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ABSTRACT. In this paper, we study the stability result for the conductivities
diffusion coefficients to a strongly reaction-diffusion system modeling electrical
activity in the heart. To study the problem, we establish a Carleman estimate
for our system. The proof is based on the combination of a Carleman estimate
and certain weight energy estimates for parabolic systems.

1. Introduction. Let  C RY(N > 1) be a bounded connected open set whose
boundary 02 is regular enough. Let T" > 0 and w be a small nonempty subset of
2. We will denote (0,7) x 2 by Qr and (0,T) x 9Q by Zr.

To state the model of the cardiac electric activity in Q (2 C R3 being the nat-
ural domain of the heart), we set u; = w;(¢,2) and u. = u.(t,x) to represent the
spacial cellular and location x €  of the intracellular and extracellular electric
potentials respectively. Their difference v = u; — u, is the transmembrane poten-
tial. The anisotropic properties of the two media are modeled by intracellular and
extracellular conductivity tensors M;(x) and M, (x). The surface capacitance of the
membrane is represented by the constant ¢, > 0. The transmembrane ionic current
is represented by a nonlinear function h(v).

The equations governing the cardiac electric activity are given by the coupled
reaction-diffusion system:

CmOv — dlU(Ml(I)vuz) + h(v) = [Xw, in Qr, (1)
m 00 + div(Me(2)Vue) + h(v) = gxw, in Qr,

where f and g are stimulation currents applied to 2. We complete this model with
Dirichlet boundary conditions for the intra- and extracellular electric potentials

u; =0, ue =0, on Xp, (2)
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and with initial data for the transmembrane potential
v(0,2) = vo(z), = € Q. (3)

It is important to point out that realistic models describing electrical activities
include a system of ODEs for computing the ionic current as a function of the
transmembrane potential and a series of additional “gating variables”, which aim
to model the ionic transfer across the cell membrane.

Assume that the intra and extracellular stimulations are equal: fx., = gxw. If
M; = uM, for some constant p € R, then by multiplying the second equation in
(1) by p and adding it to the first equation in (1) one gets the first equation in the
following parabolic-elliptic system:

emOv — g div(Me(2)Vv) = —h(v) + fxw, in Qr,
div(M(z)Vu,) = div(M;(z)Vv), in Qr,

v(0,2) = vo(x), ue(0,x) = ueo(x), in Q,

v=0, ue =0, on Xp.

(4)

The second equation is obtained by computing the difference of the two equation
in (1). Here M = M; + M,. System (4) is known as the monodomain model.
We approximate the above model (4) by the following family of parabolic equa-
tions
CmOpv° — ﬁdiv(Me(x)Vvs) = —h(v®) 4+ fCXw, in Qr,
et — div(M (x)Vus) = div(M;(z)Vv®), in Qr, (5)
ve(0,2) = vo(x), us(0,2) = ueo(x), in Q,
v° =0, u =0, on X,
€ is a fixed small constant. Since v = u; — u, in the bidomain model, it is natural
decompose the initial condition vy as vg = u;,0 — ue,0. Note that when ¢ — 0 in (5),
we obtain the classical monodomain model.
In this work, we study the stability result for the conductivities diffusion coeffi-
cients to the following linearized system of (5) with semi-initial conditions

CmOpvs — #div(Me(x)Vvs) = —a(t,x)v® + fxw, in Qr,

eyl — div(M (x)Vus) = div(M;(z)Vve), in Qr, (6)
ve(0,z) = vo(z), us(0,2) = ucp(x), in Q,

v®* =0, u =0, on X,

where a(t, z) and its derivative with respect to ¢ exists and are bounded in Q. For
some 0 € (0,T), the semi-initial conditions vg(x), ueg(z) are sufficiently regular.
The unknown conductivity tensors M and M, are assumed to be sufficiently smooth
and shall be kept independent of time t.

The existence of weak solutions of (1) is proved in [10] by the theory of evolution
variational inequalities in Hilbert space. Then Bendahmane and Karlsen [2] proved
the existence and uniqueness for a nonlinear version of the bidomain equations (1) by
a uniformly parabolic regularization of the system and the Faedo-Galerkin method.
Moreover, Bendahmane and Chaves-Silva [1] studied exact null controllability to
(1) for each £ > 0 by establishing estimates for its dual system. To learn more
about the cardiac problems, one can refer to the work of Bendahmane et al. [3, 4].
However, it is noted that there is no stability results for the inverse bidomain model.

