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Abstract

This paper studies an infinite-server queue in a random environment,
meaning that the arrival rate, the service requirements and the server
work rate are modulated by a general càdlàg stochastic background pro-
cess. To prove a large deviations principle, the concept of attainable pa-
rameters is introduced. Scaling both the arrival rates and the background
process, a large deviations principle for the number of jobs in the system
is derived using attainable parameters. Finally, some known results about
Markov-modulated infinite-server queues are generalized and new results
for several background processes and scalings are established in examples.
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1 Introduction

The infinite-server queue is one of the fundamental models in queueing theory.
Its distinguishing feature is the presence of an infinite number of servers, so that
jobs are served independently and there are no waiting times. This leads to
explicit formulas for many quantities of interest, especially for M/M/∞ queues,
where jobs arrive according to a Poisson process and the service requirements
have an exponential distribution. In practice, however, one often observes time-
varying arrival intensities, service requirement distributions and server work
rates. This calls for adequate modeling.

A natural way to incorporate time-dependence is to consider an infinite-
server queue in a random environment. In this case there is an independent
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background process that modulates the arrival rate, the service requirement
distribution and the work rate of the servers.

Model. In this paper, we study the case where the background process is a
general stochastic process J whose paths are right-continuous and have finite
left limits, i.e., J has càdlàg paths. The process J modulates the arrival rate,
the service requirement distribution and the server work rate in the following
way. When J is in state x, jobs arrive according to a Poisson process with
intensity λ(x). Upon arrival, a job draws an independent service requirement
with distribution Fx if J is in state x when the job arrives. Then the service
requirement of the job is processed by a server, whose work rate is µ(x) while
J is in state x. Immediately after its service requirement has been processed, a
job leaves the system.

Main result. The main result of this paper is a full large deviations principle
(LDP) for the transient number of jobs in the system, under a scaling of the
arrival rate and the background process. To arrive at this result, we first show
that the number of jobs in the system at time t ≥ 0 has a Poisson distribution
with random parameter φt(J). Then we scale λ 7→ nλ and we scale J 7→ Jn
such that the normalized random parameter φt(Jn) satisfies an LDP. Under this
scaling, we derive the LDP for the transient number of jobs in the system.

Literature. The amount of literature related to our main result is quite
small. Moreover, almost all papers on infinite-server queues in a random en-
vironment (with notable exception [5]) study Model I or Model II (cf. [3]). In
both models, jobs arrive according to a Poisson process with intensity λ(x) when
the background process is in state x. In Model I, service requirements have a
standard exponential distribution and servers work at rate µ(x) when the back-
ground process is in state x. This is equivalent to the jobs being subject to a
modulated hazard rate. In Model II, service requirements have an exponential
distribution with parameter κ(x) when the background process is in state x and
servers work at constant rate 1.

An early reference is [17], which analyzes Model I when the background
process is a continuous-time Markov chain. Important results in [17] are a
recursion for the factorial moments of the number of jobs and the observation
that the steady-state distribution is not of some ‘matrix-Poisson’ type.

Other important results can be found in [8], which studies Model I when
the background process is a semi-Markov process with finite state space. The
crucial observation in [8] is that the stationary number of jobs has a Poisson
distribution with a random parameter that is determined by the background
process. Moreover, the factorial moments of the number of jobs are computed
via a recursion. These results are generalized in [14].

The observation in [8] is used to obtain time-scaling results in both the
central limit regime and the large deviations regime. In the central limit regime,
[2] and [4] derive central limit theorems for Markov-modulated infinite-server
queues for several models and scalings. In this regime, the so-called deviation
matrix (cf. [7]) plays an important role. In the large deviations regime, [3] and
[5] compute optimal paths to obtain rate functions under a linear scaling of the
arrival rates, given that the background process is an irreducible continuous-time
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Markov chain. The former studies Model I, whereas the latter studies Model II
for a class of service requirement distributions that includes the exponential
distribution.

As mentioned, we show that the number of jobs in the system has a Pois-
son distribution with a random parameter. This means that the probability
distribution of the number of jobs in the system is a mixture of Poisson dis-
tributions. This significantly complicates a large deviations analysis: even in
elementary cases a mixture may not satisfy an LDP. Nevertheless, papers such
as [1], [6] and [11] have studied large deviations of mixtures and identified con-
ditions under which a mixture does satisfy an LDP. However, our model does
not fit into the framework of these publications. We will elaborate on this in
the next section.

Contributions. In more detail, the contributions of this paper are the follow-
ing. We generalize known models by considering a general càdlàg background
process instead of a semi-Markov background process with finite state space.
We also generalize known models by including general service requirement dis-
tributions. Moreover, in our model the background process modulates both the
service requirement distributions and the server work rate, whereas previous
papers considered models in which either the service requirement distributions
or the server work rate was modulated. In particular, our model generalizes
Model I and Model II.

Using elementary arguments, we show that in this model the transient num-
ber of jobs has a Poisson distribution with random parameter. We scale the
arrival rate linearly and we scale the background process such that the normal-
ized random parameter satisfies an LDP. Under this scaling, we obtain a full
LDP for the number of jobs in the system. To the best of our knowledge, this is
the first time that a full LDP is presented for modulated infinite-server queues.
To prove the LDP, we exploit properties of the queueing system, introduce the
concept of attainable parameters and use a generalization of Varadhan’s Lemma.
These tools enable us to avoid the assumptions in [1], [6] and [11].

The theory is illustrated by examples that show rate functions that cannot
be obtained via background processes with finite state space. Additionally, we
show that completely different background processes may lead to the same LDP,
even in highly nontrivial cases. We also show examples that do not fit into the
framework of [1], [6] and [11].

Organization. The rest of this paper is organized as follows. In Section 2,
we give a more practical motivation to study our model en discuss some of the
technical subtleties. In Section 3, we describe the model and provide some of its
basic properties. Additionally, we fix some notation. In Section 4, we introduce
the concept of attainable parameters and prove an LDP for the number of jobs
in the system. In Section 5, we show that the rate function corresponding to this
LDP has a simple description when we do not scale the background process. As
an illustration, we work out some examples. In Section 6, we give examples in
which we do scale the background process. In Section 7, we briefly discuss the
results and point out some topics for future research. The appendices provide
some technical details about the number of jobs in the system (Section A),
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continuity and convergence in Skorokhod space (Section B) and properties of
Poisson random variables (Section C).

2 Motivation

Modulated infinite-server queues are used to model various phenomena in com-
munications systems, road traffic and hospital capacity planning, for example.
For us, the main practical motivation to study this model stems from biology. It
is well known that the production of molecules in a cell may be ‘bursty’, meaning
that periods of high production activity are followed by periods of low produc-
tion activity. In [12], this phenomenon is modelled using an interrupted Poisson
process, i.e., a Poisson process that is modulated by a stochastic ON/OFF
switch. After a molecule is produced, it degrades during a random time inter-
val. The resulting model for the number of molecules (mRNA in the case of [12])
still present in the cell is, essentially, a simple modulated infinite-server queue.
However, other publications (cf. [18, p. 22]) indicate that for more complicated
production processes one may need a more general background process with a
larger state space.

Another important observation (cf. [19, pp. 605-606]) is that the production
process and the switching process may be on different time scales. This gives
rise to different regimes (cf. [19, Fig. 28.4]). Mathematically, this phenomenon
is captured by the modulated infinite-server queue via a linear scaling of the
arrival rate and a scaling of the switching process.

Motivated by these observations, we study the modulated infinite-server
queue using very few assumptions on the background process and the service
requirement distributions. In particular, we are interested in the large devia-
tions behavior of the number of jobs (molecules) in the system under a linear
scaling of the arrival rate and a very general scaling of the background process.
Our goal is to prove a full large deviations principle for the number of jobs in
the system.

From a more mathematical point of view, this leads to some interesting
problems. First of all, the model that we consider includes general service
requirements and generalizes two well-known models. Next to that, we impose
very few assumptions on the background process and its scaling, whereas other
studies use semi-Markov processes with finite state space and specific scalings.
The scaled background processes considered here induce rate functions that do
not necessarily have compact level sets. This leads to a large deviations problem
that seems not to have been discussed before. We will explain this in more detail.

In the next section, we introduce a linear scaling of the arrival rate λ 7→ nλ
and a general scaling of the background process J 7→ Jn. We denote the number
of jobs in the system at time t by Mn(t) and we would like to prove an LDP for
1
nMn(t). It turns out that 1

nMn(t) is a mixture of Poisson distributions with a
certain mixing measure νn. Large deviations of mixtures have been investigated
in papers such as [1], [6] and [11]. However, our model does not fit into the
framework of these publications. We will indicate why.
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A probability measure Qn(·) is called a mixture if there exist a family of
probability measures {Qn(θ; ·) : θ ∈ Θ} (where the Qn(θ; ·) are the ‘conditional’
probabilities) and a probability measure νn on Θ (the mixing measure) such that
Qn(F ) =

∫
Θ
Qn(θ;F ) dνn(θ), where n ∈ N. To prove an LDP for a mixture, one

clearly needs to assume that each conditional probability satisfies an LDP and
that the mixing measure also satisfies an LDP (ignoring some trivial cases). In
general, however, these assumptions are not sufficient for a mixture to satisfy
an LDP. Indeed, in [11, Ex. 4.2] it is shown that a mixture may fail to satisfy
an LDP under these assumptions, even when νn = ν and thus νn automatically
satisfies an LDP.

These problems may be circumvented by imposing additional assumptions.
One way is to take Θ = R and νn = ν (cf. [11, Th. 4.2]). Another way is to
assume that the sequence of probability measures νn is exponentially tight (cf.
[1, Th. 1] and [6, Th. 2.3]). This assumption implies that the rate function
corresponding to νn is good, meaning that it has compact sublevel sets (cf. [10,
Lem. 1.2.18] and [6, Lem. 2.1]).

Although we do have Θ = R in our case, we do not assume that νn =
ν nor that the rate function corresponding to νn has compact sublevel sets.
Consequently, we cannot use the known results about LDPs for mixtures. As
mentioned in Section 1, we solve this relying on special properties of the queueing
model and a generalization of Varadhan’s Lemma as presented in [15]. This
approach allows us to work with a much larger class of background processes
and also shows that common assumptions about good rate functions in large
deviations theory may sometimes be unnecessarily restrictive when dealing with
queueing systems.

3 Model and problem description

We study an infinite-server queue with modulated arrival rates, service require-
ments and server work rates. The precise mathematical setup of the model and
some of its basic properties are provided in Section A. Heuristically, the model
may be described as follows.

Let (J(t))t≥0 be a càdlàg stochastic process with state space E , which is
assumed to be a metric space. We will refer to the process J as the background
process or modulating process. For each j ∈ E , let Z(1, j), Z(2, j), . . . be a
sequence of independent, nonnegative, identically distributed random variables
with cumulative distribution function Fj . We assume that the map (ω, j) 7→
Z(k, j)(ω) is measurable. Let λ and µ be continuous functions defined on E and
taking values in [0,∞).

