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Abstract

In this paper we study the Markov-modulated M/M/∞ queue, with a focus on the correlation structure
of the number of jobs in the system. The main results describe the system’s asymptotic behavior under a
particular scaling of the model parameters in terms of a functional central limit theorem. More specifically,
relying on the martingale central limit theorem, this result is established, covering the situation in which
the arrival rates are sped up by a factor N and the transition rates of the background process by Nα, for
some α > 0. The results reveal an interesting dichotomy, with crucially different behavior for α > 1 and
α < 1, respectively. The limiting Gaussian process, which is of the Ornstein-Uhlenbeck type, is explicitly
identified, and it is shown to be in accordance with explicit results on the mean, variances and covariances
of the number of jobs in the system.
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1 Introduction

This paper studies the infinite-server queue modulated by a finite-state irreducible continuous-time Markov
chain J ; when the so-called background process J is in state i, jobs arrive according to a Poisson process
with rate λi, while the departure rate is given by µi. The resulting Markov-modulated infinite-server queue
has attracted some attention during the past decades; see e.g. the early contributions [8, 12, 13]. In these
papers the main results were in terms of systems of (partial) differential equations characterizing probability
generating functions related to the system’s transient behavior, and recursions enabling the evaluation of the
corresponding moments.

In a series of recent papers [1, 2, 3, 4, 5, 6, 7], substantial attention has been paid to the asymptotic behavior
of Markov-modulated infinite-server queues in specific scaling regimes. In these parameter scalings the
arrival rates are typically inflated by a factor N , while the transition rates of the background process are sped
up by a factor Nα for some α ≥ 0. The objective is to analyze the transient distribution of the number of
jobs in the system at time t, to be denoted by M (N)(t), in the limiting regime that N grows large.
The asymptotic results derived come in three flavors: (i) large deviations (LD) results, describing the tail
probabilities P(M (N)(t)/N ≥ a) for N large; (ii) central-limit-theorem (CLT) type of results, describing
the convergence of M (N)(t) (after centering and normalization) to a Normally distributed random variable;
and (iii) functional central limit theorems (FCLT s), describing the convergence of the process M (N)(·) to an
appropriate Gaussian process.
Importantly, two model variants can be distinguished, with their own specific departure processes.

◦ In the first, to be referred to as Model I, each job present is experiencing a departure rate µi when J
is in state i; as a consequence, this hazard rate may change during the job’s sojourn time (when the
background process makes a transition).

◦ In the second, Model II, the job’s sojourn time is sampled upon arrival: when the background process
is then in state i, it has an exponential distribution with mean 1/µi, and hence the corresponding hazard
rate is constant over its lifetime.

Fig. 1 summarizes the results that have been established so far. In the LD domain, the papers [3, 6, 7] cover,
for both models, the regime in which the background process is relatively slow (more specifically, α = 0) as
well as the regime in which it is essentially faster than the arrival process (α > 1). Also in the CLT regime the
picture is complete, with results for Models I and II, and with both slow (α < 1) and fast (α > 1) switching
of the background process. In terms of FCLT s, however, not all cases are covered: the only result derived
so far [1] concerns the case that µi = µ for all i, i.e., the case in which Models I and II actually coincide;
we may refer to this model as to ‘Model 0’. The main contribution of the present paper is the derivation of
FCLT s for Models I and II; this is done in Sections 5 and 6, respectively. These findings, with a limiting
Gaussian process of the Ornstein-Uhlenbeck type, turn out to be in accordance with explicit expressions
for means, variances, and covariances in these models, as we present in Sections 3 and 4. We conclude in
Section 7 with some numerical experiments.

2 Notation, preliminaries

Let J(t) denote an irreducible continuous-time Markov chain on the (finite) state space {1, . . . , d}, with
transition rate matrix Q = (qij)

d
i,j=1 and (unique) invariant probability measure π. In addition, we let

pij(t) := P(J(t) = j | J(0) = i). It is assumed that J(0) is distributed according to πππ.
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Figure 1: Graphical illustration of literature on Markov-modulated infinite-server queues. Upper-left trian-
gle: fast regime; lower-right triangle: slow regime. White area: regimes covered by earlier work; shaded
areas: regimes not covered yet.