Since the pioneer work du to A.L. Bukhgeim and M.V. Klibanov [6, 7, 8], who
generalized the method of global Carleman estimates in the context of inverse prob-
lems , three fundamental issues have been successfully studied: uniqueness, stability
in determining coefficients, and numerical methods [16], [13, 14, 17, 20, 23, 24, 15]).



INVERSE PROBLEM IN THE REACTION-DIFFUSION SYSTEM 3

The paper by Cristofol et al. [11] obtains the stability results for reaction-diffusion
system of two equations with constant coefficients using a Carleman estimate. Then
Sakthivel et al. [21] established the stability results for Lotka-Volterra competition-
diffusion system of three equations with variable diffusion coefficients. Our inverse
stability results are new because system (6) contains a strong coupling term. The
technics we shall discuss are similar to the framework using Carleman estimates for
inverse problems but the obtained estimates differs from those of [24], [21] because
of the strongly coupled terms.

Let (9°,4¢) be a solution of system (6) with conductivity tensors (M,, M) and
semi-initial data (g, i o). Then setting A1 = v® — 0%, Ay = ug — g, g1 = M, — M,

and go = M — M, we obtain

emO A1 — L div(Me(2)V AL (L, ) = —a(
€0y Ag — div(M(x)VAg) = div(M;(x)VAL) + G(g2, Vui), in Q,
Al(ng) = A?((t), AQ(Q,.I) = Ag(:ﬂ), in Q,

Al(tvx) =0, AQ(tvm) = 07 on Ea

a(t,z)A1(t,z) + F(g1, V%), in Q,

where
I

p+1

F =

div(g1(z)Vo7)

and
G = div(g2(z)Vay).
Throughout the paper, we make the following assumptions:

Assumption 1.1. The conductivity tensors Mc(x), M;(x) and M(z) are C*°,
bounded, symmetric, semi-definite, and elliptic matrizes (there exists B > 0 such
that Zg’,jMi’jfifj > BI€? for all € € R3). All their derivatives up to the third order
are respectively bounded by the positive constants v1, vz, V3-

Assumption 1.2. Assume the bounded measurements Oy Ay and 0;As in (0,T) X w
are given. Also A;(0,x), VA;(0,z), AA;(0,z) and V(AA;(0,x)) for some fized
0 € (0,T), wherei=1,2 in Q are given.

Now the question of interest is whether we can determine the conductivity tensors
M, and M by the two measurements.

In details, let (v¢,u) and (0°,4%) be the solutions of the system (6) with two
different conductivities. There exist a constant C' with C(Q,w,T,¥1,72,73) > 0,
such that the following estimate holds:

J(1Me = N1 (M = NP [V M = 2P+ [V~ S ) do
Q
2
< c(/ (18eAL 2 + 10, A2 ? ) dtde +/ 92+ > (IVAG2 + 14472 + V(AA;?)?)dx) (8)
Qu Q j=1

+ c[ (IMe = NIeJ2 4 1M = B2 + |V (M = Bo)? + [9(M = VD)?) da.

2. A Carleman type estimate. In this section, we prove the Carleman esti-
mate based on the standard technique for general parabolic equations. In order to
frame a Carleman type estimate, we shall first introduce a particular type of weight
functions.
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2.1. Weight functions. First, we introduce weight functions for the parabolic
equations given in [12]. B
Let @ CC w be a nonempty bounded set of Q, and 1 € C?(Q) such that

P(x) >0, for any x € Q,
Y(x) =0, for any x € 09,

|Vy(z)| >0, for any xz € Q\ @.

Then we introduce another two weight functions:

O ©)
B
2 MYllow — (@)
alt,z) = (1) ) (10)

where A > 1, ¢t € (0,T) and S(t) = t(T — t). Note that the weight function « is
positive, and blows up to co ast = 0 or t = T.. As a result, e~ 2°* and ¢e~2°® are
smooth. Even they vanish when ¢t = 0 or ¢t = T'. It can be seen that ¢(¢t,z) > C >0
for all (t,x) € @, and e~ “*¢™ < C < oo for all e > 0 and m € R.

Before proving the main estimate, we give the following estimates for the two
weight functions a and ¢. Note that throughout the paper we will denote C as a
generic positive constant. After some computations, we can obtain the following
estimates:

6] = B g2 < 0T ¢?,

|at| — %(emlwllc@ _ e)ﬂ/)) < CT(bQ, (11)
2 2

|t = W(e”\ﬂwnc(ﬁ) — M) < OT 3.

Furthermore, we also have

Vo = AoV,
Va = —ApV, (12)
o7t < ($)2

Refer to [12] for the details.