While the background process is in state x ∈ E , jobs enter the system follow-
ing a Poisson process with intensity λ(x) ≥ 0. When job k enters the system,
its service requirement is given by Z(k, y) if the background process is in state
y ∈ E upon its arrival. Server k processes this service requirement at rate µ(z)
while the background process is in state z ∈ E . Job k leaves the system when
its service requirement has been processed.
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We denote a modulated infinite-server queue (under the conditions detailed
in Section A) by the quadruple (J, Z, λ, µ). Additionally, we denote the number
of jobs in this system at time t by M(t).

Given a modulated infinite-server queue (J, Z, λ, µ), we associate the map
φt with it, where φt : D([0,∞); E)→ [0,∞) is given by

φt(f) =

∫ t

0

(
1− Ff(s)

(∫ t

s

µ(f(r)) dr

))
λ(f(s)) ds. (1)

The map φt will be called the parameter map of (J, Z, λ, µ). In Section A it
is shown that M(t) has a Poisson distribution with random parameter φt(J).
This will turn out to be a crucial property in this paper.

We are interested in events with an unusual number of jobs in the system.
More precisely, we would like to prove an LDP for the number of jobs in the
system. A sequence of probability measures {τn}n∈N is said to satisfy an LDP
with rate function ρ if there exists a lower semi-continuous function ρ : X →
[0,∞] such that

lim sup
n→∞

1

n
log τn(F ) ≤ − inf

a∈F
ρ(a)

for all closed sets F and

lim inf
n→∞

1

n
log τn(G) ≥ − inf

a∈G
ρ(a)

for all open sets G, where each τn is defined on the Borel σ-algebra of the
topological space X . A sequence of random variables is said to satisfy an LDP
with rate function ρ if the sequence of measures induced by the random variables
satisfies an LDP with rate function ρ. Importantly, we do not assume that ρ is
a good rate function, i.e., we do not assume that ρ has compact level sets.

As mentioned, we would like to prove an LDP for the number of jobs in
the system. To analyze this problem, we will scale the arrival rates via λ(x) 7→
nλ(x), i.e., we linearly speed up the arrivals. In addition, we will scale the
background process via J 7→ Jn. Formally, scaling λ(x) 7→ nλ(x) and J 7→ Jn
means that we start with an infinite-server queue (J, Z, λ, µ) and then consider
the sequence of infinite-server queues {(Jn, Z, nλ, µ)}n∈N.

Given the scalings λ(x) 7→ nλ(x) and J 7→ Jn, we denote the corresponding
number of jobs in the system by Mn(t). It follows immediately from equation (1)
that Mn(t) has a Poisson distribution with random parameter

nφt(Jn) =

∫ t

0

(
1− FJn(s)

(∫ t

s

µ(Jn(r)) dr

))
nλ(Jn(s)) ds,

where φt is the parameter map associated with (J, Z, λ, µ). The normalized
random parameter φt(Jn) induces a sequence of probability measures {νn}n∈N
on R via νn(B) = P(φt(Jn) ∈ B) for Borel sets B ⊂ R.
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We will assume that the sequence of probability measures {νn}n∈N satisfies
an LDP with rate function ψ. The sequence {νn}n∈N trivially satisfies an LDP
when νn = νn+1 for all n ∈ N, so this assumption covers the case in which the
background process is not scaled.

Given the scaling, we denote the number of jobs in the system at time t by
Mn(t) and consider the normalized random variable 1

nMn(t). Our goal is to
prove an LDP for 1

nMn(t) and to describe the corresponding rate function.
Throughout this paper, we will also use the following notation. We denote

the closure of a set A by clA. We write B(x, ε) for the open ball with center
x ∈ Rd and radius ε > 0 and B[x, ε] for its closure. The Borel σ-algebra of a
topological space E will be denoted by B(E). For notational convenience, we
will sometimes write R+ for [0,∞), B+(x, ε) for B(x, ε) ∩ R+ and B+[x, ε] for
B[x, ε] ∩ R+. As is customary, we define exp(−∞) = 0 and log(0) = −∞.

4 A large deviations principle

Let (J, Z, λ, µ) be a modulated infinite-server queue with associated parameter
map φt. In this section we will prove an LDP for the number of jobs in the
system under a scaling of the arrival rates and the background process, i.e.,
we will prove an LDP for 1

nMn(t). It will turn out that so-called attainable
parameters determine the rate function corresponding to the LDP.

Definition 4.1. Given a scaling J 7→ Jn, a real number γ ∈ [0,∞) is called an
attainable parameter at time t ≥ 0 if for all ε > 0 there exists Nε ∈ N such that
P(φt(Jn) ∈ B(γ, ε)) = νn(B(γ, ε)) > 0 for all n ≥ Nε. The set of all attainable
parameters at time t is denoted by R(t).

The intuition behind attainable parameters is as follows. The number of
jobs in the system has a Poisson distribution with a random parameter that is
completely determined by the background process. Basically, the background
process samples the Poisson parameter. A real number γ is an attainable param-
eter if, for all n large enough, the scaled background process samples parameters
close to γ with positive probability.

As mentioned before, we will prove an LDP for 1
nMn(t) by scaling λ(x) 7→

nλ(x) and J 7→ Jn such that the sequence of probability measures {νn}n∈N
induced by the sequence of random parameters {φt(Jn)}n∈N satisfies an LDP
with rate function ψ. The rate function I : R → [0,∞] governing the LDP for
1
nMn(t) is given by

I(a) = inf
γ∈R(t)

[`(γ; a) + ψ(γ)], (2)

where `(γ; ·) is the Fenchel-Legendre transform of the Poisson cumulant gener-
ating function with parameter γ. It will turn out (cf. Lemma 4.2) that

I(a) = inf
γ∈R(t)

[`(γ; a) + ψ(γ)] = inf
γ∈{ψ<∞}

[`(γ; a) + ψ(γ)]. (3)
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However, we will take the infimum over R(t) rather than over {ψ <∞} to stress
that attainability of parameters is the crucial property for proving the LDP.

Before we can give the proof, we have to settle some technical details. First,
it is not immediately clear whether the function I is indeed a rate function or
even whether I is well defined. In particular, it is not clear whether R(t) is a
non-empty set. However, the assumption that the sequence {νn}n∈N satisfies
an LDP implies that R(t) is non-empty, as the following lemma shows.

Lemma 4.2. Let the scaling J 7→ Jn be such that {νn}n∈N satisfies an LDP
with rate function ψ. Then R(t) is a non-empty closed subset of [0,∞) and
{ψ <∞} ⊂ R(t).

Proof. Suppose that γ ∈ R \ R(t). Then there exists ε > 0 such that for all
n ∈ N there exists kn ∈ N such that kn ≥ n and νkn(B(γ, ε)) = 0. This implies
that B(γ, ε) ⊂ R \ R(t), so R(t) is closed. Moreover, we must have

lim inf
n→∞

1

n
log νn(B(γ, ε)) = −∞ = − inf

a∈B(γ,ε)
ψ(a),

so ψ(a) = ∞ for all a ∈ B(γ, ε). Then R \ R(t) ⊂ {ψ =∞} and {ψ <∞} ⊂
R(t). The fact that ψ is a rate function implies that {ψ <∞} is non-empty.
The statement of the lemma follows immediately.

From the previous lemma it follows that I is a well defined function. The
fact that I is a rate function is implied by Proposition C.5 and the functions `
and ψ being rate functions.

The next lemma is a generalization of Varadhan’s Lemma. Contrary to
Varadhan’s Lemma, it does not require that a given function f is continuous.
Instead, it requires that a weaker condition is fulfilled. We will use this lemma
to obtain the large deviations upper bound, by applying it to functions f of the
form described in Proposition C.4.

Lemma 4.3. Let X be a topological space and let {ξn}n∈N be a sequence of
measures defined on its Borel σ-algebra. Suppose that {ξn}n∈N satisfies an LDP
with rate function %. Let f : X → [−∞, 0] be a Borel measurable function such
that f−1([a, b]) is a closed set for all a, b ∈ (−∞, 0] satisfying

sup
x∈X

[f(x)− %(x)] ≤ a ≤ b ≤ 0.

Then it holds that

lim sup
n→∞

1

n
log

∫
X
enf(x)ξn(dx) ≤ sup

x∈X
[f(x)− %(x)].

Proof. This follows immediately from [15, Cor. 2.3].

With these technical details settled, we can prove the following LDP for the
number of jobs in the system.
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Theorem 4.4. Consider a modulated infinite-server queue (J, Z, λ, µ) as de-
scribed in Section 3. Scale λ(x) 7→ nλ(x) and J 7→ Jn such that {νn}n∈N
satisfies an LDP with rate function ψ. Then the rescaled number of jobs in the
system 1

nMn(t) satisfies an LDP with rate function I as defined in equation (2),
so

lim sup
n→∞

1

n
logP

(
1

n
Mn(t) ∈ F

)
≤ − inf

a∈F
I(a) (4)

for any closed set F ⊂ R and

lim inf
n→∞

1

n
logP

(
1

n
Mn(t) ∈ G

)
≥ − inf

a∈G
I(a) (5)

for any open set G ⊂ R.

Proof. For γ ≥ 0, let P0(γ), P1(γ), P2(γ), . . . denote a sequence of i.i.d. random
variables that have a Poisson distribution with parameter γ. Let F ⊂ R be a
closed set and let G ⊂ R be an open set.

To prove the upper bound (4), recall that Mn(t) has a Poisson distribution
with random parameter nφt(Jn). Then we may write

lim sup
n→∞

1

n
logP

(
1

n
Mn(t) ∈ F

)
= lim sup

n→∞

1

n
log

∫
[0,∞)

P
(

1

n
P0(nγ) ∈ F

)
νn(dγ)

= lim sup
n→∞

1

n
log

∫
[0,∞)

P

(
1

n

n∑
i=1

Pi(γ) ∈ F

)
νn(dγ)

≤ lim sup
n→∞

1

n
log

∫
[0,∞)

2en[− infa∈F `(γ;a)] νn(dγ)

= lim sup
n→∞

1

n
log

∫
[0,∞)

en[− infa∈F `(γ;a)] νn(dγ).

The inequality above follows from [11, Lem. 4.1].
According to Proposition C.4, the function γ 7→ − infa∈F `(γ; a) satisfies

the assumptions of Lemma 4.3. Moreover, {νn}n∈N satisfies an LDP both in R
and in [0,∞) with rate function ψ (cf. [10, Lem. 4.1.5]). Hence, we may apply
Lemma 4.3 to obtain

lim sup
n→∞

1

n
logP

(
1

n
Mn(t) ∈ F

)
≤ lim sup

n→∞

1

n
log

∫
[0,∞)

en[− infa∈F `(γ;a)] νn(dγ)

≤ sup
γ∈[0,∞)

[
− inf
a∈F

`(γ; a)− ψ(γ)

]
= − inf

a∈F
inf

γ∈[0,∞)
[`(γ; a) + ψ(γ)]

= − inf
a∈F

inf
γ∈R(t)

[`(γ; a) + ψ(γ)]

= − inf
a∈F

I(a).
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The fact that we only have to consider the infimum over R(t) follows from
Lemma 4.2. This proves the upper bound.

