Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases

Ahmed Ghallab1,2,5, Géraldine Cellière3,1, Sebastian G. Henkel4,7, Dominik Driesch4,8
Stefan Hoehme9, Ute Hofmann9, Sebastian Zellmer7, Patricio Godoy1, Agapios Sachinidis8,
Meinolf Blaszkewicz3, Raymond Reif3, Rosemarie Marchan1, Lars Kuepfer9, Dieter Häussinger10,
Dirk Drasdo3,5,7, Reinhard Gerhard9, Jan G. Hengstler1,5,11

1 Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany;
2 Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt;
3 Institute National de Recherche en Informatique et en Automatique (INRIA), INRIA Paris-Rocquencourt & Sorbonne Universités UPMC Univ Paris 6, LJLL, France;
4 BioControl Jena GmbH, Jena, Germany;
5 Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, Germany;
6 Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, Germany;
7 Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany;
8 Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany;
9 Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany;
10 Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany.

Background & Aims: Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipher ammonia detoxification mechanisms in the liver.

Methods: An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism. Predicted mechanisms were validated using time-resolved analyses of nitrogen metabolism, activity analyses, immunostaining and gene expression after induction of liver damage in mice. Moreover, blood from the portal vein, liver vein and mixed venous blood was analyzed in a time dependent manner.

Results: Modeling revealed an underestimation of ammonia consumption after liver damage when only the currently established mechanisms of ammonia detoxification were simulated. By iterative cycles of modeling and experiments, the reductive amimation of alpha-ketoglutarate (α-KG) via glutamate dehydrogenase (GDH) was identified as the lacking component. GDH is released from damaged hepatocytes into the blood where it consumes ammonia to generate glutamate, thereby providing systemic protection against hyperammonemia. This mechanism was exploited therapeutically in a mouse model of hyperammonemia by injecting GDH together with optimized doses of cofactors. Intravenous injection of GDH (720 U/kg), α-KG (280 mg/kg) and NADPH (180 mg/kg) reduced the elevated blood ammonia concentrations (>200 μM) to levels close to normal within only 15 min.

Conclusion: If successfully translated to patients the GDH-based therapy might provide a less aggressive therapeutic alternative for patients with severe hyperammonemia.

Keywords: Systems biology; Spatio-temporal model; Ammonia; Liver damage; Liver regeneration.

Received 23 March 2015; received in revised form 15 November 2015; accepted 16 November 2015.

Introduction: Recent developments have strongly improved our capability to generate information at multiple spatial and temporal scales [1,2]. However, research on disease pathogenesis is hampered by the difficulty to understand the orchestration of individual components. Here, mathematical models help to formalize relations between components, simulate their interplay, and to study processes that are too complex to be understood intuitively [1]. This is particularly important when studying the pathophysiology of metabolic liver diseases, where due to zonation different metabolic processes take place in pericentral and perportal hepatocytes [3]. To be able to investigate such complex processes we recently established a technique of integrated metabolic spatial-temporal modeling (IM) [4]. These IM integrate conventional metabolic models into spatial-temporal models of the liver lobule [1,4,5]. The present study was motivated by the IM predictions, which proposed that the conventional mechanisms where ammonia is metabolized by urea cycle enzymes in the perportal compartments of the liver lobules and by glutamine synthetase (GS) reaction in the pericentral compartments (Supplementary.