2.2. Main proof of a Carleman type estimate. Let us set Q,, = (0,7) xw. For
each positive integer m, we denote the Sobolev space of functions in LP(£2) whose
weak derivatives of order less than or equal to m are also in LP(2) with the norm
denoted || - || z»(q), by W™P(Q) with p > 1 or p = co. When p = 2, we denote W"™?
by H™(Q). Moreover, let L2(0,T; H*(£2)) be the space of all equivalent classes of
square integrable functions from (0,7") to H*(2). For the space L?(0,T; L% (1)),
we define it in the same way.

Let A; be the solution of the first equation of (7) with help of using Assumption
1.1. We apply the Carleman estimate (see Theorem 6.1 in [1].) derived for the
parabolic equations to the first equation in (7). For A > \g > 1, s < so(T+T?*+T1),
there exists a constant C' depending on 2, w, ¥ and S so that

I(A) < c(/ e~ 25| F|2dtdx + 53\ ¢3e’250‘|A1|2dtdz>, (13)
Q Quy
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where @ CC w; CC w, and

I(A,) = / (5AG)~Le=29(|0, Ay | + |AA; [2)dtda + / SA26e=29|V A, 2dtda
Q Q

(14)

+ 53A4/ e 2503| Ay |2 dtd.
Q
Similarly, for A > Ao > 1, s > so(T + T2 +T*), there exists a constant C' depending
on (), w, ¥ and [ satisfying
Z(A2)

gc(/ e*QSa(|G|2|V(MNA1)|2)dtdx+33A4/ ¢36250‘|A1|2dtdm>
Q Quy

gc(/ e~ 259|G|2dtdz + s3\* ¢3e’250‘|A1|2dtdm+/
Q

e 2 M;AA, \thdm)
Q

Quy
+C / e~ 2|V M;V A, |2dtdr, (15)
Q

with

T(As) = /Q (sA¢)*1e*25“(|8tA2|+\AA2|2)dtda:+ /Q sA\2e 25|V Ay | 2dtda

+53A4/ e 25 g3 Ay| 2 dtda. (16)

Q

Now coupling the above inequalities (13) and (15), we have

I(4)+I(4) < O / =20 (5| P2 4 |G)dtda + s'N / $Pe250| A, 2dtda
Q Quy

s3A ¢3e_25"‘|A2|2dtdx> o / e~ 2% M A A, [Pdtdz
Qurq Q

+C / e 25| VM,V A, |2dtdx
Q

for sufficiently large s > so(T' + T2 + T*) and A > X\g. From the definition of Z;,
also M; and VM, being bounded, we obtain

sT(A1) +ZI(Ay) < C’(/Qe_%a(s|F|2+|G|2)dtdx+s4)\4/Q P3e 5| Ay |Pdtdx

e / ¢3e’25a|A2|2dtdx>. (17)

wi

Then it can be summarized as our desired Carleman estimate as follows.

Theorem 2.1. Let ¢(z), ¢(t,x) and a(t,z) be defined as in the above subsection,
a(t,z) is a bounded function. Moreover, Assumption 1.1 holds. Then there exist
Ao and sy such that for all X > Ao > 1 and sufficiently large enough s > sg, the
following inequality is true.

ST(A)) +I(Ay) < O(/Qe25a(s|F|2+G|2)dtdz+s4A4/Q P3e 25| Ay |2 dtdx

53N / ¢3e_25a|A2|2dtd:c>,

w
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where C > 0 is a constant depending on Q, T, w, V2.

3. Stability of the conductivities. In this section, we study the stability of the
conductivity tensors M, and M. Then an inequality is established which estimates
g1, 92, Vg1, Vgo with an upper bound given by some Sobolev norms of the derivative
of Ay and Ay over Q,,, certain spatial derivative of A;(6,-), j = 1,2, where 6 € (0,T")
makes ﬁ attain its minimum value and the Sobolev norm of g1, g2, Vg1, Vgo in
a small space @.