To prove the lower bound (5), let γ ∈ R(t) and ε > 0. Define γ−ε =
max{0, γ − ε} and γ+

ε = γ+ε. By definition of the set R(t) there exists Nε such
that P(φt(Jn) ∈ B(γ, ε)) > 0 for all n ≥ Nε.

Fix x ∈ G. Because G is open, there exists δ > 0 such that B(x, δ) ⊂ G.
Observe that

P
(

1

n
Mn(t) ∈ G

)
≥ P

(
1

n
Mn(t) ∈ B(x, δ)

)
≥ P

(
1

n
Mn(t) ∈ B(x, δ) ; φt(Jn) ∈ B(γ, ε)

)
= P

(
1

n
Mn(t) ∈ B(x, δ)

∣∣∣∣φt(Jn) ∈ B(γ, ε)

)
P(φt(Jn) ∈ B(γ, ε))

for all n ≥ Nε, where the equality follows from the fact that P(φt(Jn) ∈ B(γ, ε)) >
0 for all n ≥ Nε. Then we get

lim inf
n→∞

1

n
logP

(
1

n
Mn(t) ∈ G

)
≥

lim inf
n→∞

1

n
logP

(
1

n
Mn(t) ∈ B(x, δ)

∣∣∣∣φt(Jn) ∈ B(γ, ε)

)
+ lim inf

n→∞

1

n
logP(φt(Jn) ∈ B(γ, ε)).

Recall that φt(Jn) satisfies an LDP with rate function ψ, so

lim inf
n→∞

1

n
logP(φt(Jn) ∈ B(γ, ε)) ≥ − inf

a∈B(γ,ε)
ψ(a)

by assumption. Moreover, it holds that

lim inf
n→∞

1

n
logP

(
1

n
Mn(t) ∈ B(x, δ)

∣∣∣∣φt(Jn) ∈ B(γ, ε)

)
=

lim inf
n→∞

1

n
logP

(
1

n
Mn(t) ∈ B(x, δ)

∣∣∣∣φt(Jn) ∈ B(γ, ε) ∩ R+

)
≥

lim inf
n→∞

inf
ξ∈B(γ,ε)∩R+

1

n
logP

(
1

n

n∑
i=1

Pi(ξ) ∈ B(x, δ)

)
=

min
ξ∈{γ−ε ,γ+

ε }

[
− inf
a∈B(x,δ)

`(ξ; a)

]
.

In the display above, the inequality follows from Lemma A.2 and the second
equality is established in Proposition C.3. Combining the results, we obtain
that

P
(

1

n
Mn(t) ∈ G

)
≥ min
ξ∈{γ−ε ,γ+

ε }

[
− inf
a∈B(x,δ)

`(ξ; a)

]
− inf
a∈B(γ,ε)

ψ(a).

10



This holds for all ε > 0 and small enough δ > 0. Taking limits, we get

lim
ε↓0

min
ξ∈{γ−ε ,γ+

ε }

[
− inf
a∈B(x,δ)

`(ξ; a)

]
= − inf

a∈B(x,δ)
`(γ; a)

thanks to Proposition C.4 and

lim
ε↓0

inf
a∈B(γ,ε)

ψ(a) = ψ(γ),

because ψ is lower semi-continuous. Similarly, we get limδ↓0 infa∈B(x,δ) `(γ; a) =
`(γ;x). Hence, it follows that

P
(

1

n
Mn(t) ∈ G

)
≥ lim

δ↓0
lim
ε↓0

[
min

ξ∈{γ−ε ,γ+
ε }

[
− inf
a∈B(x,δ)

`(ξ; a)

]
− inf
a∈B(γ,ε)

ψ(a)

]
= −[`(γ;x) + ψ(γ)].

Since x ∈ G and γ ∈ R(t) were arbitrary, we obtain

P
(

1

n
Mn(t) ∈ G

)
≥ sup
x∈G

sup
γ∈R(t)

[−[`(γ;x) + ψ(γ)]]

= − inf
a∈G

I(a),

which completes the proof.

The proof of Theorem 4.4 contains familiar elements. First, the upper bound
is proved using a Chernoff bound combined with a generalization of Varadhan’s
Lemma. Second, the lower bound is proved by considering ‘the most likely
of all unlikely scenarios’, which is similar to the method used in [3] and [5].
However, the proofs there relied on properties of irreducible continuous-time
Markov chains and the computation of optimal paths, whereas we consider
general càdlàg background processes via attainable parameters.

5 Examples: unscaled background processes

Given a modulated infinite-server queue (J, Z, λ, µ) and a scaling λ 7→ nλ and
J 7→ Jn, Theorem 4.4 provides a full LDP for 1

nMn(t) and describes the cor-
responding rate function. In the upcoming examples we will consider cases in
which the background process is not scaled and we will use Theorem 4.4 to
verify or extend known results and to obtain new results.

Throughout this section we will assume that the background process is not
scaled, i.e., Jn = J for all n ∈ N for some càdlàg stochastic process J . This
is similar to the situation shown in the bottom figures in [19, Fig. 28.4], where
the arrival process is very fast relative to the background process. We will show
how to obtain an LDP in this case.

The following lemma is trivial, but plays a central role in this section.

11



Lemma 5.1. If Jn = J for all n ∈ N, then the sequence {φt(Jn)}n∈N satisfies
an LDP with some rate function ψ. In this case R(t) coincides with the support
of φt(J) and R(t) = {ψ <∞} = {ψ = 0}.

Proof. Suppose that Jn = J for all n ∈ N. Let ν denote the law of φt(J).
Clearly, for each x ∈ R either ν(B(x, ε)) > 0 for all ε > 0 or there exists δ > 0
such that ν(B(x, δ)) = 0. The set of all x ∈ R with ν(B(x, ε)) > 0 for all ε > 0 is
the support of φt(J). Hence, if Jn = J , then R(t) equals the support of φt(J).

The rate function ψ : R→ [0,∞] is defined by taking ψ(a) = 0 for a ∈ R(t)
and ψ(a) =∞ if a 6∈ R(t).

Suppose that G ⊂ R is open. Then ν(G) > 0 if and only if G ∩ R(t) 6= ∅.
Hence, lim infn→∞

1
n log ν(G) = − infa∈G ψ(a).

Suppose that F ⊂ R is closed. If F∩R(t) 6= ∅, then trivially lim supn→∞
1
n log ν(F ) ≤

0 = − infa∈F ψ(a). If F ∩R(t) = ∅, then there exists an open set F ∗ ⊃ F such
that F ∗ ∩ R(t) = ∅, because R(t) is closed (cf. Lemma 4.2). Then ν(F ∗) = 0
(see the argument for open sets G) and we have lim supn→∞

1
n log ν(F ) ≤

lim supn→∞
1
n log ν(F ∗) = −∞ = − infa∈F ψ(a).

Hence, when the background process is not scaled, we have the special prop-
erty that R(t) = {ψ = 0}. This will enable us to compute explicit rate functions
in the examples. In these computations, we will extensively use the following
properties of the rate function I and properties of step functions in Skorokhod
space.

Recall that the rate function I is given by

I(a) = inf
γ∈R(t)

[`(γ; a) + ψ(γ)],

and that R(t) = {ψ = 0} (cf. Lemma 5.1). Hence, we get

I(a) = inf
γ∈R(t)

`(γ; a). (6)

In this case, we can give a simpler and more explicit description of I, using the
following properties of the function `.

For γ ≥ 0, the function `(γ; ·) is the Fenchel-Legendre transform of the
Poisson cumulant generating function with parameter γ and is given by

`(γ; a) =


∞ a < 0;

γ a = 0;

γ − a+ a log(a/γ) a > 0.

(7)

For γ = 0 and a > 0, we understand that γ−a+a log(a/γ) =∞. An important
observation is that the following inequalities hold for 0 ≤ γ1 ≤ γ2 <∞:

`(γ1; a) ≤ `(γ2; a) ∀a ∈ [0, γ1]; (8)

`(γ1; a) ≥ `(γ2; a) ∀a ∈ [γ2,∞). (9)

See Figure 1 for an illustration.
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γ1 γ2

`(γ1; ·)

`(γ2; ·)

∞

0

Figure 1: Graphs of the functions `(γ1; ·) and `(γ2; ·) for 0 < γ1 < γ2 <∞

Because in the present case I is just an infimum of Poisson rate functions,
these inequalities imply that I has some special properties. They are described
in the following proposition.

Proposition 5.2. In the present case, I(a) = 0 if and only if a ∈ R(t). If
I(a) > 0 for some a ∈ R, then exactly one of the following three scenarios is
true:

1. a < c− = infR(t) and I(b) = `(c−; b) for all b ∈ (−∞, c−];

2. a > c+ = supR(t) and I(b) = `(c+; b) for all b ∈ [c+,∞);

3. the previous two cases do not hold and I(b) = min{`(c−; b), `(c+; b)} for all
b ∈ [c−, c+], where c− = sup(R(t) ∩ (−∞, a)) and c+ = inf(R(t) ∩ (a,∞)).

Proof. It follows immediately from equations (6) and (7) that I(a) = 0 if and
only if a ∈ R(t). Hence, I(a) > 0 implies that the distance of a to R(t) is
strictly positive, since R(t) is closed. The three scenarios now follow from the
inequalities (8) and (9).

The previous proposition may seem rather abstract. To get some intuition,
the following example describes a typical rate function.

Example 5.3. Suppose that R(t) = [α, β] ∪ [γ, δ] for some 0 < α < β < γ <
δ <∞. Then the function I looks like the graph shown in Figure 2: it equals 0
on the intervals [α, β] and [γ, δ], whereas it equals the minimum of `(β; ·) and
`(γ; ·) on the interval (β, γ) in between. On the interval (−∞, α] the function I
equals `(α; ·) and on the interval [δ,∞) the function I equals `(δ; ·).

In the remainder of this section, we focus on the modulated M/M/∞ queue
(J, Z, λ, µ) as described in Example A.3 under a linear scaling of the arrival rates.
The associated parameter map φt is given by equation (16) (cf. Example A.3),
which is continuous (cf. Lemma B.4).

To compute R(t) in this case, it is often convenient to use the following
properties of step functions in D([0,∞); E). (For the definition of a step func-
tion, see Section B.) Recall that the set of all step functions in D([0,∞); E) is
denoted by S([0,∞); E).
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α β γ δ

Figure 2: Visualization of the function I in Example 5.3

Lemma 5.4. If {φt(f)|f ∈ S([0,∞); E)} ⊂ R(t), then

R(t) = cl{φt(f)|f ∈ S([0,∞); E)} = {φt(f)|f ∈ D([0,∞); E)}.