The process J(t) is referred to as the background process, and regulates an infinite-server queue. When J(t)

is in state i, jobs arrive at the queueing resource according to a Poisson process of rate λi. Regarding the
way in which these jobs are handled, two variants are distinguished:

◦ In Model I the hazard rate of jobs leaving is µi when the background process is in state i. Observe that
this hazard rate may change during the lifetime of the job, when the background process jumps.

◦ In Model II job durations are sampled upon arrival: they are drawn from an exponential distribution
with mean 1/µi if the background process is in state i when the job enters the system.

Throughout this paper we write λλλ := (λ1, . . . , λd)
T and Λ := diag{λλλ}, and likewise µµµ := (µ1, . . . , µd)

T

andM := diag{µµµ}. We also define λ∞ := πππTλλλ and µ∞ := πππTµµµ.
In Sections 3 and 4 we consider explicit expressions for the means, variances and covariances in the unscaled
system. There we denote byM(t) the number of jobs present at time t, for t ≥ 0. For simplicity, it is assumed
that the system starts empty at time 0, i.e., M(0) = 0.
In Sections 3 and 4 we also analyze the obtained expressions for the mean, variance and covariance in a
specific parameter scaling, viz. we replace the arrival rates λλλ by Nλλλ, and the generator matrix Q by NαQ,
for some α > 0, and let N grow large. It is in this asymptotic regime that we also establish our FCLT s in
Sections 5 and 6. For these scaled models we write M (N)(t) for the number of jobs at time t, to emphasize
the dependence on the scaling parameter.

In the sequel, we use the concept of deviation matrices. Define the (i, j)-th element of the exponentially
weighted deviation matrix D(γ), as a function of the vector γγγ ∈ Rd+, by

D
(γ)
ij :=

∫ ∞
0

e−γit (pij(t)− πj) dt.

The matrix D := D(0) is the canonical deviation matrix. In the sequel, also the matrix Π := 111πππT plays a
role, as well as the fundamental matrix F := D + Π. A number of identities hold: QF = FQ = Π − I ,
ΠF = FΠ = Π, and F111 = Π111 = 111.
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3 Mean, variance, and covariance for model I

The first part of this section presents explicit formulae for the mean, variance, and covariance in Model I. In
the second part these turn out to allow for a more explicit characterization in particular asymptotic regimes.

3.1 Explicit formulae

Our goal is to devise a method to compute Cov(M(t),M(t+ u)). To this end, the object that we study first
is, for u ≥ 0 fixed, the bivariate probability generating function

Ξij(z, w, t, u) := E
(
zM(t)wM(t+u) 1{J(t) = i, J(t+ u) = j}

)
,

which implicitly contains all information about the joint distribution of M(t) and M(t + u). In matrix
notation, we obtain in Appendix A, suppressing the arguments for ease of notation,

∂Ξ

∂t
= (z − 1)ΛΞ + (w − 1)ΞΛ− (z − 1)M∂Ξ

∂z
− (w − 1)

∂Ξ

∂w
M+QTΞ + ΞQ. (1)

We now point out how to compute the covariance between M(t) and M(t + u) from this system of partial
differential equations.

To this end, we first define the three matrices

E(t, u) ≡ (Eij(t, u))di,j=1, where Eij(t, u) := EM(t)1{J(t) = i, J(t+ u) = j}
G(t, u) ≡ (Gij(t, u))di,j=1, where Gij(t, u) := EM(t+ u)1{J(t) = i, J(t+ u) = j}
C(t, u) ≡ (Cij(t, u))di,j=1, where Cij(t, u) := EM(t)M(t+ u)1{J(t) = i, J(t+ u) = j}

(2)

It follows from the moment-generating property of generating functions that

Eij(t, u) = lim
z,w↑1

∂Ξij
∂z

, Gij(t, u) = lim
z,w↑1

∂Ξij
∂w

, Cij(t, u) = lim
z,w↑1

∂2Ξij
∂z∂w

. (3)

From the partial differential equation (1) that defines Ξ, we can find the following systems of ordinary
differential equations for the matrices E(t, u), G(t, u) and C(t, u). We demonstrate how this is done for the
equation involving E(t, u). Differentiate (1) with respect to z, and take the limit of w, z ↑ 1. Recalling that
J(0) is distributed according to πππ, it is straightforward to obtain, with Kij(u) := πipij(u),

E′(t, u) = ΛK(u)−ME(t, u) +QTE(t, u) + E(t, u)Q,

where the derivative in the left-hand side is again with respect to t. We can derive the ODEs for G(t, u) in
the same manner,

G′(t, u) = K(u)Λ−G(t, u)M+QTG(t, u) +G(t, u)Q.