First, we let By = 0;4;, By = 8;As. Using this and (7), we get the following
system:

cmOB1 — #div(Me(x)VBl(t, x)) = —0wa(t,z) A (t,x) — a(t, z) By
+F’(gl, V’[)s), m QT,

58tBQ — dlU(M(I)VBQ) = dZU(Ml(IE)VBl) -+ G/(gz, Vu‘z), mn QT, (18)
cmBi1(0,7) = HY(x), Bo(0,x) = HY(x), in Q,

Bi(t,z) =0, By(t,x) =0, on X,

where

r_ M . ~c g ~e
F = th1dw(gl(a:)V(6tv ), G' = div(g2(x)V(0y))

and
cmB1(0,2) = #div(Me(m)VAl(G,x)) —a(0,2)A1(0,2) + Fli—g = H?, in Qr,
eBy(0,7) = div(M(x)VAx(0, ) + div(M;(z)VA1(0,2)) + Gli=e = HY, in Qr,
Aq(t,x) = A1(0,x) + fot Bi(s,x)ds, in Q.
(19)
Indeed, to prove the main result here we need to impose some regularity proper-
ties as follows.

Assumption 3.1. Suppose vy and ug, are C? real valued functions. Then all
their derivatives up to order three are bounded and satisfy |V - Vug| > 6 > 0,
VY- Vug 4| > 6 >0, on 2\ @, where ® CC w CC .

Assumption 3.2. Suppose (JAD°|,|AGE]), (|V(AD9)],|V(AEE)]), (|V(0:9°)],
IV(0:ug)|) and (JA(8,09)|, |A(DiE)|) are bounded by a positive constant.

Before start proving our main conclusion, we need to give the following Lemma
3.3, which will be useful in the following part. We define the following operators P,
and Q¢ and the initial conditions on « and ¢ at t = 6:

Poh = VU - Vh, Qo(e=**"h) = e~ Pyh and (60, z) = < for ¢ = a, é.

Lemma 3.3. Consider the first order partial differential operator Poh = VUy - Vh,
where Uy satisfies Assumption 3.1. Then there exists a constant C > 0, such that
for sufficiently large enough A and s, the following result holds:

1
SQAQ/ ¢e 2’ |nf2da < 0(/ e | Pyh|2da + SQAQ/ ¢'e 2" |nf2dz),
Q Q ¢ @
with 6 € (0,T) and h € H ().
Proof. Let By = e*meh, we have

QOBI = e_saepo(esaeBl) = P()Bl + SB1P0049, (20)
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h € H} (). Then we take the square of both sides in (20), multiply # and integrate
by parts with respect to space variable for both sides of (20) as follows:

/Qé(QoBl)QdI
= /%(PoBl)zder/szBfé(PoaG)de
Q Q

+ / 2S$Bl(POBl)(P0a9)dx
Q

_ i 2 2 2i2 612 6 012
= /Qd)g(PoBl) dx+/QsBl¢9A(¢)(VU Vip?)2da

— /Q 2)\s$Bl(VU9 VB (VU - ¢*Vy?)da
= /%(POBl)de—i—/sQBf)\QqS@(VUe-Vw‘))de
Q d) Q

- / 2As B, (VU - VB (VU - V¥ dx
Q
1
= /—O(PoBl)zd:v—i—/szBf)\qu‘g(VUe-VwQ)de
Q ¢ Q
— / As Py’ VUV (BE)dx
Q
1
= /7(P031)2d:c+/sQBfA%e(VUf’-wf’)?dx
Q ¢ Q
+ [ AsV(Pyw?VU?)B?dx
Q
> /32A23f¢9\VU9~V¢9|2dx+/ SAV(Poy’ VU | By |2da
Q Q
> 52/\262(/ |B1|2¢9dx—/ |B1|2¢9dx)+/ SAV (Pyy?VU?)| By |?dx,
Q @ Q

where we used Assumption 3.1 in the last step. Thus we obtain

52)\252(/ |B1|2¢‘9dx—/ |B1[2" dz)
Q @
1
S/ 7IQoBl|2dx+/ SA|V (P’ VU?)|| By |2 dex.
Q ¢ Q

From Assumption 3.2 and (12), we have

82)\2(52/6_2sa9¢0|h|2d$

Q

< /32A252e—2m9¢9|m2dm+clTQ/ she= 22" ¢ |2 d
@ Q

1
+/§26_250‘9|P0h|2ﬁdx. (21)
Taking A > 1 and s > QC;IQTQ, we conclude the proof. O

With the help of the Lemma 3.3, we are proving the following proposition.
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Proposition 1. Let (A, As) be the solution of (7), and (By, Ba) be the solution
of (18). Suppose all the conditions of Theorem 2.1 and Assumption 3.1 hold. Then
there exists a constant C' = C(y1,72,9) > 0 such that for sufficiently large enough
s and A the following estimate is true.