Proof. This follows from Lemma 4.2 and Corollary B.3 and the fact that φt is
continuous under the present assumptions.

Lemma 5.5. If {φt(f)|f ∈ S([0,∞); E)} ⊂ R(t), then R(t) is a closed interval.

Proof. It suffices to show that R(t) is convex. Let f1
c , f

2
c ∈ S([0,∞); E). We

may assume that φt
(
f1

c

)
≤ φt

(
f2

c

)
. For x ∈ [0, t] we define the function gx via

gx(s) = 1{s<x}f
1
c (s) + 1{s≥x}f

2
c (s)

for s ∈ [0,∞). Clearly, gx ∈ S([0,∞); E) for each x ∈ [0, t].
Since f1

c and f2
c are step functions, there exists a finite set E∗ ⊂ E such that

gx ∈ S([0,∞); E∗) for each x ∈ [0, t]. Suppose that x1, x2 ∈ [0, t] with x1 < x2

and x2 − x1 = ε. Then gx1
(s) = gx2

(s) for all s ∈ [0, t] \ [x1, x2). Since the
interval [x1, x2) has length ε, Lemma B.6 implies that

|φt(gx1)− φt(gx2)| ≤ λ+(1 + t)
(
1− e−εκ+µ+ + ε

)
,

where λ+ = maxx∈E∗ λ(x), µ+ = maxx∈E∗ µ(x) and κ+ = maxx∈E∗ κ(x). This
shows that the function x 7→ φt(gx) is a continuous function from [0, t] to R.

Observe that φt(g0) = φt
(
f2

c

)
and φt(gt) = φt

(
f1

c

)
. Now applying the

Intermediate Value Theorem to the continuous function x 7→ φt(gx), it follows
that [

φt
(
f1

c

)
, φt
(
f2

c

)]
= [φt(gt), φt(g0)] ⊂ {φt(gx) |x ∈ [0, t]} ⊂ R(t).

Combined with Lemma 5.4, this implies the statement of the lemma.

Let fc ∈ S([0,∞); E) be a step function. Clearly, fc has a unique minimal

representation {(ti, αi)}ki=0, where k ∈ N, 0 = t0 < t1 < . . . < tk < ∞ and
α0, . . . , αk ∈ E are such that fc(t) = αi for t ∈ [ti, ti+1) and i = 0, . . . , k − 1
and fc(t) = αk for t ∈ [tk,∞). Given this minimal representation, we define its
truncated minimal step size by

∆fc = 1 ∧ min
i=1,...,k

{ti − ti−1}.
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Additionally, we define tk+1 = tk ∨ t. The truncated minimal step size and tk+1

will be used for computing attainable parameters.
In the upcoming examples, we would like to compute rate functions via at-

tainable parameters. To compute attainable parameters, we use the following
strategy. We fix a certain path f , often a step function. This gives us a param-
eter value φt(f). Then we would like to show that, with positive probability,
the background process stays ‘close’ to f , which will imply that φt(f) is an
attainable parameter.

Staying ‘close’ to f depends on properties of E and the background process.
In most cases, the background process needs a little bit of room (both in time
and in space) to jump near a discontinuity of f . This is where the truncated
minimal step size comes in: it is an upper bound on the time we give the
background process for jumping near a discontinuity of a step function. The
precise meaning of this will become clearer in the examples.

The first example treats the familiar case of a Markov-modulated M/M/∞
queue, i.e., the case in which the background process is an irreducible Markov
chain. This case is partly studied in [3] (Model I) and [5] (Model II). In the
example, we recover [3, Th. 2] and [5, Th. 1]. Additionally, we generalize these
results to our model and extend them to a full LDP.

Example 5.6. Let J be an irreducible, continuous-time Markov process with
finite state space E = {1, . . . , d}. We consider the modulated infinite-server
queue (J, Z, λ, µ) under the scaling λ 7→ nλ. Theorem 4.4 (combined with
Lemma 5.1) shows that 1

nMn(t) satisfies an LDP with rate function I. This
rate function may be computed as follows.

Fix any function g ∈ S([0,∞); E) with minimal representation {(ti, αi)}ki=0

and take any ε ∈ (0, 1). Define W(g; ε) as the set of all f ∈ D([0,∞); E) such
that

f(t) = αi−1 ∀t ∈
[
ti−1 + ε

2
1
k∆g, ti − ε

2
1
k∆g

)
∀i ∈ {1, . . . , k},

f(t) = αk ∀t ∈ [tk, tk+1].

Intuitively speaking, the set W(g; ε) consists of all paths f ∈ D([0,∞); E) that
coincide with g on the intervals described above. These intervals cover [0, t],
except around 0 and around time points at which g jumps.

Observe that the set W(g; ε) is constructed such that each f ∈ W(g; ε)
coincides with g on [0, t], except possibly on a subset with Lebesgue measure at
most ε. Since E is finite and the parameter map φt is given by equation (16)
under the present assumptions, Lemma B.6 then implies that

sup
f∈W(g;ε)

|φt(f)− φt(g)| → 0

as ε→ 0.
Also observe that P(J ∈ W(g; ε)) > 0, thanks to the irreducibility of J .

Consequently, {φt(g) | g ∈ S([0,∞); E)} ⊂ R(t). Then Lemma 5.5 implies that
R(t) = {φt(g) | g ∈ D([0,∞); E)} and that R(t) is a closed interval. Because E
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is finite, we immediately get

R(t) = [a−, a+],

where 0 ≤ a− ≤ a+ <∞ with a− = infg∈D([0,∞);E) φt(g) and a+ = supg∈D([0,∞);E) φt(g).
Now applying Proposition 5.2, it follows that the rate function I is given by

I(a) =


∞ a ∈ (−∞, 0);

`(a−; a) a ∈ [0, a−];

0 a ∈ [a−, a+];

`(a+; a) a ∈ [a+,∞).

(10)

The result of the previous example depends neither on the initial distribution
nor on the transition rate matrix of the irreducible Markov chain. Moreover,
the analysis in the previous example implies the following lemma. It shows that
we always obtain a good rate function when the background process has a finite
state space.

Lemma 5.7. Let J (1) be a background process with finite state space E and let
J (2) be an irreducible Markov chain with the same state space. Consider the two
modulated M/M/∞ queues

(
J (1), Z, λ, µ

)
and

(
J (2), Z, λ, µ

)
. Scaling λ 7→ nλ,

we obtain in both cases an LDP for the number of jobs in the system with
corresponding rate functions I(1) and I(2). Then it holds that I(1)(a) ≥ I(2)(a)
for all a ∈ R. In particular, both I(1) and I(2) are good rate functions.

In the next example we will modulate an M/M/∞ queue by another Markov-
modulated infinite-server queue. This setup differs from the setup considered in
[3] and [5]. In particular, the state space of the background process is countably
infinite, so that we may obtain a rate function that is not good.

Example 5.8. Consider a Markov-modulated infinite-server queue as described
in [17], i.e., a Markov-modulated infinite-server queue under the assumptions
of Model I. Assume that neither the arrival rates nor the server work rates are
identically equal to 0 and that the system starts empty. Let J(t) be the number
of jobs in this Markov-modulated infinite-server queue at time t ≥ 0. Then J is
a càdlàg stochastic process and its state space is E = Z>0.

Consider the modulated M/M/∞ queue (J, Z, λ, µ) and impose the scaling
λ 7→ nλ. Then 1

nMn(t) satisfies an LDP with rate function I, according to
Theorem 4.4 and Lemma 5.1. This rate function may be computed as follows.

Recall that J stays in state m ∈ E during [t, t+ ∆t] with positive probability
for arbitrarily large ∆t. Moreover, because neither the arrival rates nor the
server work rates are identically equal to 0, the process J also has the following
property. If J(t) = m1 at time t ≥ 0, then it jumps to state m2 ∈ E during
[t, t+ ∆t] with positive probability for arbitrarily small ∆t.

Roughly speaking, these two properties mean that the background process
is irreducible, in the sense that it can jump to or stay in any state during
any time interval we would like. Of course, this is very similar to the Markov
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chain being irreducible in the previous example. Consequently, our strategy for
determining the attainable parameters will be very similar, although there are
some subtleties related to the state space being infinite.

Fix any g ∈ S([0,∞); E) with minimal representation {(ti, αi)}ki=0 and take
any ε ∈ (0, 1). Let W(g; ε) denote the set of all f ∈ D([0,∞); E) with

f(t) = αi−1 ∀t ∈
[
ti−1 + ε

2
1
k∆g, ti − ε

2
1
k∆g

)
∀i ∈ {1, . . . , k},

f(t) = αk ∀t ∈ [tk, tk+1],

and

0 ≤ f(t) ≤ α0 ∀t ∈
[
0, ε2

1
k∆g

)
,

αi−1 ∧ αi ≤ f(t) ≤ αi−1 ∨ αi ∀t ∈
[
ti − ε

2
1
k∆g, ti + ε

2
1
k∆g

)
∀i ∈ {1, . . . , k − 1},

αk−1 ∧ αk ≤ f(t) ≤ αk−1 ∨ αk ∀t ∈
[
tk − ε

2
1
k∆g, tk

]
.

Observe that each f ∈ W(g; ε) coincides with g, except possibly on a subset
with Lebesgue measure at most ε. Moreover, each f ∈ W(g; ε) takes values
in the finite set E∗ = {0, . . . , α+}, where α+ = max{αi |i ∈ {0, . . . , k}}. Since
the parameter map φt is given by equation (16) under the present assumptions,
Lemma B.6 implies that

sup
f∈W(g;ε)

|φt(f)− φt(g)| → 0

as ε→ 0.
The two properties of the background process described above imply that

P(J ∈ W(g; ε)) > 0. It follows that {φt(g) | g ∈ S([0,∞); E)} ⊂ R(t). Write
a− = infg∈D([0,∞);E) φt(g) and a+ = supg∈D([0,∞);E) φt(g). Lemma 5.4 and
Lemma 5.5 imply that R(t) = [a−, a+] if a+ < ∞ and R(t) = [a−,∞) if
a+ =∞. Hence,

I(a) =


∞ a ∈ (−∞, 0);

`(a−; a) a ∈ [0, a−];

0 a ∈ [a−, a+];

`(a+; a) a ∈ [a+,∞)

(11)

if a+ <∞ and

I(a) =


∞ a ∈ (−∞, 0);

`(a−; a) a ∈ [0, a−];

0 a ∈ [a−,∞)

(12)

if a+ =∞. Note that I is not a good rate function if a+ =∞.

The previous example only depends on the state space being countable and
discrete and on the background process being irreducible in the sense described
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above. Consequently, the same result holds if the background process is an
irreducible Markov process with a countable, discrete state space.