Please cite this article in press as: Ghallab A et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
A detailed description of materials and methods is provided in the Supplementary materials and methods. The analysis of ammonia and further metabolites was performed using commercially available kits. Concentrations of amino acids and organic acids in liver tissue were measured in duplicate using GC-MS. GS, GDH and transaminases activity assays were performed photometrically as described in the Supplementary materials and methods. For the mathematical modeling of ammonia and the related metabolites, the integrated metabolic, spatio-temporal model was applied [4,5]. In addition, the IM was replaced by a set of novel models that include further reactions and a part of the periportal compartment of the liver lobules were destroyed by a single high dose of the hepatotoxic compound carbon tetrachloride (CCl4). This leads to compromised nitrogen metabolism and hyperammonemia. In the present study, we performed a series of new experiments accompanied by simulations with novel models to explore the mechanism responsible for the observed discrepancy. Experimentally, the time-resolved analysis of metabolites and metabolic activities after CCl4 intoxication offers good conditions to study ammonia detoxification and possible compensatory mechanisms during the damage and regeneration process. Time-resolved analysis of metabolites was performed in the portal vein and heart blood, representing the ‘liver inflow’, and in the liver vein as ‘liver outflow’. These analyses allowed a precise experimental validation of model predictions. Finally, iterative cycles of modeling and experimental validation allowed the identification of a so far unrecognized mechanism of ammonia detoxification. Importantly, this mechanism could be exploited therapeutically to reduce elevated blood ammonia concentrations close to normal levels by intravenous injection of glutamate dehydrogenase (GDH; 720 U/kg) and its cofactors alpha-ketoglutarate (α-KG; 280 mg/kg) as well as NADPH (180 mg/kg). This example illustrates how concrete therapies can be derived by model guided experimental strategies.
enzyme concentrations (model 1), did not remove the discrepancy between model predictions and experimental data (Supplementary Fig. 11), indicating that our model lacks a relevant, but so far unrecognized mechanism of ammonia detoxification.

Acute liver damage provides systemic protection against ammonia by GDH release

Further evidence that an unrecognized mechanism of ammonia detoxification exists arose from metabolic analyses performed...
Research Article

using plasma from mice after CCl4 injection (Fig. 3 A). Most of the analyzed factors in plasma (urea, glutamine, glucose, lactate, pyruvate, alanine, arginine and other amino acids: Supplementary Figs. 4–6) were within the expected concentration ranges, α-KG, which dramatically decreased between 12 h and day 2 (Fig. 3 A). This decrease was accompanied by an almost concurrent increase in glutamate levels, which persisted longer than the drop in α-KG. One potential explanation is the delayed recovery of GS, which uses glutamate and ammonia to form glutamine (Fig. 2 E, F). The decrease in α-KG (and the increase in glutamate) was also accompanied by increased GDH activity in plasma, because GDH is released from damaged hepatocytes (Fig. 3 A).

The present observations suggest that GDH released from the damaged hepatocytes into the blood catalyzes, at least transiently, a reaction that consumes ammonia to produce glutamate (Fig. 3 D). To test this hypothesis, we collected plasma from mice on day 1 after CCl4 injection. Addition of α-KG alone was sufficient to slightly but significantly decrease blood ammonia concentrations (Fig. 3 B). This decrease was enhanced by further adding NADPH and particularly GDH; whereas the GDH inhibitor, PDAC completely antagonized the effect. To test also higher ammonia concentrations typically observed in patients with severe pre-coma hyperammonemia, 600 μM ammonia was added to plasma collected on day 1 after CCl4 administration. Under these conditions, α-KG also reduced ammonia and increased glutamate concentrations (Fig. 3 C; Supplementary Fig. 12 A). Together, these experiments suggest that a GDH reaction consuming ammonia in blood takes place when GDH is released from acutely damaged livers (Fig. 3 D).