‘ue
32/\2/ e > (\91\2 + g2l + [Vau|* + |V92|2)d95
Q

9
]
< C g E; + C'82>\2/~ e (|91|2 + g2 + [Vau|* + |V92\2>dxa (22)
j=1 w

for any g1, 92 € H3(Q), where the functions E;, are given as follows:
1 0
B = / —e 2| BY|2da,
1 Q ¢9 | 1‘
1
By = / —e 2| BY|du,
Q¢
Ee = i —2sa’ VBGQd
3 — 7€ | 1| €L,
Q¢
E, = i —2saf 02
4= 7€ |V B3 |“dz,
Q¢
1
By = [ e (AR + VAL + |AALR ) da,
Q

1
Eq :/ —ee_Qs"‘e(\VAg\Z + |AA§\2)da:,
Q¢

2
P
Er :/Q@e ? <A€|2 +Z(|VA§|2 +|AAYP + \V(AA§)|2)

Jj=1

+|V(91A5) + |V<g2Aaz,e>> da,
1 —2sa’ ~e12
By = [ —e |g1 Avg|“dz,
Q¢
1 —2sa’ ~c |2
Eg= [ —e lge AGS »|°da.
Q¢ ’
Proof. Due to the value of the solutions satisfying the first equation in (18) at t = 6,
and F = div(g1(x)Vo°), from (19) we obtain

"
A1

Pog1 = VG - Vg1 = e BY +a(,2)AY — div(M,VAY) — g1 ATG.

Note that we replace h by g1 when choosing Uy as ;. Therefore, inspired by Lemma
3.3, we get

$2)\2 / ¢0672sa9 \91 |2dz
Q

1
< C(/ E6725a9|Pog1|2dm+52)\2/ ¢9625a0|gl|2dx>
Q @
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1 5.0 I 2
< ¢ [ Ze2sa B02—|—A62—|—( )(VM 217 492
< of e (| g+ () (Vo)

+|Me|2AA§)2>+|glAT19|2> dx + 082/\2ﬁ ¢96_2m9|gl|2d1‘

< Cn) (B + Es + Eg) + Cs2\2 / e2" g, Pdz. (23)

Similarly, from the value of the solutions satisfying the second equation in (18) at
t =0, and G = div(g2(z)Vag), we obtain

Pogs = Vil 4 - Vgo = eBf — div(MVAS) — div(M;VAY) — g2 AT 4.

It leads to
82)\2/¢0672sa6|92|2dx
Q

< C(/Q (;96250‘9P092|2dx+52)\2/&¢96250‘9|gg|2dx>

< 0 [ e (1B + [VMPIVALR + MR A AP
HTMPIVALR + M| A A + 9o A ) d
+082)\2[¢96725a8|92|2d$

<

]
C(v2,73)(E2 + E5 + Eg + Eg) + 082/\2[ ¢%e™2 | go|*da.

w

On the other hand, from the expression of Pyg;, we can see that,
P0V91 :v1~1§ . V(Vgl) = V(V’T)g . Vgl) - VglA’LN)g
= VBY + Va? A + a?VA? — #A(MEVA@ — V(g1 ATE) — Vg1 AT
Similarly, we also have
PyVga = Vig,-V(Vge) = V(Vig g Vga) — VgaAiig 4
= eVB] - A(MVAS) — A(M;VA]) = V(g2 AT g) — Vg AE .
Using the same method to preceding estimates and Lemma 3.3, it follows that
82)\2 / ¢96—25a9 |V§]1 |2dm + 82)\2 / ¢96—23a9 |Vgg|2d1'
Q Q
<C(v1,72,73)(E3 + By + E7) + CSQAQ[ ¢le2e’ (\V91|2 + |V92\2>d33- (25)
Combing the above three estimates (23), (24) and (25), the proof is complete. [
In order to prove the main conclusion, we need to get further estimations for E;,

j =1,2,3,4. The Carleman estimate in the previous section plays an important
role in obtaining these estimations.
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Lemma 3.4. Assume all the conditions in Theorem 2.1 are satisfied. Then there
exists a constant C' depending only on C, such that for any A > Ao and s > s1(Q,T),
the following inequality holds:

Ey + Ey < CsX*E(g1, g2, B, B), (26)
where E(g1, g2, B1, B2) is defined as follows
E(g1, g2, Br, Ba) = / e (|F’\2 + \G’|2)dtdx + 33)\4/ Pl (|B1|2 n |B2|2)dtdm.
Q Qu
(27)
Proof. Note that a(0,z) = 400. As a result of (11) and (12), we have