In the last example of this section we compare rate functions that are ob-
tained using two different background processes. One background process is a
Markov chain, whereas the other background process is a reflected Brownian
motion, which has an uncountable state space. It turns out that both back-
ground processes lead to the same LDP, even though the background processes
are completely different. Apparently, two very different modulating processes
may lead to the same rate function for the LDP, even if the arrival rates, service
requirements and server work rates are nontrivial.

Example 5.9. Let E = [0, 1] be equipped with the Euclidean metric. Recall
that, under the present assumptions, the Z(k, j) depend on the function κ.
Assume that λ : [0, 1]→ [0, 1] is given by λ(x) = x, κ : [0, 1]→ [0, 1] is given by
κ(x) = 1 and µ : [0, 1]→ [0, 1] is given by µ(x) = 1− x.

Let JMC be an irreducible, continuous-time Markov chain with state space
{0, 1}. Let J rBM be a reflected Brownian motion with reflecting barriers 0 and
1. For simplicity, assume that J rBM starts in x0 ∈ (0, 1), so

J rBM(t) = x0 +W (t) + L(t)− U(t)

for some standard Brownian motion W , lower-regulator process L and upper-
regulator process U (cf. [9]).

Consider the two modulated M/M/∞ queues
(
JMC, Z, λ, µ

)
and

(
J rBM, Z, λ, µ

)
.

Under the scaling λ 7→ nλ, both 1
nM

rBM
n (t) and 1

nM
MC
n (t) satisfy an LDP with

the same good rate function I, which is given by

I(a) =


∞ a ∈ (−∞, 0);

0 a ∈ [0, t];

`(t; a) a ∈ [t,∞).

(13)

The rate function for the LDP corresponding to 1
nM

MC
n (t) is derived in

Example 5.6. It is easy to see that the rate function has the form claimed
above.

We will show that 1
nM

rBM
n (t) satisfies an LDP with the same rate function.

Fix g ∈ S([0,∞); E) with minimal representation {(ti, αi)}ki=0 and take any
ε > 0. Define W(g; ε) as the set of all f ∈ D([0,∞); E) such that

|f(t)− αi−1| ≤ ε ∀t ∈
[
ti−1 + ε

2
1
k∆g, ti − ε

2
1
k∆g

)
∀i ∈ {1, . . . , k},

|f(t)− αk| ≤ ε ∀t ∈ [tk, tk+1].

Then we get

sup
f∈W(g;ε)

φt(f) ≤ (φt(g) + εt+ ε)eεt+ε

and

inf
f∈W(g;ε)

φt(f) ≥ (φt(g)− εt− ε)e−εt−ε.
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Now observe that

P
(
J rBM ∈ W(g; ε)

)
≥ P(x0 +W ∈ W(g; ε)) > 0,

due to the definition of J rBM and W being a Brownian motion.
It follows that {φt(g) | g ∈ S([0,∞); E)} ⊂ RrBM(t), so RrBM(t) = [0, t] and

the corresponding rate function is given by the function I above.

In this section we considered examples in which the background process
was not scaled. As shown, this implies some special properties, which we can
use to explicitly compute rate functions. In the next section, we will scale the
background process, too. Although explicit computations are not possible in
general, there are still cases for which we may derive rate functions.

6 Examples: scaled background processes

In this section we will give two examples in which the background process is
scaled. In the first example, we will consider the Markov-modulated M/M/∞
queue and derive an explicit rate function under a superlinear time-scaling. This
scaling corresponds to the top figures in [19, Fig. 28.4], where the arrival process
is very slow relative to the background process.

In the second example, we will consider a new model: we take the service
requirements from Example A.4 and let the background process be a Brownian
motion. Besides being useful for modelling purposes, Brownian motion also
induces mixing measures that are not exponentially tight. We will show this
and derive an LDP using Theorem 4.4. In this case, the rate function will be
given as the solution of a variational problem.

Example 6.1. Consider the modulated M/M/∞ queue (J, Z, λ, µ) with pa-
rameter map φt, as described in Example A.3. Assume that J is an irreducible
continuous-time Markov chain with finite state space {1, . . . , d} and generator
matrix Q.

Denote the stationary distribution corresponding to Q by π = (π1, . . . , πd)

and define µ∞ =
∑d
j=1 πjµj and

%t =

d∑
j=1

πjλj

∫ t

0

e−κjµ∞(t−s) ds =

d∑
j=1

πj
λj

κjµ∞

(
1− e−κjµ∞t

)
.

Scale λ 7→ nλ and J 7→ Jn, where Jn(t) = J
(
n1+εt

)
. It is easy to see that

scaling J 7→ Jn is equivalent to scaling Q 7→ n1+εQ.
The sequence of random parameters {φt(Jn)}n∈N satisfies an LDP with rate

function ψ, where

ψ(a) =

{
0 a = %t;

∞ a 6= %t.
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Indeed, this follows from the fact that

lim inf
n→∞

1

n
logP(φt(Jn) ∈ B(ρt, η)) = 0

and

lim sup
n→∞

1

n
logP(φt(Jn) 6∈ B(ρt, η)) = −∞

for all η > 0. These equalities are an immediate result from the proof of [3,
Th. 3].

Given this LDP for {φt(Jn)}n∈N, Theorem 4.4 implies that 1
nMn(t) satisfies

an LDP with rate function I, where

I(a) = `(%t; a).

Hence, under this superlinear time-scaling of the background Markov chain, the
LDP for 1

nMn(t) is governed by a Poisson rate function with parameter %t.

Example 6.2. Consider the (nonexponential) modulated infinite-server queue
(J, Z, λ, µ) with parameter map φt, as described in Example A.4. Assume that
the background process J is a standard Brownian motion W on [0,∞). By W we
denote its restriction to the interval [0, t]. The sample paths of W are elements
of C0[0, t], the space of continuous functions f : [0, t]→ R with f(0) = 0.

Equip C0[0, t] with the supremum metric. Of course, we may view the func-
tion φt as a map from C0[0, t] to [0,∞) and this map is continuous under the
supremum metric.

Scale λ 7→ nλ and J 7→ Jαn for some fixed α ∈ [0,∞), where Jαn is given by
a time-scaling: Jαn (s) = W (n−αs) for s ≥ 0. Under this scaling, the arrivals are
sped up linearly, whereas the time scale of the Brownian motion is slowed down
sublinearly, linearly or superlinearly.

Since W is a Brownian motion, we have φt
(
J1
n

) d
= φt

(
1√
n
W
)

= φt

(
1√
n
W
)

.

Schilder’s Theorem (cf. [10, Th. 5.2.3]) states that 1√
n
W satisfies an LDP in

C0[0, t] with good rate function

ξ(f) =

{
1
2

∫ t
0
|ḟ(s)|2 ds f ∈ H1([0, t]);

∞ else.

Here, H1([0, t]) denotes the set of all absolutely continuous functions f ∈ C0[0, t]
that have square integrable derivative ḟ .

Recall that the parameter map φt is given by equation (17) and that φt is
continuous under the supremum metric on C0[0, t]. The contraction principle
(cf. [10, Th. 4.2.1]) now implies that φt

(
J1
n

)
satisfies an LDP with good rate

function ψ, where ψ is given by

ψ(a) = inf{ξ(f) | f ∈ H1([0, t]), φt(f) = a}.
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Clearly, ψ(a) = 0 if and only if a = φt(f0), where f0(s) = 0 for all s ∈ [0, t].
Now writing

1

n
logP(φt(J

α
n ) ∈ B) = nα−1 1

nα
logP

(
φt

(
n−α/2W

)
∈ B

)
for Borel sets B, it is straightforward to verify that for each α ∈ [0,∞) the
random variable φt(J

α
n ) satisfies an LDP with rate function ψα, which takes the

following form. For α > 1, we have ψα(a) = 0 if a = φt(f0) and ψα(a) = ∞ if
a 6= φt(f0). For α = 1, we have ψα = ψ. For α ∈ [0, 1), we have ψα(a) = 0 if
a ∈ {ψ <∞} and ψα(a) =∞ if a ∈ {ψ =∞}.

Observe that for α ∈ [0, 1) the set {ψ <∞} is not necessarily compact,
for instance when λ(x) = 1 + x2 and µ(x) = κ(x) = 1. Hence, the sequence
of probability measures induced by φt(J

α
n ) may not be exponentially tight for

α ∈ [0, 1). For α ∈ (0, 1), this scaling is not covered by the results in [1], [6] and
[11].

Nevertheless, it follows from Theorem 4.4 that 1
nM

α
n (t) satisfies an LDP

with rate function Iα, where 1
nM

α
n (t) is the number of jobs in the system when

the background process is Jαn and Iα is given by

Iα(a) = inf
γ∈Rα(t)

[`(γ; a) + ψα(γ)].

Now recall that {ψα <∞} ⊂ Rα(t). Also observe that {ξ <∞} = H1([0, t])
and that {ψ <∞} = {φt(f)|f ∈ H1([0, t])}. Then we may rewrite Iα as Iα(a) =
`(φt(f0); a) if α > 1, Iα(a) = inff∈H1([0,t]) `(φt(f); a) if α ∈ [0, 1) and

Iα(a) = inf
f∈H1([0,t])

[`(φt(f); a) + ψ(φt(f))]

if α = 1.

7 Discussion and concluding remarks

In this paper, we studied an infinite-server queue in a random environment
and proved a full LDP for the transient number of jobs in the system. The
proof of this LDP has two essential ingredients, namely the result that the
transient number of jobs in the system has a Poisson distribution with a random
parameter and the assumption that the random parameter satisfies an LDP.
Hence, the large deviations behavior of the random parameter seems to be the
crucial factor that determines the large deviations behavior of the number of
jobs in this specific queueing system.

The rate function corresponding to the LDP for the number of jobs is rather
abstract. Nevertheless, we showed in the examples how to compute the rate
function in certain specific cases. In particular, we recovered earlier obtained
results for Markov-modulated infinite-server queues and strengthened these to
a full LDP. Additionally, we proved LDPs when the background process has an
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uncountable state space. In all examples, knowledge about the behavior of the
background process could be exploited to describe the rate function.

The results in this paper also show that we do not have to restrict ourselves
to background processes with finite state space or service requirements with an
exponential distribution. Moreover, the proof of the LDP shows that assump-
tions about good rate functions used to study large deviations of mixtures may
be unnecessarily restrictive when dealing with queueing systems.

There are several interesting topics for future research on the modulated
infinite-server queue presented here. In this paper, we only looked at large
deviations of the number of jobs at a fixed time t ≥ 0. However, for certain
applications it may be desirable to know the deviations over the whole time
interval [0, t]. Therefore, it would be interesting to consider sample path large
deviations. Also moderate deviations could be worth investigating, so as to
bridge the gap between the central limit theorems and the large deviations
results for modulated infinite-server queues. It is unlikely, though, that we may
obtain such results under as few assumptions as in this paper.

Furthermore, it would be interesting to see whether the large deviations
results for modulated infinite-server queues carry over to modulated Ornstein-
Uhlenbeck processes. To the best of our knowledge, this has not been investi-
gated so far.