Similarly, for C(t, u) we have:

C ′(t, u) = ΛG(t, u) + E(t, u)Λ−MC(t, u)− C(t, u)M+QTC(t, u) + C(t, u)Q,

The above differential equations are matrix-valued systems of linear differential equations, which can be
converted into vector-valued systems of linear differential equations, relying on the concept of ‘vectoriza-
tion’. We show this idea for the matrix E(t, u). We take the columns of E(t, u), and put them into a vector
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eee(t, u) of dimension d2, such that the first d entries areE11(t, u) up toEd1(t, u), entries d+1 up to 2d corre-
spond toE12(t, u) up toEd2(t, u), etc.; we write eee(t, u) := vec(E(t, u)). Likewise, ggg(t, u) := vec(G(t, u)),
ccc(t, u) := vec(C(t, u)) and kkk(u) := vec(K(u)).
For d × d matrices A, B, and C, and with as usual A ⊗ B denoting the Kronecker product and A ⊕ B :=

A⊗ I + I ⊗B the Kronecker sum of the matrices A and B, recall

vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A) and vec(ABC) = (CT ⊗A)vec(B),

with I the d × d identity matrix. We thus obtain the following equations in terms of Kronecker sums and
products:

eee′(t, u) = (I ⊗ Λ)kkk(u)− (I ⊗M)eee(t, u) + (QT ⊕QT)eee(t, u).

An equation for ggg(t, u) can be found analogously:

ggg′(t, u) = (Λ⊗ I)kkk(u)− (M⊗ I)ggg(t, u) + (QT ⊕QT)ggg(t, u).

Along the same lines we obtain

ccc′(t, u) = (I ⊗ Λ)ggg(t, u) + (Λ⊗ I)eee(t, u)− (M⊕M)ccc(t, u) + (QT ⊕QT)ccc(t, u),

the derivatives in the left-hand sides being again with respect to t. Observe that Q ⊕Q is again a transition
rate matrix, andM⊕M a diagonal matrix with non-negative entries.
The systems describing eee(t, u) and ggg(t, u) are standard systems of non-homogeneous linear differential equa-
tions, which can be solved with standard techniques. Then the solution can be plugged into the differential
equation describing ccc(t, u), which is then also a system of non-homogeneous linear differential equations.
We summarize the results in the following proposition.

Proposition 1. The matrix-valued functions E(t, u), G(t, u) and C(t, u) satisfy the following ODEs:

E′(t, u) = ΛK(u)−ME(t, u) +QTE(t, u) + E(t, u)Q,

G′(t, u) = K(u)Λ−G(t, u)M+QTG(t, u) +G(t, u)Q.

C ′(t, u) = ΛG(t, u) + E(t, u)Λ−MC(t, u)− C(t, u)M+QTC(t, u) + C(t, u)Q,

Moreover, the vectorized versions eee(t, u), ggg(t, u) and ccc(t, u), of the matrices E(t, u), G(t, u) and C(t, u)

satisfy the following linear differential equations.

eee′(t, u) = (I ⊗ Λ)kkk(u)− (I ⊗M)eee(t, u) + (QT ⊕QT)eee(t, u).

ggg′(t, u) = (Λ⊗ I)kkk(u)− (M⊗ I)ggg(t, u) + (QT ⊕QT)ggg(t, u).

ccc′(t, u) = (I ⊗ Λ)ggg(t, u) + (Λ⊗ I)eee(t, u)− (M⊕M)ccc(t, u) + (QT ⊕QT)ccc(t, u).

All occurring derivatives are with respect to t.

We have now devised a procedure to compute the covariance Cov(M(t),M(t+u)). To this end, first realize
that, with e(t) := EM(t) and 111 denoting here a d2-dimensional all-ones vector,

e(t) = 111Teee(t, u), e(t+ u) = 111Tggg(t, u).

As a consequence,
Cov(M(t),M(t+ u)) = 111Tccc(t, u)− e(t) e(t+ u).
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3.2 Two specific limiting regimes

In this subsection, we consider two particular limiting regimes, in which the expressions simplify consider-
ably.