1 ;
[ e (1BIF + 1B do

:/09 % (/Q ¢_16_25“(|Bl(t,x)|2 + |Bg(t,x)|2)dx> dt

- ¢ (—25)0pe25*(|By1|? + | Bo|?)dtdx —/ ¢ 20 pe (| By |* + | Bo|*)dtdx
Qo Qo

+2 [ ¢ te?*(2B10, By + 2B20,By)dtdx
Qo

<C(sT® + sAT® + T7)/ e 25(|By (t, x)|> + | Ba(t, x)|*)dtdx
Q

+ (SA)—l/ 61250 (|9, By |2 + |0, Ba|?)dtdz
Q
<C(sI(B:)+I(Bz)),

where Qg = (0,0) x Q, Z(Bj)|j=1,2 is defined in (14) and (16), for any s > C(T% +
T3 + T*) and A > 1. Then using the estimate given in Theorem 2.1 to the system
(18), we obtain

ST(By) + I(By)

< é(/ e_zso‘(s|F’|2|+|G’|2)dtdx+s4)\4/ $Pe25| By [2dtda
Q Qu
t
+s3)\4/ ¢3e_230‘|32|2dtdx+/ 86_28a|8ta(t,$>(/ B (s, x)ds
w Q 0
+A1(O,x))|2dtdx)
<

c<s/ 6_23“(|F’|2\+|G’\2)dtdm+s4)\4/ $3e25%| By |?dtda
Q

w

—|—s3>\4/ ¢3e_2sa|Bg|2dtdx+ClTs/ e‘2so‘|B12dtdx>.
Q

Qu

(28)

Due to this term ClT/ e %59 B |*dtdx can be absorbed by Z(B;), A > 1 and s
Q

being large enough, we have

I(By) + Z(By) < C15)\*E(g1, g2, B, Ba).
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5 7 .
Thus for s > s; = maz{so, C(T2 + Ts + T*)}, the proof is complete. O

Lemma 3.5. Let Assumption 3.1 be satisfied. Then there exists Ay = max{Aq,
C(m.72,73)} and sy = max{s1, C(y1,72,73) (T +T? +T*)} for all X > X, s > s,
the following inequality holds:

E3 + By < CsA\*E(g1, 92, Bi, Ba),
where E(g1, g2, B1, B2) is defined in (27).
Proof. First, we define

m(By) == e ¢ 'V(M,VB).

We multiply the first equation in (18) by m(B;) and we integrate over @y, the result
is

/ cmO:B1m(B1) = / w(B1)( K div(M.V B1) — 8yaA; — aB1 + F' (g1, Vi°))dtdz.
Qo Qo pt1
(29)

We divide (29) into left and right sides integrals to estimate separately. Firstly, we
integrate the left side integral by parts, and get

—/ cm OBy (By)dtdx

Qe

=- / cmO;B1e" %% ¢V (M. V By )dtdx
Qo

1
:/ CmatBlv(e—2SOl¢—1)MCVBldtdl' + 5/ cmat(|VB1‘2)6_2sa¢_1Medtd.’E
Qo Qo

=0 + Ja. (30)
Note that [V (¢~ te™25%)| < she™2* for s > CT?. Thus we have
T <A(CIM, 2 52 / eV By 2dtds + (s0)"L [ ¢~le=2|0, B [2dtda)
Qo

Qo
<SAZ(Bh) (31)

for any s > C(2)T?. Integrating by parts with respect to time in Jo, we have
1

T2 = 7/ emO(|VB1|[H)e ¢~ M, dtdx
2 Qo

1 ,
- _7/ Cm|VB1|?0y(e ¢~ ") M, dtdzx
2 Qo

1
+§/(cm|v31|2e*25“¢*1Me) li—p dz. (32)
Q
Here,
|at(672sa¢71)| _ ‘672sa¢72¢t + 6725a¢>71(—25)at|
= e (¢ r — 2s0y)]
T2
< e ( +29)CT9
< CS)\2¢6—2$O¢’
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for A > 1 and s > CT?3. Therefore,

1
T2 > 3 / (Cme 25%¢ ' M |V B1|?) |1—g dz — C's\? / Cmpe 2 M|V By |2dtdz.
Q

Qo
(33)
Now coming to the right side integrals of (29), we have

g ~ B ,
/Qew(Bl)(MJr —dio(M,VB1) — dad —aBy +F>dtd:c

/ m(By)F'dtdz + / 7(B1) 1 div(M.V By )dtda
Qo Qo pt1

t
_/ W(Bl)ata(/ Bl(s,x)ds—i—Al(O,x))dtdx—/ 7(B1)aB dtda
Qo 0 Qo

4
DK (34)

Then we estimate the above integrals one by one. Applying the Cauchy inequality,
we get the following estimates for Kj—; ».