Acknowledgement. This research has been partly funded by the Interuniver-
sity Attraction Poles Programme initiated by the Belgian Science Policy Office.

A Transient number of jobs in the system

In this section, we provide the precise mathematical description of the model and
determine the distribution of the number of jobs in the system at time t ≥ 0,
which is denoted by M(t). We mentioned in Section 1 that the steady-state
distribution of the number of jobs in the system has already been determined for
specific background processes and service requirements in Model I and Model II.
However, in this case we would like to determine the transient distribution
given a general càdlàg background process for the model described below, which
generalizes Model I and Model II and includes general service times.

Throughout this section, we denote by D([0,∞); E) the space of càdlàg func-
tions from [0,∞) to E , where E is a metric space with metric ρ. Throughout, we
assume that E is equipped with the Borel σ-algebra B(E) induced by ρ. We de-
fine, in the usual way, a metric d◦ on D([0,∞); E) that generates the Skorokhod
J1 topology. (For more details, see Section B and references there.)

Let (Ω,F ,P) be a probability space on which we have defined a standard
Poisson process Y and a càdlàg stochastic process J with state space E . Assume

that FY∞ and FJ∞ are independent.
Also assume that, for each j ∈ E , we have defined on (Ω,F ,P) a sequence

of independent, identically distributed, nonnegative random variables Z(1, j),
Z(2, j), . . . such that the map (ω, j) 7→ Z(k, j)(ω) is Z ⊗ B(E)/B([0,∞]) mea-
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surable, where Z = σ(Z(k, j) | k ∈ N, j ∈ E). We denote the cumulative distri-

bution function of Z(1, j) by Fj . Note that FY∞, FJ∞ and Z are independent
and that the maps (ω, j, t) 7→ 1{Z(k,j)(ω)≤t} and (j, t) 7→ Fj(t) are measurable
with respect to the obvious σ-algebras.

Intuitively, Z(k, j) describes the service requirement of job k if the back-
ground process J is in state j upon arrival of job k. The measurability assump-
tion means that the background process should select the particular service
requirement of job k ‘in a measurable and independent way’. This is, of course,
a very reasonable assumption and easily verifiable in many cases.

Now we know what the background process looks like and how the service
requirements are modulated. To modulate the arrival rate and the server work
rate, we take continuous functions λ : E → [0,∞) and µ : E → [0,∞). Then the
arrival rate at time s ≥ 0 will be given by λ(J(s)) and the server work rate at
time s ≥ 0 will be given by µ(J(s)).

Given a background process J , service requirements Z(k, j) and functions
λ and µ under the conditions described above, we will denote a modulated
infinite-server queue by the quadruple (J, Z, λ, µ).

The modulated infinite-server queue (J, Z, λ, µ) is constructed as follows. We
define the modulated Poisson process Y via

Y (t) = Y

(∫ t

0

λ(J(s)) ds

)
.

The process Y will be the arrival process. We denote the jump times of Y
by τ1, τ2, . . . and the jump times of Y by τ1, τ2, . . .. For convenience, we set
τ0 = τ0 = 0. The jump times τk and τk are related via τk = Λ−(τk) and

τk = Λ(τk), where Λ(t) =
∫ t

0
λ(J(s)) ds and Λ−(r) = inf{t ≥ 0 |Λ(t) ≥ r}.

Define the interarrival times σk = τk − τk−1 and σk = τk − τk−1 for k ∈ N.
For later use, we note that σ1, σ2, . . . is a sequence of i.i.d. random variables
with a standard exponential distribution.

At time t = 0 there are no jobs in the system. At each jump time of Y exactly
one job arrives. Hence, the number of jobs that have entered the system during
the time interval [0, t] is given by the (a.s. finite) random variable

∑∞
k=1 1{τk≤t}.

When job k enters the system at time τk, its service requirement is given by
Z(k, J(τk)). In other words, job k draws an independent service requirement
with cumulative distribution function FJ(τk). Job k leaves the system when
its service requirement has been processed by the server, whose work rate is
modulated by the background process J and is equal to µ(J(s)) for s ≥ 0.

Hence, job k has both entered and left the system before time t ≥ 0 if and
only if τk ≤ t and Z(k, J(τk)) ≤

∫
[τk,t)

µ(J(r)) dr. We get

M(t) =

∞∑
k=1

(
1{τk≤t} − 1{τk≤t}1{

Z(k,J(τk))≤
∫
[τk,t)

µ(J(r)) dr
}).

Note that M(t) is a càdlàg stochastic process.
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If J is deterministic, then it is relatively easy to determine the distribution
of M(t). For instance, one may compute the characteristic function of M(t) via
the following steps.

Suppose that J(ω, t) = f(t) for all ω ∈ Ω and t ≥ 0 for some function
f ∈ D([0,∞); E). We may write the characteristic function of M(t) as

E exp(iθM(t)) = E exp

(
iθ

∞∑
k=1

(
1{τk≤t} − 1{τk≤t}1{

Z(k,J(τk))≤
∫ t
t∧τk

µ(J(r)) dr
})) =

= E1{τ1>t} +

∞∑
n=1

E1{τn≤t;τn+1>t} exp

(
iθ

(
n−

n∑
k=1

1{
Z(k,f(τk))≤

∫ t
t∧τk

µ(f(r)) dr
}
))

.

Clearly, E1{τ1>t} = e−
∫ t
0
λ(f(s)) ds = e−Λ(t). We are left with computing the

infinite sum above. Fix n ∈ N and note that

E1{τn≤t;τn+1>t} exp

(
iθ

(
n−

n∑
k=1

1{
Z(k,f(τk))≤

∫ t
t∧τk

µ(f(r)) dr
}
))

=

= E

(
1{τn≤t;τn+1>t} exp(iθn)E

[
exp

(
−iθ

n∑
k=1

1{
Z(k,f(τk))≤

∫ t
t∧τk

µ(f(r)) dr
}
)∣∣∣∣∣ τ1, τ2, . . .

])

= E1{τn≤t;τn+1>t}

n∏
k=1

(
exp(iθ) + (1 + exp(iθ))Ff(τk)

(∫ t

t∧τk
µ(f(r)) dr

))
,

because Y and the collection of service requirements are independent. For con-
venience, we write

h(τk) = exp(iθ) + (1 + exp(iθ))Ff(τk)

(∫ t

t∧τk
µ(f(r)) dr

)
.

Summarizing, we get

E exp(iθM(t)) = E1{τ1>t} +

∞∑
n=1

E1{τn≤t;τn+1>t}

n∏
k=1

h(τk).

Next, observe that

E1{τn≤t;τn+1>t}

n∏
k=1

h(τk) = E

(
1{τn≤t}

(
n∏
k=1

h(τk)

)
E
[
1{σn+1>t−τn}

∣∣ τ1, . . . , τn])

= E

(
1{τn≤t}

(
n∏
k=1

h(τk)

)
e−(Λ(t)−Λ(τn))

)
.
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We define x+
k = x1 + · · ·+ xk. Straightforward calculations give

E

(
1{τn≤t}

(
n∏
k=1

h(τk)

)
eΛ(τn)

)
=

= E1{τn≤Λ(t)}

(
n∏
k=1

h
(
Λ−(τk)

))
eτn

=

∫ Λ(t)

x1=0

∫ Λ(t)−x+
1

x2=0

· · ·
∫ Λ(t)−x+

n−1

xn=0

n∏
k=1

h
(
Λ−
(
x+
k

))
dxn . . . dx1

=

∫ Λ(t)

y1=0

∫ Λ(t)

y2=y1

· · ·
∫ Λ(t)

yn=yn−1

n∏
k=1

h
(
Λ−(yk)

)
dyn . . . dy1

=

∫ t

z1=0

∫ t

z2=z1

· · ·
∫ t

zn=zn−1

n∏
k=1

[h(zk)λ(f(zk))] dzn . . . dz1.

Now note that for an integrable function g we have[∫ t

0

g(s) ds

]n
= n!

∫ t

z1=0

∫ t

z2=z1

· · ·
∫ t

zn=zn−1

n∏
k=1

g(zk) dzn . . . dz1.

As a result, it holds that∫ t

z1=0

∫ t

z2=z1

· · ·
∫ t

zn=zn−1

n∏
k=1

[h(zk)λ(f(zk))] dzn . . . dz1 =

=
1

n!

[∫ t

0

h(s)λ(f(s)) ds

]n
=

n∑
k=0

1

k!
[exp(iθ)Λ(t)]

k 1

(n− k)!

[
(1− exp(iθ))

∫ t

0

Ff(s)

(∫ t

s

µ(f(r)) dr

)
λ(f(s)) ds

]n−k
.
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Now we may write

E exp(iθM(t)) =

= E1{τ1>t} +

∞∑
n=1

E1{τn≤t;τn+1>t}h(τk)

= e−Λ(t) +

∞∑
n=1

e−Λ(t)
n∑
k=0

1

k!
[exp(iθ)Λ(t)]

k 1

(n− k)!

[
(1− exp(iθ))

∫ t

0

Ff(s)

(∫ t

s

µ(f(r)) dr

)
λ(f(s)) ds

]n−k

= e−Λ(t)
∞∑
n=0

n∑
k=0

1

k!
[exp(iθ)Λ(t)]

k 1

(n− k)!

[
(1− exp(iθ))

∫ t

0

Ff(s)

(∫ t

s

µ(f(r)) dr

)
λ(f(s)) ds

]n−k
= e−Λ(t)

∞∑
k=0

∞∑
n=0

1

k!
[exp(iθ)Λ(t)]

k 1

n!

[
(1− exp(iθ))

∫ t

0

Ff(s)

(∫ t

s

µ(f(r)) dr

)
λ(f(s)) ds

]n
= exp

(
−Λ(t) + exp(iθ)Λ(t) + (1− exp(iθ))

∫ t

0

Ff(s)

(∫ t

s

µ(f(r)) dr

)
λ(f(s)) ds

)
= exp

(
(exp(iθ)− 1)

∫ t

0

(
1− Ff(s)

(∫ t

s

µ(f(r)) dr

))
λ(f(s)) ds

)
.

Hence, in this case M(t) has a Poisson distribution with parameter φt(f), where

φt(f) =

∫ t

0

(
1− Ff(s)

(∫ t

s

µ(f(r)) dr

))
λ(f(s)) ds. (14)

Given our modulated infinite-server queue, we may view φt as a map from
D([0,∞); E) to [0,∞) and we will call φt the parameter map associated with
the modulated infinite-server queue.

Note that s 7→ Ff(s)

(∫ t
s
µ(f(r)) dr

)
is B([0,∞))/B([0, 1]) measurable, as it

is a composition of measurable maps. Also note that

0 ≤
(

1− Ff(s)

(∫ t

s

µ(f(r)) dr

))
λ(f(s)) ≤ λ(f(s))

and that s 7→ λ(f(s)) is càdlàg. Hence, the integral in equation (14) is actually
well defined and finite.