B Let us first consider the behavior for t→∞. It is readily verified that

eee(∞, u):= lim
t→∞

eee(t, u) =
(
(I ⊗M)− (QT ⊕QT)

)−1
(I ⊗ Λ)kkk(u),

and hence

e(∞) = 111Teee(∞, u) = 111T
(
(I ⊗M)− (QT ⊕QT)

)−1
(I ⊗ Λ)kkk(u) = 111Tggg(∞, u).

For u = 0 we obtain the solution from O’Cinneide and Purdue [13, Thm. 3.1].
Along the same lines,

ccc(∞, u): = lim
t→∞

ccc(t, u) =
(
(M⊕M)− (QT ⊕QT)

)−1
((I ⊗ Λ)ggg(∞, u) + (Λ⊗ I)eee(∞, u)).

We have thus derived an expression for the limit of Cov(M(t),M(t+ u)) as t→∞:

lim
t→∞

Cov(M(t),M(t+ u)) = 111Tccc(∞, u)− (e(∞))2.

B Next, we consider the following scaling: we replace λ 7→ Nλ and Q 7→ NαQ, for α > 0. In this regime,
the pace with which the arrival process is sped up, differs from that corresponding to the background process.
As we will see below, the situation α > 1 crucially differs from α < 1; this was already observed earlier
in e.g. [1, 5]. As mentioned before, to stress the dependence on N , we write M (N)(t) rather than M(t). It
is this scaling that is imposed in Section 5, and under which an FCLT is established. We now identify the
associated mean and (co-)variance, relying on elementary techniques.
Let mmm(N)(t) ≡ mmm(t) the d-dimensional row-vector, with EM (N)(t)1{J(t) = i} on the i-th position. Ac-
cording to [13, Thm. 3.2],mmm(t) satisfies the following non-homogeneous linear differential equation:

πππTNΛ−mmm(t)(M−NαQ) = mmm′(t). (4)

In [5] we proved that, with %(I) := λ∞/µ∞,

EM (N)(t) = N %(I) (1− e−µ∞t) + o(N). (5)

Now define %(I)(t) := %(I)(1− e−µ∞t) and

ς(I)(t) := 2

∫ t

0

e−2µ∞(t−s)πππT
(

Λ−M%(I)(s)
)
D
(

Λ−M%(I)(s)
)

111 ds. (6)

In Appendix B it is shown that

lim
N→∞

Cov(M (N)(t),M (N)(t+ u))

Nmax{1,2−α} = v(I)(t, u) := e−µ∞u
(
ς(I)(t)1{α≤1} + %(I)(t)1{α≥1}

)
. (7)

We conclude that under this parameter scaling the covariance exhibits the same dichotomy as the one ob-
served in [5] for the variance, i.e., behaving crucially different for α < 1 and α > 1. In the latter regime, the
system essentially behaves as a (non-modulated) M/M/∞ queue, with arrival rate λ∞ and service rate µ∞,
whereas for α < 1 the full transition rate matrix Q plays a role (as ς(I)(t) involves the deviation matrix D).
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4 Mean, variance, and covariance for model II

As we saw above, for Model I the mean, variance and covariance can be determined by solving specific
non-homogeneous linear differential equations; for Model II, however, the analysis is simpler, and can be
performed by relying on the law of total (co-)variance, as shown in Section 4.1. Focusing on the same
limiting regimes as we have studied for Model I, the expressions become more explicit; see Section 4.2.

4.1 Explicit formulae

The mean of M(t) for Model II was already determined in [2]; recalling from e.g. [8] the observation that
M(t) obeys a Poisson distribution with the random parameter E(M(t) | J), we conclude that

EM(t) = E (E(M(t) | J)) = E
(∫ t

0

λJ(s)e
−µJ(s)(t−s)ds

)
=

d∑
i=1

πi
λi
µi

(
1− e−µit

)
=: %(II)(t),

with J ≡ (J(s))ts=0.
Now concentrate on the evaluation of the covariance between M(t) and M(t+ u); assume, without loss of
generality, that u ≥ 0. The ‘law of total covariance’ entails that

Cov(M(t),M(t+ u)) = E(Cov(M(t),M(t+ u) | J)) + Cov(E(M(t) | J),E(M(t+ u) | J)). (8)

In Appendix D, we evaluate both terms, so as to obtain

Cov(M(t),M(t+ u)) =

d∑
i=1

πi
λi
µi

(
1− e−µit

)
e−µiu + λλλTK (t, u)λλλ+ λλλTL (t, u)λλλ; (9)

the precise form of the matrices K (t, u) and L (t, u) is given in Appendix D as well.