K1 = / e 2~V (M, VB, ) F'dtdx
Qo

[ e e MY By e ML AB e
Qo

< CT?e 2| F'|?dtdx + / e 25~ M, |*| AB; |*dtdx
Qe Qe
+ / CT*pe™2%|\V M, |*|V B, |*dtdx
Qo
< SN(I(B)) + / =250 ' 2dtdy), (35)
Qo
and
Ky = / e 2591 (M, V By ) —E— div (M. V B, )dtdz
Qo pt1

—2sa ,—1__ M 2
= ——|V(M.VBy)|“dtd
[ et v By s

/ e_zsaqb—lL‘VMGVBl+MEABl|2dtd$
Qo ptl

< / 6*2S°‘¢*1L<2|VM6|2|VBl|2+2|Me|2|ABl|2)dtdx
Qo pA1
< C e‘25a¢_1\Me|2|AB1\2dtdx+CT4/ e 25 G|V M, |?|V By |*dtdx
Qe Qe
< SN Z(By), (36)

where A > 1 and s > C(v;)T*. Next, we estimate the integral K3, and obtain

¢
Ky =— / e_Qsacﬁ_lV(MeVBl)@ta(t, T) (/ Bi(s,z)ds + A1 (0, x))dtdw
Qe 0
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t
<C [ e % 'M.AB) 4+ VM. VB |[*dtdx + CTS/ e—23a¢3/ | B1 (s, x)|*dsdtdz
Qo Qo 0

<C e*28a¢*1\M5|2|ABl|2dtdx+CT4/ e 2 ¢|V M, |*|V B |*dtdx
Qo Qo

t
+ C’T8/ 6_23()‘(;53/ | B (s, z)|*dsdtdx
Qo 0
<SAI(By). (37)
Similarly, we have

K= — / e ¢ a(t,2) By V(M .,V By + M.AB;)dtdx < s\*Z(B;).  (38)
]

Using the assumptions on the conductivity M, and substituting the inequalities
(35)-(38) into (29), we get

4
. . < )\2 / —2s5a F/ 2dtd ,
Jr— T2 < g <s ( By) + o, € || x)

which means

4
—J2 < Z/Cj + T < sA\? (I(Bl) + / e’23a|F’|2dtdac> +5A\L(By).
j=1

Qo

Substituting (33) to the above inequality, we have

| [ (cme **¢ ' M |VB1|?) |i=o dz| (39)
Q

4
Tl + DK
j=1

2 (Z(B) + / e | ' Patde) +5\I(By),
Q

[

IN

IN

which leads to
T (R R CEAR
0 Qe

Next we multiply the second equation of (18) by £(Bs) := e 25%¢~'V(MV B,), and
integrate over QQy to get

6_25“|F’|2dtdx). (40)

/ e 2% ¢~V (MV By)e; Bydtdx
Qo

f(BQ)V(MVBg)dtd:E + f(BQ)V(MiVBl)dtdI + f(BQ)G/dtdw
Qe Qe Qo

= / e 2%~V (MVBy)|?dtdx + / e 2%V (MV By)V(M;V By )dtdx

4 0

+ / e 2% IV (MVBy)G dtdx.
Qe

We estimate

/ e 251V (MV By)V(M;V By )dtdx
Qo
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/ 6725a¢71(VMvB2 +MAB2)V(szBl)dtd‘T
Qo

1
< 3 / e 25 |\ VMV By + MABy|*dtdx
Qe
1
+5 / e 2%~ VM,V By + M;AB;|*dtdx
6
< CT4/ e 2%y VM|V By 2dtde + C | e 2**¢ | M*|ABy|*dtdx
Qo Qo
+or / 20 VAL PRIV By 2dtde + C | e~ |Mi|?|AB [2dtda
Qo Qo

< SA?Z(By) + sA*Z(Bo). (41)

Continuing the similar computation as the preceding estimates and using Assump-
tion 1.1, we obtain

—2sa? —
| /Q e=250 (49) 1|V BY 2dal

IN

5A2(1(31)+I(Bz)+/ e 2 (|F')? + |G'|?)dtdx)

]

< CSAQ(/ 6_230‘(|F'\2+|G’|2)dtdx+s3)\4/ 325 (| By |> + | Bo|?)dtdx),
Q@ Qw

(42)
for any s > C(y1,792,7v3)(T + T? +T*) and A > C(71,72,73). Thus combining the
estimates (40) and (42), we obtain the conclusion. O

Now we shall give the main result of the stability estimate of the conductivities
in (6) based on the preceding lemmas and proposition.