Validation of the ‘GDH-driven ammonia consumption’ in hepatocytes

The experiments described above suggest that high ammonia concentrations in plasma leads to a ‘reverse’ GDH reaction, which consumes rather than produces ammonia. To test whether this ‘GDH-driven ammonia consumption’ occurs not only in plasma but also in cells, we used an in vitro system with primary mouse hepatocytes incubated with ammonia in suspension (Fig. 4). PDAC was used to inhibit GDH (Fig. 4 A) in order to determine its influence on ammonia metabolism. In hepatocytes isolated from control mice, unphysiologically high ammonia concentrations (2 mM) were required until PDAC caused a significant increase of ammonia levels in the suspension buffer (Fig. 4 B). However, when hepatocytes from mice 24 h after CCl4 intoxication were used, PDAC treatment increased ammonia concentrations in the suspension buffer, even with 0.5 mM ammonia. Furthermore, in the absence of ammonia, hepatocytes secreted a small but statistically significant amount of ammonia into the buffer. Similarly, glutamate production was reduced by PDAC, an effect that was also stronger in hepatocytes isolated from CCl4-exposed mice (Fig. 4 C), which corresponds to the reverse GDH reaction proposed in Fig. 3 D (right panel). CCl4 destroys the pericentral hepatocytes (Fig. 1 D), which explains the reduced glutamine generation by GS (Fig. 4 D) and compromises urea cycle enzymes (Supplementary Fig. 3 B, C), which explains the reduced urea production (Fig. 4 E). Similar experiments were also performed with cultivated (instead of suspended) hepatocytes from untreated mice. The results demonstrate that inhibition of GDH at high ammonia concentrations increases ammonia-induced cytotoxicity (Supplementary Fig. 12 B). These results show that the catalytic direction of GDH reverses a clearly becomes ammonia consuming also in hepatocytes in order to compensate the compromised metabolism by urea cycle enzymes and GS after intoxication.

Further evidence emerges from simulations with a set of novel models 1–4 (Supplementary Fig. 1). If a reversible GDH reaction was integrated into the hepatocyte compartment (Fig. 5 A; Supplementary Fig. 11), the discrepancy between in vivo measured and simulated ammonia concentrations (Fig. 1 C) completely disappeared (Fig. 5 B). The quantitative agreement was obtained even without considering the blood compartment of the liver, suggesting that after CCl4-induced damage, the ammonia consumption catalyzed by GDH in the hepatocytes represents the missing ammonia sink predicted by [4].

Therapy of hyperammonemia based on the reverse GDH reaction

The above described ammonia consumption catalyzed by the GDH reaction (Figs. 3 B–D and 4) and the aforementioned decrease in plasma α-KG levels (Fig. 3 A) prompted us to test whether supplementation of α-KG in mice helps to detoxify ammonia. Therefore, mice received a hepatotoxic dose of CCl4 (1.6 g/kg) and 24 h later α-KG (280 mg/kg) was injected into the tail vein. Blood was collected immediately before as well as 15, 30 and 60 min after injection of α-KG. A decrease in plasma ammonia concentrations by 31, 40 and 43% was observed 15, 30 and 60 min after α-KG injection, respectively (Fig. 6 A). Glutamate increased after 15 min and decreased again after longer periods probably due to the consumption by further metabolism. α-KG transiently increased in plasma after injection and then rapidly decreased. Analysis of GDH activity demonstrated that the experiment was performed under conditions of high plasma activity. In control mice, injection of α-KG did not alter blood concentrations of ammonia or glutamate (Fig. 6 B). In addition, plasma α-KG levels were lower in CCl4-treated mice compared to the control mice, suggesting increased consumption in mice with damaged livers.

Fig. 1. Evidence for a so far unrecognized mechanism of ammonia detoxification. (A) Experimental design. (B) Ammonia concentrations in the portal vein, hepatic vein and heart. *p < 0.05 compared to the corresponding controls (0 h). (C) Integrated metabolic spatio-temporal model using the technique described by [4] (video in the Supplementary data). Predicted ammonia concentrations in the liver outflow are higher compared to the experimental data. **p < 0.001, *p < 0.01 and *p < 0.05 compared to the measured ammonia output. (D) Dose dependent experiment (10.9 to 1600 mg/kg CCl4 24 h after administration) showing macroscopic alterations with a spotted pattern at 132.4 mg/kg and higher doses, corresponding to the central necrotic lesion in hepatocytes/eosin staining, scale bars: 100 μm. Destruction of the pericentral CYP2E1 positive region which begins at 132.4 mg/kg with central necrosis still surrounded by CYP2E1 positive surviving hepatocytes; the entire CYP2E1 positive region was destroyed at the highest dose of 1600 mg/kg. The GS positive region was destroyed only at 132.4 mg/kg and higher doses, which corresponds to the decrease in GS activity (E), scale bars: 200 μm. *p < 0.05 when compared to the control group (0). (F) Comparison of analyzed and simulated ammonia concentrations in the liver vein for the experiment in (D); mean, in: analyzed concentrations in the portal vein (representing 85% of the liver inflow) and heart blood (representing 15% of the liver inflow); mean, out: analyzed concentrations in the liver vein; sim. out: simulated concentrations in the liver vein. Data are mean values and SD of three mice per time point and dose of CCl4. **p < 0.001 and *p < 0.01 compared to the measured ammonia output.