4.2 Two specific limiting regimes

In this subsection, we consider the two particular limiting regimes that we studied earlier, in Section 3.2, for
Model I. As it turns out, in these regimes the expressions simplify considerably.

B In the first regime, we consider Cov(M(t),M(t+u)) for t→∞. Going through the calculations, relying
on the explicit expressions for K (t, u) and L (t, u) as given in Appendix D, we obtain

lim
t→∞

Cov(M(t),M(t+ u)) =

d∑
i=1

πi
λi
µi
e−µiu +

d∑
i=1

d∑
j=1

πi
λiλj
µi + µj

e−µjuD
(µ)
ij

+

d∑
i=1

d∑
j=1

πj
λiλj
µi + µj

∫ u

0

e−µju+µiw(pji(w)− πi)dw

+

d∑
i=1

d∑
j=1

πj
λiλj
µi + µj

∫ ∞
u

eµiu−µjw(pji(w)− πi)dw,

also entailing that

lim
t→∞

VarM(t) =

d∑
i=1

πi
λi
µi

+ 2

d∑
i=1

d∑
j=1

πi
λiλj
µi + µj

D
(µ)
ij .
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B In the second limit, we replace λ 7→ Nλ and Q 7→ NαQ, for α > 0. The FCLT under this scaling is
proven in Section 6; we here find the corresponding mean and (co-)variance. It turns out that, for N large,

Cov
(
M (N)(t),M (N)(t+ u)

)
∼ N

d∑
i=1

e−µiu%
(II)
i (t) +N2−α

d∑
i=1

e−µiuς
(II)
i (t),

with %(II)
i := πiλi/µi and %(II)

i (t) := %
(II)
i · (1− e−µit) and

ς
(II)
i (t) :=

d∑
j=1

λiλj
µi + µj

(
1− e−(µi+µj)t

)
(πjDji + πiDij).

We conclude that

lim
N→∞

Cov(M (N)(t),M (N)(t+ u))

Nmax{1,2−α} = v(II)(t, u) :=

d∑
i=1

e−µiu
(
ς
(II)
i (t)1{α≤1} + %

(II)
i (t)1{α≥1}

)
. (10)

We observe that the same dichotomy applies as the one we have observed for Model I: for α > 1 the number
of jobs in the system behaves ‘Poissonian’, with mean and variance scaling essentially linearly with N , both
with proportionality constant %(II)(t). For α < 1, as seen earlier in e.g. [5], the variance grows superlinearly
with N , with a proportionality constant that involves the deviation matrix D.

5 Functional central limit theorem for Model I

In Section 3.2 we considered the covariance of the number of jobs in the system under a specific scaling:
λ 7→ Nλ and Q 7→ NαQ, for α > 0. In this section, we prove that for a given t the random variable
M (N)(t) obeys a central limit theorem; moreover, we prove the stronger property that after centering and
normalizing the process M (N)(t), there is weak convergence to a specific Gaussian process. We essentially
adopt the methodology used in [10]; some steps that are fully analogous to those in [10] are described
concisely. In the sequel, we let Z(N)

i (t) be the indicator function of the event {J (N)(t) = i}, where J (N)(t)

is a Markov chain with transition rate matrix NαQ.
First observe that, with P1(·) and P2(·) two independent unit-rate Poisson processes, it is straightforward to
see that M (N)(t) can be written as

M (N)(t) = P1

(
N

∫ t

0

d∑
i=1

λiZ
(N)
i (s)ds

)
− P2

(∫ t

0

d∑
i=1

µiM
(N)(s)Z

(N)
i (s)ds

)
. (11)

Now impose the following centering and normalization, with β := max{1, 2− α}/2,

M̃ (N)(t) := N−β
(
M (N)(t)−N%(I)(t)

)
,

where %(I)(t) := %(I)(1− e−µ∞t); the objective of this section is to establish the convergence of M̃ (N)(·) to
a specific Gaussian process, essentially relying on the martingale central limit theorem; see for background
on the martingale central limit theorem e.g. [11, 14].
It is first realized that, as a direct implication of (11), for some martingale κ(N)(·),

dM (N)(t) = NλTZ(N)(t)dt− µTZ(N)(t)M (N)(t)dt+ dκ(N)(t).