Theorem 3.6. Let (A1, As) be the solution of (7). Suppose all the assumptions
of Theorem 2.1 hold and g1,g2 € HZ (). In addition, suppose Assumption 3.1 and
3.2 are also satisfied. Then there exists a constant C with C(Q,w,T,v1,72,73) > 0,
such that for sufficiently large X > Ao > 1 and s > s4, the following estimate holds:

[ (19 + 12l + 1Var * + Vo] o
Q
2
§C</ (|8tA1|2+|8tA2|2)dtdx+/ |A§’|Q+Z(|VA§|2+|AA§?|2+|V(AA§?)|2)dx)
Qu Q j=1

+C [ (19 + 1ol + [Varl* + [Vgal?) . (43)

Proof. Substituting the results in Lemma 3.4 and Lemma 3.5 into the inequality in
Proposition 1, one obtains

- SOLG
[ e (ln !+ |gnf + (Var* + [Vgnl®) o
Q

9
<CsX’E(g1, 92, Br, B2) + C' Y E;(0)

Jj=5

gcsﬁ/ e_2$o‘(|F'|2 + |G/|2)dtdm + cs‘uﬁf qf’e—"’sa(|]31|2 + |Bg|2)dtda:
Q Qu
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1 — sae 1 — sae
+0/ — e (\VA?\Q—F\AA?\2+\A?\2)dx+C/ e (|VA3|2+|AA3|2)dx
Q¢ o ¢
1 _ sa? ~ ~&
[ e (19 a5l + lpatza)do+C [ (Inf* + loof + 1901 + [Vl do
Q @

2
1 o500 B
+C/Q@e 2 <|A§|2+2(|AA§2+|VA?|2+|V(AA§)|)+V(91AW)2

j=1

+ |V(g2Aaz,9>|2)dx

SC’S)\2/ e (|F’|2 + |G’|2)dtdx + 034,\6/ PP (|Bl|2 + |Bg|2)dtdx
Q Qu

2
1 - sae
+C/Qge ? <|A§|2+Z(|AA§2+|VA§|2+|V(AA§)|)>dx

j=1

+C [ (19l + 1l + Vi +19 g2 ) do,
for large enough s > s3 = max{CT? s} and A > A\;. Now for convenience, we
set Ry(t,x) = Voe(t,x) and Ro(t,z) = Vas(t, ). Then from the regularity of the
solutions (0°(t, z), @S (¢, x)), we deduce that there exist I; € L2(0,T), j = 1,2, 3,4,
|0:R; (t,2)| < (ORI, j=1,2,
|6tVR1(t’I)| < l3(t)‘VR?|a

|0:V Ra(t,2)| < I5(t)| VRS,

for any (t,x) € @, and the functions ; € L*(0,T), implying fOT |l;|?dt < N < oo,
7=1,2,3,4. Then we show

F' = 9,(V(q1V1°)) = Vg10:R1 + g10:V Ry,

G, = at(V(QQV'LNLE)) = v928tR2 + gQathQ.

Observe that from the definition of «, we get easily e~2°@(t2) < e=252" for all
(t,z) € Q. This implies

0
52)\2/ ¢le (|91|2 + g2l + Vg + |V92\2)d$
Q

< Cs“x)’/ <;s3e—2’”‘(|}31|2 + |BQ|2)dtdx+c/(\gllz+ g2 + |V |* + |ng|2)d:c,
Qu @
2
1 - 5&9
+c/ 7 <|Af|2 + > (1845P + v A + V(AA§)|)>dm,
Q =

for sufficiently large s > s4 = max{CT?N,s3}. From the properties of a and ¢,
there exist ep and e; such that

) 1 5unf
mfmeg(—ee Zsox )2 eo > 0,

¢

1 "
supweg<ge_2m )S e1 < 0.
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Furthermore, e=**¢™ < C < oo for all € > 0 and m € R in Q. Thus we obtain

6
82)\2/(;!)96_28(1 (\g1|2+|gz|2+|Vg1|2+\ng|2>dx
Q

< o [ (1B 4 1Bo)dtdo +C [ (Il +1 + [Varl? + Vel ) o
Qu @

2
+C [ (1417 + S (1045 + VAP + [V (24D)) | da,
Q =

Then we fix the parameters s, A as s = s4, A = A;. This concludes the proof of the
theorem. O
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