Please cite this article in press as: Ghalab A et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
Fig. 2. Spatio-temporal alterations of ammonia metabolizing enzymes after CCl4 intoxication. (A) Experimental design. (B) Time dependent changes of gene expression in fuzzy cluster 4 from [6]. The dots correspond to the average of the mean scaled values for all 310 genes, between their respective maximal and minimal expression levels at each time point, using healthy liver (time 0) as reference. Error bars indicate standard error. (C) Changes in expression of genes associated to the KEGG terms ammonia/nitrogen metabolism (Gene Ontology [GO] ID 910) as revealed by KEGG pathways enrichment analysis in fuzzy cluster 4 \((p = 2.36 \times 10^{-7}) \). (D) Changes in the expression of genes associated to the GO terms ‘urea cycle/urea metabolic process’ (Gene Ontology ID 0000050 and 0019627 respectively) as revealed by GO enrichment analysis in fuzzy cluster 4 \((p = 3.83 \times 10^{-4}) \). In C and D, the values indicate fold of expression over healthy liver at each time point after CCl4 administration, and correspond to the average of 5 independent biological replicates. Time course of GS RNA levels, GS activity (E) and immunostaining (F). Scale bars: 200\(\mu \)m. * \(p < 0.05 \) when compared to the control group (0 h).

Please cite this article in press as: Ghallab A et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
Research Article

Fig. 3. Detoxification of ammonia by a reverse GDH reaction. (A) After induction of liver damage by CCl4, plasma activity of GDH transiently increases. This is accompanied by a decrease in alpha-ketoglutarate (α-KG) and an increase in glutamate. *p < 0.05 when compared to the corresponding control (0 h). Similar results were observed in liver tissue (Supplementary Tables 1 and 2). (B) Validation of the reverse GDH reaction using an inhibitor of GDH (PDAC). Plasma of mice 24 h after CCl4 injection was analyzed. α-KG was added alone or in combination with AOA, NADPH, GDH and PDAC. **p < 0.001, *p < 0.01 and *p < 0.05 when compared to controls (0). (C) A similar experimental design was chosen as in B. However, 600 μM ammonia was added to also test the reaction at a higher but still clinically relevant concentration. α-KG decreases ammonia and increases glutamate concentrations, which can be blocked by the GDH inhibitor, PDAC. **p < 0.001, *p < 0.01 and *p < 0.05 when compared to the NH4Cl group (0 h). Data are mean values and SD of 3 biological replicas. (D) Concept of the reverse glutamate dehydrogenase (GDH) reaction. In normal periportal hepatocytes, GDH generates ammonia, which is detoxified by the urea cycle. In pericentral hepatocytes, GDH generates glutamate which is required as a substrate for the GS reaction to form glutamine (Gln). Biosynthesis of α-KG takes place in the periporal hepatocytes; α-KG is then partially exported and taken up again by the pericentral hepatocytes, where it is needed for GS [25,26]. After induction of liver damage, the expression of urea cycle enzymes decreased and the pericentral region with GS is completely destroyed. This leads to increased blood ammonia concentrations. However, also GDH is released from damaged hepatocytes and catalyzes a reaction in blood consuming ammonia and α-KG to generate glutamate (Glu). This reaction can go until α-KG in blood is consumed. In this situation α-KG and NADPH should be therapeutically substituted.
Fig. 4. Ammonia consumption by GDH in primary mouse hepatocytes. HBonocytes were isolated from CCl₄ (1.6 g/kg) intoxicated (day 1) and untreated mice and suspended at a concentration of 2 million hepatocytes/ml for 1 h with different concentrations of ammonia. (A) Inhibition of GDH activity by PDAC. (B) Compromised ammonia detoxification after GDH inhibition. (C) Reduced glutamate production by GDH inhibition. "**p < 0.001, "*p < 0.01 and "p < 0.05 compared to - PDAC. "p < 0.01 and "p < 0.05 compared to hepatocytes from untreated mice. (D & E) Compromised urea and glutamate production by hepatocytes of CCl₄ intoxicated mice. "p < 0.01 and "p < 0.05 compared to hepatocytes from untreated mice. Data are mean values and SD of three independent experiments.