Then we rewrite this equation in terms of one for M̃ (N)(t):

dM̃ (N)(t) = N1−βλTZ(N)(t)dt−N−βµTZ(N)(t)M (N)(t)dt+N−βdκ(N)(t)−N1−β
(
%(I)
)′

(t)dt

= N1−βλTZ(N)(t)dt− µTZ(N)(t) M̃ (N)(t)dt−N1−βµTZ(N)(t)%(I)(t)dt

+N−βdκ(N)(t)−N1−β
(
%(I)
)′

(t)dt.
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Following the ideas of [10], we now introduce

Y (N)(t) := exp
(
µTζ(N)(t)

)
M̃ (N)(t), where ζ(N)(t) :=

∫ t

0

Z(N)(s)ds.

It thus follows that, using standard stochastic differentiation rules,

dY (N)(t) = exp
(
µTζ(N)(t)

)(
N1−β

(
λ− µ%(I)(t)

)T
Z(N)(t)dt+N−βdκ(N)(t)−N1−β

(
%(I)
)′

(t)dt

)
.

Now observe that, from the definition of the function %(I)(t), we find that(
λ− µ%(I)(t)

)T
π = λ∞e

−µ∞t =
(
%(I)
)′

(t),

and hence it is obtained that

dY (N)(t) = exp
(
µTζ(N)(t)

)(
N1−β

(
λ− µ%(I)(t)

)T (
Z(N)(t)− π

)
dt+N−βdκ(N)(t)

)
.

We now analyze the two terms in the previous display separately.

◦ We first concentrate on the first term. In [10], relying on the methodology developed in [11], it was
shown that the following weak convergence holds:∫ ·

0

Nα/2 exp
(
µTζ(N)(s)

)(
λ− µ%(I)(s)

)T (
Z(N)(s)− π

)
ds→

∫ ·
0

eµ∞sdG(s),

where the stochastic process G(·) is such that

〈G〉t = V (t) :=

∫ t

0

(
λ− µ%(I)(s)

)T (
diag{π}D +DTdiag{π}

) (
λ− µ%(I)(s)

)
ds

= 2

∫ t

0

πT
(

Λ−M%(I)(s)
)
D
(

Λ−M%(I)(s)
)
1ds;

cf. Eqn. (6). (It is noted that in [10] the background process was sped up by a factor N rather than
Nα; this explains that there the growth rate

√
N was found, while in our setup we have Nα/2.)

Importantly, from the above we conclude that the full first term in dY (N)(t) behaves essentially pro-
portional to N1−β−α/2, which converges to a constant if α ≤ 1, and vanishes otherwise.

◦ We now consider the second term. We note that, recalling the fact that P1(·) and P2(·) are independent
unit-rate Poisson processes in combination with standard properties for pure jump processes,

d

dt
〈κ(N)〉t = NλTZ(N)(t) + µTZ(N)(t)M (N)(t),

and consequently

1

N
〈κ(N)〉t =

∫ t

0

λTZ(N)(s)ds+

∫ t

0

µTZ(N)(s)
M (N)(s)

N
ds.

Using the ergodic theorem, the first integral in the right-hand side of the previous display converges to
λTπ · t = λ∞t. Likewise, the second integral converges to

lim
N→∞

1

N

∫ t

0

d∑
i=1

µi E
(
M (N)(s)1{J(s) = i}

)
ds,

9



which, due to arguments similar to those underlying (5), turns out to equal∫ t

0

d∑
i=1

µiπi%
(I)(1− e−µ∞s)ds.

Hence N−1〈κ(N)〉t converges, as N →∞, to

W (t) := λ∞t+

∫ t

0

µ∞%
(I)(1− e−µ∞s)ds.

We conclude from the above that κ(N)(·)/
√
N converges to an appropriately scaled Brownian motion.

In addition, this second term in dY (N)(t) is essentially proportional to N1/2−β , i.e., converging to a
constant if α ≥ 1, and vanishes otherwise.

Summarizing, we have that Y (N)(t) converges weakly to a process Y (t) which is the solution to the follow-
ing stochastic differential equation:

dY (t) =
√
V ′(t)1{α≤1} +W ′(t)1{α≥1} dB(t),

where we used the property that for a standard Brownian motion B and a differentiable function f , we have
thatB(f(t)) is equal in distribution to

√
f ′(t)B̂(t), where B̂ denotes another Brownian motion, but with the

same distribution. Also, due to the ergodic theorem we have that exp
(
µTζ(N)(t)

)
converges to exp(µ∞t).