Now suppose that J is not deterministic. In this case, we may use the
independence of J and standard arguments to obtain that

E exp(iθM(t)) = EE[exp(iθM(t)) | J ]

= E exp

(
[exp(iθ)− 1]

∫ t

0

(
1− FJ(s)

(∫ t

s

µ(J(r)) dr

))
λ(J(s)) ds

)
.

We summarize our findings in the following lemma.

Lemma A.1. Under the stated conditions, M(t) has a Poisson distribution
with random parameter φt(J), where φt is the parameter map associated with
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the modulated infinite-server queue as defined via equation (14) and thus

φt(J) =

∫ t

0

(
1− FJ(s)

(∫ t

s

µ(J(r)) dr

))
λ(J(s)) ds.

If we scale λ(x) 7→ nλ(x) and J 7→ Jn, then the number of jobs in the system
Mn(t) has a Poisson distribution with random parameter nφt(Jn).

Lemma A.1 states that M(t) has a Poisson distribution with random pa-
rameter φt(J), meaning that

E exp(iθM(t)) = Eu(φt(J), θ) =

∫
[0,∞)

u(γ, θ) dν(γ),

where u(γ, ·) : R → C is the characteristic function of a Poisson distribution
with parameter γ ∈ [0,∞) and ν is the law of φt(J). We may also describe this
as M(t) having a mixed Poisson distribution with mixing measure ν, meaning
that the law of M(t) may be represented as

Q(A) =

∫
[0,∞)

Qγ(A) dν(γ), (15)

where Qγ is the law of a random variable with a Poisson distribution with
parameter γ ∈ [0,∞). Indeed, suppose that Q is defined by (15). Then standard
measure-theoretic arguments (cf. [16, Pr III.2.1]) show that∫

R
exp(iθx) dQ(x) =

∫
[0,∞)

∫
R

exp(iθx) dQγ(x) dν(γ) =

∫
[0,∞)

u(γ, θ) dν(γ),

so Q is actually the law of M(t).
We may use these observations about modulated infinite-server queues and

mixed Poisson distributions to prove the following intuitive lemma.

Lemma A.2. Let A and B be measurable subsets of R. If P(φt(J) ∈ B) > 0,
then

inf
γ∈B

Qγ(A) ≤ P(M(t) ∈ A |φt(J) ∈ B) ≤ sup
γ∈B

Qγ(A),

where Qγ is the law of a random variable with a Poisson distribution with pa-
rameter γ ∈ [0,∞).

Proof. Denote Ω∗ = {φt(J) ∈ B}. If P(Ω∗) > 0, we define a new probability
space (Ω∗,F∗,P∗) by taking F∗ = {F ∩ Ω∗ |F ∈ F} and P∗(F ) = P(F )/P(Ω∗)
for F ∈ F∗.

For each random function X defined on (Ω,F ,P) we denote its restriction
to Ω∗ by X∗, which is a random function on (Ω∗,F∗,P∗). Using the indepen-
dence assumptions (stated at the beginning of this section), it is easy to verify

that J∗ is an independent càdlàg stochastic process, Y
∗

is an independent stan-
dard Poisson process and Z∗(1, j), Z∗(2, j), . . . is a sequence of independent,
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identically distributed random variables for each j ∈ E . Moreover, the map
(ω, j) 7→ Z∗(k, j)(ω) is Z∗⊗B(E)/B([0,∞]) measurable and Z∗(k, j) has cumu-
lative distribution function Fj .

Following the procedure described in this section, we construct the mod-
ulated infinite-server queue (J∗, Z∗, λ, µ) on (Ω∗,F∗,P∗) and we denote the
number of jobs in the system at time t ≥ 0 by K(t). Lemma A.1 implies that
K(t) has a Poisson distribution with random parameter φt(J

∗).
It is easy to verify that

P∗(K(t) ∈ A) = P∗
( ∞∑
k=1

(
1{τ∗k≤t} − 1{τ∗k≤t}1{Z∗(k,J∗(τ∗k ))≤

∫
[τ∗
k
,t)
µ(J∗(r)) dr}

)
∈ A

)

= P∗
({ ∞∑

k=1

(
1{τk≤t} − 1{τk≤t}1{Z(k,J(τk))≤

∫
[τk,t)

µ(J(r)) dr}
)
∈ A

}
∩ Ω∗

)
= P({M(t) ∈ A} ∩ Ω∗)/P(Ω∗)

= P(M(t) ∈ A |φt(J) ∈ B).

Since K(t) has a Poisson distribution with random parameter φt(J
∗), it follows

that P(M(t) ∈ A |φt(J) ∈ B) =
∫

[0,∞)
Qγ(A) dν∗(γ), where ν∗ is the law of

φt(J
∗). But we have P∗(φt(J∗) ∈ R \B) = 0, so P(M(t) ∈ A |φt(J) ∈ B) =∫

B
Qγ(A) dν∗(γ). Now observe that

inf
γ∈B

Qγ(A) =

∫
B

inf
β∈B

Qβ(A) dν∗(γ) ≤
∫
B

Qγ(A) dν∗(γ) ≤
∫
B

sup
β∈B

Qβ(A) dν∗(γ) = inf
γ∈B

Qγ(A),

which completes the proof.

In the following example we will describe the main example of a modulated
infinite-server queue in this paper, which is essentially the modulated M/M/∞
queue. It is constructed such that job k has a service requirement with an
exponential distribution with parameter κ(j) if the background process is in
state j upon its arrival, with κ some continuous function. This example includes
Model I and Model II as mentioned in Section 1.

Example A.3. Let J be a background process with state space E , as described
above. Let λ, µ and κ be continuous maps from E to [0,∞) and let Z1, Z2, . . .
be a sequence of independent standard exponential random variables. Define

Z(k, j)(ω) =

{
Zk(ω)/κ(j) if κ(j) > 0;

∞ if κ(j) = 0.

Clearly, FY∞, FJ∞ and Z are independent in this example. Using that{
(ω, j) ∈ Ω× E

∣∣Zk(ω)/κ(j) ∈ (a,∞)
}

=⋃
q∈(0,∞)∩Q

{
ω ∈ Ω

∣∣Zk(ω) ∈ (qa,∞)
}
× {j ∈ E |κ(j) ∈ (0, q)}
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for a ∈ (0,∞), it is readily verified that the map (ω, j) 7→ Z(k, j)(ω) is Z ⊗
B(E)/B([0,∞]) measurable.

In this case, the number of jobs M(t) in the infinite-server queue (J, λ, µ, Z)
has a Poisson distribution with random parameter φt(J), where the parameter
map φt is given by

φt(f) =

∫ t

0

λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr ds. (16)

This follows immediately from Lemma A.1 and the construction of Z.

The next example describes a nonexponential queue: the service require-
ment distributions will be Pareto distributions. The background process will
determine the shape parameter of the Pareto distributions.

Example A.4. Let J be a background process with state space E = R. Let λ
and µ be continuous maps from E to [0,∞). Let κ be a continuous map from
E to (0,∞) and let Z1, Z2, . . . be a sequence of independent random variables
having a Pareto distribution with scale parameter 1 and shape parameter 1, so
that P

(
Z1 > x

)
= 1/(1 ∨ x) for x ∈ R. Define

Z(k, j)(ω) =
(
Zk(ω)

)1/κ(j)
.

In a similar way as in the previous example one checks that FY∞, FJ∞ and Z
are independent and that the map (ω, j) 7→ Z(k, j)(ω) is Z ⊗ B(E)/B([0,∞])
measurable.

Given these service requirements, the number of jobs M(t) in the infinite-
server queue (J, λ, µ, Z) has a Poisson distribution with random parameter
φt(J), where the parameter map φt is given by

φt(f) =

∫ t

0

λ(f(s))

(
1 ∨

∫ t

s

µ(f(r)) dr

)−κ(f(s))

ds. (17)

As before, this follows from Lemma A.1 and the construction of Z.

B Continuity and convergence in Skorokhod space

In the previous section we showed that M(t) has a Poisson distribution with a
random parameter φt(J), where φt is the parameter map associated with the
modulated infinite-server queue (J, Z, λ, µ). For specific choices of the service
requirements Z(k, j), the map φt enjoys several continuity and convergence
properties. We explore some of these properties in this section, mainly for the
setup of Example A.3.

Let E be a metric space with metric ρ. Let D([0,∞); E) denote the space of
càdlàg functions f : [0,∞)→ E , i.e., lims↓t f(s) = f(t) and lims↑t f(s) exists in
E for every t ≥ 0, where lims↑0 f(s) := f(0) by convention.
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Define a metric d◦ on D([0,∞); E) via

d◦(f, g) = inf
λ∈Λ

[
γ(λ) ∨

∫ ∞
0

e−ud(f, g, λ, u) du

]
.

Here, Λ denotes the space of increasing homeomorphisms of [0,∞),

γ(λ) = sup
t>s≥0

|log(λ(t)− λ(s))− log(t− s)|

and

d(f, g, λ, u) = sup
t∈[0,∞)

[1 ∧ ρ(f(t ∧ u), g(λ(t) ∧ u))].

The metric d◦ induces the Skorokhod J1 topology. For more details, see [13] or
[21].

Definition B.1. A function fc ∈ D([0,∞); E) is called a piecewise constant
function or a step function if there exist n ∈ N, finitely many time points
0 = t0 < t1 < . . . < tn < ∞ and α0, . . . , αn ∈ E such that fc(t) = αi for
t ∈ [ti, ti+1) and i = 0, . . . , n− 1 and fc(t) = αn for t ∈ [tn,∞).

The set of step functions in D([0,∞); E) is denoted by S([0,∞); E).

Proposition B.2. Let f ∈ D([0,∞); E). For all T > 0 and ε > 0 there exists
a step function fc ∈ S([0,∞); E) such that

sup
t∈[0,T ]

ρ(f(t), fc(t)) < ε.

Proof. This is derived in the same way as [21, Th. 12.2.2].

Corollary B.3. The set S([0,∞); E) is dense in D([0,∞); E).

Consequently, every continuous function on D([0,∞); E) is completely de-
termined by its behavior on the set of step functions.

Now we will investigate properties of the parameter map under the as-
sumptions of Example A.3. Let λ : E → [0,∞), κ : E → [0,∞) and µ : E →
[0,∞) be continuous. For t ≥ 0, we would like to show that the function
φt : D([0,∞); E)→ [0,∞) defined by equation (16) is continuous. Note that φt
has the form

φt(f) =

∫ t

0

λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr ds

in this case and that it is the parameter map obtained in Example A.3.
First, we observe that the map cλ : D([0,∞); E) → D([0,∞);R) defined

via cλ(f)(t) = λ(f(t)) is continuous, because λ is continuous. Similarly, the
functions cκ and cµ are continuous.