In the aforementioned experiment, the molar amount of glutamate produced in the damaged liver after α-KG injection was higher than ammonia consumption (Fig. 6A). Therefore, the results cannot only be explained by the reverse GDH reaction, but may be due to the consumption of α-KG by transaminases that contribute to the generation of glutamate. Indeed, tail vein injection of the transaminases inhibitor AOA prior to α-KG injection reduced the production of glutamate (Fig. 6C) and improved ammonia detoxification. The efficiency of transaminases inhibition by AOA in vivo has been confirmed in preliminary experiments (Supplementary Figs. 13 and 14).

The reverse GDH reaction requires NADPH as a cofactor; however, NADPH concentrations are very low in blood. To determine how NADPH levels are altered in our model of liver damage, both NADPH and its oxidized form NADP⁺ were analyzed. Blood concentrations of both NADPH and NADP⁺ increased after induction of liver damage by CCl₄ (Supplementary Fig. 15A). In addition, an enhanced NADP⁺/NADPH ratio was observed in both blood and liver tissue (Supplementary Fig. 15B). This increase in NADP⁺/NADPH ratio fits to a switch in the GDH reaction from NADPH generation to NADPH consumption. Despite the increase in NADPH after induction of liver damage, the concentrations are still relatively low. Therefore, to study the influence of NADPH, plasma from mice collected 24 h after CCl₄ injection was incubated with varying concentrations of NADPH in the presence of NH₄Cl (1 mM), α-KG (3 mM), AOA (1 mM) and GDH (12,000 U/l) for one hour. A concentration dependent decrease in plasma ammonia and an increase in glutamate were observed with increasing concentrations of NADPH (Fig. 7A). A similar trend for ammonia and glutamate was observed with increasing concentrations of α-KG and GDH (Fig. 7B, C). Moreover, addition of AOA reduced both ammonia and glutamate concentrations (Supplementary Fig. 16). To understand how the orientation of the GDH reaction is controlled by ammonia and glutamate concentrations, titration experiments were performed, which indicated that GDH significantly consumes ammonia beginning at concentrations of 150 μM and higher (Fig. 7D). In contrast, unphysiologically high concentrations of more than 10 mM glutamate were required to block the reaction (Fig. 7E).

Based on these in vitro optimized concentrations, we designed an in vivo study to treat hyperammonemia in mice. After the induction of liver damage by CCl₄, transaminases activities were inhibited by AOA (13 mg/kg; tail vein injection; 24 h after CCl₄ administration). Thirty minutes later a cocktail of α-KG (280 mg/kg), GDH (720 U/kg) and NADPH (180 mg/kg) was intravenously injected. A dose of 280 mg/kg α-KG was chosen because
it transiently normalized α-KG levels in mice 24 h after CCl4.

Therapy for hyperammonemia remains challenging [8–10]. Hemodialysis is the most efficient treatment for reducing elevated blood ammonia concentrations [11,12]. For milder forms of hyperammonemia, pharmacologic management is possible [13]. Efficient strategies for patients with urea cycle defects include infusion of phenylacetate or benzoate. Phenylacetate combines with glycine to form hippurate, which is also excreted in urine [9,13,14]. Conversely, benzoate combines with glutamine to form a product which can be excreted by the kidneys [9,13,14]. Guided by simulations with an IM predicting a missing ammonia sink after severe CCl4-induced liver damage, we identified the GDH reaction as fundamental for ammonia consumption, which can be used therapeutically by the administration of a cocktail of GDH and cofactors.