Next, let f, g ∈ D([0,∞);R). Then pointwise multiplication of f and g is
defined via (fg)(t) = f(t)g(t). This is a measurable map which is continuous
at (f, g) if f or g is continuous (cf. [20, Th. 4.2]).
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Finally, let f ∈ D([0,∞);R). Then the map ψ : D([0,∞);R)→ D([0,∞);R)

defined via ψ(t) =
∫ t

0
f(s) ds is continuous. This follows almost immediately

from the definition of ψ and the characterization in [13, Pr. 3.5.3].
Now note that the sequence of functions {λ(fn)}n∈N is bounded in the sup

norm over [0, t] if fn → f in D([0,∞); E). Then it suffices to show that∫ t

0

e−κ(fn(s))
∫ t
s
µ(fn(r)) dr ds→

∫ t

0

e−κ(f(s))
∫ t
s
µ(f(r)) dr ds

as fn → f in D([0,∞); E). But this follows from repeated applications of the
first three observations.

Hence, the map φt must be continuous. Observe that continuity of λ, κ and
µ is crucial to obtain this result. We summarize these findings in the following
lemma.

Lemma B.4. Let λ : E → [0,∞), κ : E → [0,∞) and µ : E → [0,∞) be contin-
uous. Then the function φt : D([0,∞); E) → [0,∞) as defined in equation (16)
is continuous. Consequently, the parameter map obtained in Example A.3 is
continuous.

Another property of the map φt as defined in equation (16) is described in
Lemma B.6. We will use the following easy lemma in the proof of Lemma B.6.

Lemma B.5. Let x, y ∈ (−∞, 0]. If 0 ≤ α ≤ β < ∞, then |(ex)
α − (ey)

α| ≤
1− e−β|x−y|.

Lemma B.6. Let λ : E → [0,∞), κ : E → [0,∞) and µ : E → [0,∞) be contin-
uous and let φt : D([0,∞); E)→ [0,∞) be defined by equation (16).

Let f, g ∈ D([0,∞); E) and assume that there exists a finite set E∗ ⊂ E
such that f(s) ∈ E∗ and g(s) ∈ E∗ for all s ∈ [0, t] and that the set A =
{s ∈ [0, t] | f(s) 6= g(s)} has Lebesgue measure ε. Then

|φt(f)− φt(g)| ≤ λ+(1 + t)
(
1− e−εκ+µ+ + ε

)
, (18)

where λ+ = maxx∈E∗ λ(x), µ+ = maxx∈E∗ µ(x) and κ+ = maxx∈E∗ κ(x).

Proof. Clearly, we have

|φt(f)− φt(g)| ≤
∫
A

∣∣∣λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr − λ(g(s))e−κ(g(s))

∫ t
s
µ(g(r)) dr

∣∣∣ds
+

∫
[0,t]\A

∣∣∣λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr − λ(g(s))e−κ(g(s))

∫ t
s
µ(g(r)) dr

∣∣∣ ds.
Denote the first integral on the right-hand side by I1 and the second integral
on the right-hand side by I2. It is easy to see that I1 is bounded above by ελ+.
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We may find an upper bound for I2 as follows. For s ∈ [0, t] \A we have∣∣∣λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr − λ(g(s))e−κ(g(s))

∫ t
s
µ(g(r)) dr

∣∣∣ =∣∣∣λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr − λ(f(s))e−κ(f(s))

∫ t
s
µ(g(r)) dr

∣∣∣ ≤
λ+

∣∣∣∣(e− ∫ t
s
µ(f(r)) dr

)κ(f(s))

−
(
e−

∫ t
s
µ(g(r)) dr

)κ(f(s))
∣∣∣∣ ≤

λ+

(
1− e−κ+εµ+

)
.

To obtain the last inequality, we apply Lemma B.5 and use that

sup
s∈[0,t]

∣∣∣∣∫ t

s

µ(f(r)) dr −
∫ t

s

µ(g(r)) dr

∣∣∣∣ ≤ εµ+.

It follows that∫
[0,t]\A

∣∣∣λ(f(s))e−κ(f(s))
∫ t
s
µ(f(r)) dr − λ(g(s))e−κ(g(s))

∫ t
s
µ(g(r)) dr

∣∣∣ds ≤
λ+t

(
1− e−κ+εµ+

)
.

Combining the upper bounds for I1 and I2 proves the lemma.

To conclude this section, we provide a lemma asserting the continuity of the
map φt as defined by equation (17). The continuity is established using the
same arguments as above.

Lemma B.7. Let λ : E → [0,∞) and µ : E → [0,∞) be continuous. Then the
map φt : D([0,∞); E)→ [0,∞) defined by

φt(f) =

∫ t

0

λ(f(s))

(
1 ∨

∫ t

s

µ(f(r)) dr

)−f(s)

ds (19)

is continuous. Consequently, the parameter map obtained in Example A.4 is
continuous.

C Properties of Poisson random variables

For γ ≥ 0, let P0(γ), P1(γ), P2(γ), . . . denote a sequence of i.i.d. random variables
that have a Poisson distribution with parameter γ. In this section, we will fix
an arbitrary x ∈ R, δ > 0, λ ≥ 0 and ε > 0 and define λ−ε = max{0, λ− ε} and
λ+
ε = λ+ ε. Recall that B+(λ, ε) = B(λ, ε) ∩ R+.

We would like to prove a large deviations lower bound for

lim inf
n→∞

inf
γ∈B+(λ,ε)

1

n
logP

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
.
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Of course, the difficulty here is the presence of the infimum over a range of
parameters. We will show in Proposition C.1 that this infimum may be taken
over certain restricted subsets of B+(λ, ε). For each of these subsets we will
provide a large deviations lower bound, from which we will derive a lower bound
when the infimum is taken over B+(λ, ε). This is the content of Proposition C.3.

Proposition C.1. For all x ∈ R, δ > 0, λ ≥ 0 and ε > 0 it holds that

inf
γ∈B+(λ,ε)

P

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
=

inf
γ∈(B(λ,ε)∩B[x,δ])∪{λ−ε ,λ+

ε }
P

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
.

Proof. Let 0 ≤ γ− ≤ γ+ <∞. For y ∈ R it holds that

P(P0(γ+) = y) ≥ P(P0(γ−) = y) if y ≥ γ+ ≥ γ− (20)

and

P(P0(γ+) = y) ≤ P(P0(γ−) = y) if γ+ ≥ γ− ≥ y. (21)

Because we are working with i.i.d. Poisson random variables, we may write

P

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
= P(P0(nγ) ∈ (n(x− δ), n(x+ δ))). (22)

Now the statement of the proposition is an easy consequence of the equations
(20), (21) and (22) combined.

Proposition C.2. Let x ∈ R and δ > 0. If B+(x, δ) 6= ∅, then

lim
n→∞

inf
γ∈B+[x,δ]

1

n
logP

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
= 0.

Proof. For a Borel set A ⊂ R, define pn(A|γ) = P
(

1
n

∑n
i=1 Pi(γ) ∈ A

)
. Now

suppose that B+(x, δ) 6= ∅. Then the diameter of B+(x, δ) is strictly positive
and bounded above by r = min{2δ, x+ δ}.

Let Nr ∈ N be such that 1
Nr

< r
2 . Then for all n ≥ Nr and γ ∈ B+[x, δ] we

define γ−n = 1
nbnγc, γ

+
n = 1

ndnγe and

γ∗n = min
{{
γ−n , γ

+
n

}
∩B(x, δ)

}
.

Then max{|γ − γ−n |, |γ − γ+
n |} ≤ 1

n < r
2 and pn(B(x, δ)|γ) ≥ pn({γ∗n}|γ) for

each n ∈ N and each γ ∈ B+[x, δ]. Using that n! ≤ nn+1/2e−n+1, we get

pn({γ∗n}|γ) ≥
(

nγ

nγ + 1

)nγ∗n
en(γ∗n−γ)e−1(nγ∗n)

−1/2

≥
(

1− 1

n(x+ δ) + 1

)n(x+δ)

e−2(n(x+ δ))
−1/2

for each n ∈ N and each γ ∈ B+[x, δ]. This implies the statement.
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Combined with Cramér’s Theorem in R, the two previous propositions enable
us to prove the following large deviations bound. Note that we prove an equality
rather than an inequality and that the limit exists.

Proposition C.3. For all x ∈ R, δ > 0, λ ≥ 0 and ε > 0 it holds that

lim
n→∞

inf
γ∈B+(λ,ε)

1

n
logP

(
1

n

n∑
i=1

Pi(γ) ∈ B(x, δ)

)
= min
γ∈{λ−ε ,λ+

ε }

[
− inf
a∈B(x,δ)

`(γ; a)

]
.

(23)

Proof. Define pn(A | γ) = P
(

1
n

∑n
i=1 Pi(γ) ∈ A

)
for Borel sets A ⊂ R and C =

(B(λ, ε) ∩B[x, δ]) ∪ {λ−ε , λ+
ε }. Thanks to Proposition C.1 we may write

lim
n→∞

inf
γ∈B+(λ,ε)

1

n
log pn(B(x, δ) | γ) = lim

n→∞
inf
γ∈C

1

n
log pn(B(x, δ) | γ).

It follows from Proposition C.2 that we may restrict the infimum to the set
{λ−ε , λ+

ε }, so

lim
n→∞

inf
γ∈C

1

n
log pn(B(x, δ) | γ) = lim

n→∞
min

γ∈{λ−ε ,λ+
ε }

1

n
log pn(B(x, δ) | γ)

= min
γ∈{λ−ε ,λ+

ε }
lim
n→∞

1

n
log pn(B(x, δ) | γ)

= min
γ∈{λ−ε ,λ+

ε }

[
− inf
a∈B(x,δ)

`(γ; a)

]
.

The last equality is an application of Cramér’s Theorem for i.i.d. Poisson random
variables; the limit exists because B(x, δ) is a continuity set for the Fenchel-
Legendre transform corresponding to a Poisson distribution.

As shown in the inequalities (8) and (9), the Fenchel-Legendre transforms
corresponding to Poisson distributions are nicely ordered in some sense. This
property leads to the following propositions. Their proofs are elementary but
tedious and are therefore omitted.

Proposition C.4. Let F ⊂ R be closed and define f : [0,∞)→ [−∞, 0] via

f(γ) = − inf
a∈F

`(γ; a).

If F ⊂ (−∞, 0), then f ≡ −∞. If F ∩ [0,∞) 6= ∅, then f is real-valued and
continuous on (0,∞). Additionally, limγ↓0 f(γ) = f(0), where f(0) = 0 if 0 ∈ F
and f(0) =∞ if 0 6∈ F . In any case, f−1([a, b]) is closed for all a, b ∈ (−∞, 0]
with a ≤ b.
Proposition C.5. Let R ⊂ [0,∞) be a non-empty, closed set. Let ψ : R →
[0,∞] be a lower semi-continuous function. Then the function I : R → [0,∞]
defined via

I(a) = inf
γ∈R

[`(γ; a) + ψ(γ)]

is a lower semi-continuous function.
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