Fig. 6. Reduction of blood ammonia concentrations by α-KG. (A) Tail vein injection of 280 mg/kg α-KG into mice 24 h after induction of liver damage by CCl4 (1.6 g/kg). (B) Control experiment with α-KG (280 mg/kg) injected into the tail vein of untreated mice. **p < 0.001, *p < 0.01 and *p < 0.05 when compared to the control group (0). (C) Influence of the transaminase inhibitor AOA (13 mg/kg; tail vein injection) on ammonia detoxification by α-KG. **p < 0.01 and *p < 0.05 when compared to the correponding control. Data are mean values and SD of three mice treated at different experimental days with individually prepared α-KG.

Discussion

Guided by simulations with an IM predicting a missing ammonia sink after severe CCl4-induced liver damage, we identified the GDH reaction as fundamental for ammonia consumption, which can be used therapeutically by the administration of a cocktail of GDH and cofactors.

Therapy for hyperammonemia remains challenging [8–10]. Hemodialysis is the most efficient treatment for reducing elevated blood ammonia concentrations [11,12]. For milder forms of hyperammonemia, pharmacologic management is possible [13]. Efficient strategies for patients with urea cycle defects include infusion of phenylacetate or benzoate. Phenylacetate combines with glycine to form hippurate, which is also excreted in urine [9,13,14]. Conversely, benzoate combines with glutamine to form a product which can be excreted by the kidneys [9,13,14]. Guided by simulations with an IM predicting a missing ammonia sink after severe CCl4-induced liver damage, we identified the GDH reaction as fundamental for ammonia consumption, which can be used therapeutically by the administration of a cocktail of GDH and cofactors.

Therapy for hyperammonemia remains challenging [8–10]. Hemodialysis is the most efficient treatment for reducing elevated blood ammonia concentrations [11,12]. For milder forms of hyperammonemia, pharmacologic management is possible [13]. Efficient strategies for patients with urea cycle defects include infusion of phenylacetate or benzoate. Phenylacetate combines with glycine to form hippurate, which is also excreted in urine [9,13,14]. Conversely, benzoate combines with glutamine to form a product which can be excreted by the kidneys [9,13,14].
Under these conditions, a GDH-catalyzed reaction takes place in blood where ammonia and α-KG are consumed to form glutamate in an NADPH-dependent reaction. GDH was also previously reported to switch its catalytic orientation under physiological conditions. In the perportal compartment of the liver lobule, GDH generates ammonia (Fig. 3D), which fuels the urea cycle. In the pericentral compartment, GDH is known to consume ammonia to generate glutamate for the GS reaction [17–19].

The present study shows by use of a GDH inhibitor that GDH released from damaged liver tissue may catalyze an ammonia consuming reaction under conditions of hyperammonemia. By releasing GDH from damaged hepatocytes into the blood, the damaged liver provides a mechanism that reduces blood ammonia levels. However, this protective mechanism is limited by the availability of the GDH substrate, α-KG. The present study shows that α-KG strongly decreases upon induction of acute liver dam-

![Graphs and Data](https://example.com/graphs.png)
Q6

411 406 KG, GDH and NADPH efficiently reduced blood ammonia concen-
409 of magnitude as observed in patients after acetaminophen intox-
408 trations. A GDH bolus was injected to result in plasma peak con-
407 of NADPH, and infuse GDH. Indeed, the combined injection of
406 GDH (Fig. 3A). This discrepancy may be explained by the intracel-
405 pointed us to supplement
404 age, because it is consumed by the reverse GDH reaction. This
403 prompted us to supplement α-KG, increase blood concentrations
402 of NADPH, and infuse GDH. Indeed, the combined injection of α-
401 KG, GDH and NADPH efficiently reduced blood ammonia concen-
400 trations. A GDH bolus was injected to result in plasma peak concen-
399 trations between 5000 and 6000 U/L. This is in the same order
398 of magnitude as observed in patients after acetylaminophen intox-
397 ication [20]. Therefore, in patients with acute liver intoxication
396 with high blood GDH, therapy with α-KG and NADPH might be
395 sufficient. However, it should be considered that the GDH re-
394 action in blood described here (Fig. 3D) does not explain all exper-
393 imental observations: α-KG decreases significantly 12 h after CCl4
392 administration when there is no significant increase in blood
391 GDH (Fig. 3A). This discrepancy may be explained by the intracel-
390 lular change of the catalytic direction of GDH in the perportal
389 hepatocytes, which may precede the GDH release into the blood.
388 However, this was not further analyzed in the present study as
387 we choose to focus on the therapeutically more relevant GDH reaction taking place in blood.
386 α-KG was previously tested for the treatment of hyperam-
385 monemia between 1964 and 1978 [21,22], but this strategy
384 was abandoned because it was not sufficiently efficient for clin-
383 ical application. The reverse GDH reaction in the blood and its
382 requirement for NADPH as a cofactor was not yet known when
381 the early therapeutic studies with α-KG were performed. In addi-
380 tion, injection of α-KG alone in the present study resulted in only
380 a relatively weak reduction of hyperammonemia. This reduction
379 may be possible because in addition to GDH, NADPH is also
378 released from deteriorating hepatocytes after CCl4 injection.
377 The concept of treating hyperammonemia by α-KG/GDH/
376 NADPH infusion originates from simulations using an integrated
375 metabolic spatio-temporal model [4]. This model is based on
374 well-understood pathways of ammonia detoxification, such as
373 urea cycle enzymes and the GS reaction [23,24]. It predicted
372 higher ammonia concentrations compared to the measured data.
371 Therefore, we analyzed liver tissue during the damage induction
370 and regeneration processes, but the results could also not explain
369 the discrepancy. Time-resolved gene array experiments following
368 CCl4 injection led to the observation that a general decrease in
367 metabolizing enzymes occurs including enzymes involved in
366 ammonia metabolism. All enzymes of the urea cycle were tran-
365 scriptionally downregulated by at least 60%. Factors identified
364 by the gene array analysis were further analyzed by activity
363 assays and immunostaining. Key observations were: (a) the GS
362 positive region, which is initially completely destroyed by CCl4,
361 shows a delayed recovery and does not return to normal levels
360 before day 12; and (b) CPS1, the rate limiting enzyme in the urea
359 cycle normally expressed in the perportal region, is downregu-
358 lated during the destruction process (days 1–3), but its expres-
357 sion then extends throughout the entire liver lobule during
356 days 4–6. The other urea cycle enzymes showed a similar time
355 course as CPS1 with the exception of arginase1, which decreased
354 only slightly during the destruction and regeneration process.
353 Glutaminase showed a similar time course and pattern as
352 CPS1. Nevertheless, none of these alterations could explain
351 the observed discrepancy. However, the refined models that take into
350 account the reversible GDH reaction show an excellent agree-
349 ment with the experimental data suggesting that consumption
348 by the GDH reaction represents the previously predicted ammo-
347 nia sink, hence providing an example for model guided
346 experimentation.

In conclusion, a novel form of therapy has been identified that
345 allows the rapid correction of hyperammonemia by the infusion
344 of α-KG, GDH and NADPH. This pharmacotherapy may prove rel-
343 evant as an emergency therapy for episodes of hyperammonemia
342 in urea cycle disease or liver cirrhosis.

Financial support

This study was supported by the BMBF funded projects Virtual
Liver (FKZ0315739), Lebersimulator and FP 7EU NOTOX.

Conflict of interest

The authors who have taken part in this study declared that they do not have anything to disclose regarding funding or conflict of interest with respect to this manuscript.

Fig. 8. Treatment of hyperammonemia by injection of a cocktail of GDH and
optimized cofactor doses. A cocktail of GDH (720 U/kg), α-KG (280 mg/kg) and
NADPH (180 mg/kg) (KGN) was injected into mice 24 h after induction of liver
damage using CCl4 (1.6 g/kg). Thirty minutes prior to treatment with the cocktail,
10 Journal of Hepatology 2016 vol. xxx | xxx–xxx

Please cite this article in press as: Ghallab A et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J
Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
Authors’ contributions

Ahmed Ghallab: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis; critical revision of the manuscript.

Sebastian G. Henkel: mathematical modeling (integrated model of Schliess et al. [2014], model 0 and extrahepatic mass balance); analysis and interpretation of data; drafting of the manuscript.

Dominik Driesch: mathematical modeling (integrated model of Schliess et al. [2014], model 0); acquisition of data; analysis and interpretation of data; drafting of the manuscript.

Stefan Hoehme: mathematical modeling (integrated model of Schliess et al. [2014], model 0); analysis and interpretation of data; drafting of the manuscript.

Ute Hofmann: acquisition of data; technical support; drafting of the manuscript.

Sebastian Zellmer: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis.

Jan G. Hengstler: study concept and design; acquisition of data; technical support; drafting of the manuscript.

Dirk Drasdo: study concept and design; mathematical modeling of the manuscript.

Dieter Häussinger: study concept and design; critical revision of the manuscript.

Lars Kuepfer: mathematical modeling; drafting of the manuscript.

Rosemarie Marchan: critical revision of the manuscript.

Raymond Reif: analysis and interpretation of data; drafting of the manuscript.

Meinolf Blaszkewicz: acquisition of data; analysis and interpretation of data; technical support; drafting of the manuscript.

Géraldine Cellière: mathematical modeling (novel ammonia detoxification models, extension of model 0); analysis and interpretation of data; drafting of the manuscript, statistical analysis.

Sebastian G. Henkel: mathematical modeling (integrated model of Schliess et al. [2014], model 0); analysis and interpretation of data; drafting of the manuscript.

Dominik Driesch: mathematical modeling (integrated model of Schliess et al. [2014], model 0 and extrahepatic mass balance); analysis and interpretation of data; drafting of the manuscript.

Stefan Hoehme: mathematical modeling (integrated model of Schliess et al. [2014], model 0); analysis and interpretation of data; drafting of the manuscript.

Ute Hofmann: acquisition of data; analysis and interpretation of data; technical support; drafting of the manuscript.

Sebastian Zellmer: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript.

Patricio Godoy: acquisition of data; analysis and interpretation of data; drafting of the manuscript.

Agapios Sachinidis: acquisition of data; analysis and interpretation of data; drafting of the manuscript.

Meinolf Blaszkewicz: acquisition of data; analysis and interpretation of data; technical support; drafting of the manuscript.

Raymond Reif: analysis and interpretation of data; drafting of the manuscript.

Rosemarie Marchan: critical revision of the manuscript.

Lars Kuepfer: mathematical modeling; drafting of the manuscript.

Dieter Häussinger: study concept and design; critical revision of the manuscript.

Dirk Drasdo: study concept and design; mathematical modeling (integrated model of Schliess et al. [2014], model 0 and novel models); analysis and interpretation of data; drafting of the manuscript, statistical analysis, critical revision of the manuscript.

Rolf Gebhardt: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; critical revision of the manuscript.

Jan G. Hengstler: study concept and design; acquisition of data; analysis and interpretation of data; drafting of the manuscript; statistical analysis; critical revision of the manuscript; study supervision.

Acknowledgments

We thank Mrs. Gabi Baumhoer, Mrs. Georgia Günter and Mrs. Brigitte Begher-Tibbe – Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Dortmund, Germany; and Ms. Margit Henry and Ms. Tamara Rotshieym – Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany – for competent technical assistance.

References

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhep.2015.11.018.

Supplementary data

For Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany – for competent technical assistance.

JOURNAL OF HEPATOLOGY

www.journalofhepatology.org

8 January 2016

ARTICLE IN PRESS

JOURNAL OF HEPATOLOGY

Please cite this article in press as: Ghallab A et al. Model-guided identification of a therapeutic strategy to reduce hyperammonemia in liver diseases. J Hepatol (2016), http://dx.doi.org/10.1016/j.jhep.2015.11.018
Research Article