From the definition of Y (N)(t), we thus conclude the following weak convergence: M̃ (N)(·) → M̃(·),
where M̃(·) solves the stochastic differential equation

dM̃(t) = −µ∞M̃(t)dt+
√
V ′(t)1{α≤1} +W ′(t)1{α≥1} dB(t),

for a standard Brownian motion B(·). Its solution is that the limiting process M̃(·) is a centered Gaussian
process of the Ornstein-Uhlenbeck type, characterized by its covariance v(I)(t, u), as given in (7).

Theorem 5.1. Consider Model I. AsN →∞, the process M̃ (N)(·) converges weakly to a centered Gaussian
process, with covariance structure v(I)(·, ·) given in (7).

6 Functional central limit theorem for Model II

We now shift our attention from Model I to Model II. Essentially the same approach can be followed, with
an important difference being that now one has to keep track of the number of jobs present of each type, to be
denoted by M (N)

i (t) for type i, where ‘type’ refers to the state the background process was in upon arrival
of the job. We use an approach similar to the one used in the previous section, but it is noted that a viable
alternative is to adapt the approach followed in [1] for the case that the departure rates are state-independent,
to that of Model II.
As in the previous section, we start by writing the M (N)

i (t), for i = 1, . . . , d in terms of unit-rate Poisson
processes; in self-evident notation, we now have

M
(N)
i (t) = P1,i

(
N

∫ t

0

λiZ
(N)
i (s)ds

)
− P2,i

(∫ t

0

µiM
(N)
i (s)ds

)
.

As before, we apply centering and normalization, in that we will study, recalling that %(II)
i := πiλi/µi and

%
(II)
i (t) := %

(II)
i · (1− e−µit),

M̃
(N)
i (t) := N−β

(
M

(N)
i (t)−N%(II)

i (t)
)
,

10



where, as in the previous section, β := max{1, 2− α}/2. Also we have that, for martingales κ(N)
i (t) (with

i = 1, . . . , d),
dM

(N)
i (t) = NλiZ

(N)
i (t)dt− µiM (N)

i (t)dt+ dκ
(N)
i (t),

which we can express in terms of dM̃
(N)
i (t):

dM̃
(N)
i (t) = N−βdM

(N)
i −N1−β

(
%
(II)
i

)′
(t) dt

= N1−βλiZ
(N)
i (t)dt− µiM̃ (N)

i (t)dt−N1−βµi%
(II)
i (t)dt

+N−βdκ
(N)
i (t)−N1−β

(
%
(II)
i

)′
(t) dt.

Using the definition of %(II)
i (t), after some calculus we eventually obtain the stochastic differential equation

dM̃
(N)
i (t) = −µiM̃ (N)

i (t)dt+N1−βλi

(
Z

(N)
i (t)− πi

)
dt+N−βdκ

(N)
i (t).

Mimicking the ideas used in the previous section, we study the last two terms appearing in the right-hand
side of the previous display separately.

◦ We first concentrate on the middle term of the right-hand side of the previous display. To this end, we
define

I
(N)
i (t) :=

∫ t

0

(
Z

(N)
i (s)− πi

)
ds.

In e.g. [1, Prop. 3.2] it was shown that the following weak convergence holds:

Nα/2I(N)(·)→ B(·),

whereB(·) denotes a zero-mean d-dimensional Brownian motion with covariance matrix diag{π}D+

DTdiag{π}. The fact that this matrix is nonnegative definite has been proven in [10, Prop. 3.2], and
hence it allows a Cholesky decomposion. We, in addition, obtain the weak convergence of H(N)(·),
with H(N)

i (t) := λiI
(N)
i (t), to a zero-mean d-dimensional Brownian motion with covariance matrix

(and thus also allowing a Cholesky decomposition)

V := Λ
(
diag{π}D +DTdiag{π}

)
Λ. (12)

It also follows that this term behaves essentially proportional to N1−β−α/2; more specifically, it con-
verges to a constant if α ≤ 1, and vanishes otherwise.

◦ We now consider the second term. We note that

d

dt
〈κ(N)
i 〉t = NλiZ

(N)
i (t) + µiM

(N)
i (t),

and consequently
1

N
〈κ(N)
i 〉t = λi

∫ t

0

Z
(N)
i (s)ds+ µi

∫ t

0

M
(N)
i (s)

N
ds,

which we can prove, using standard arguments (such as the ergodic theorem), to converge to

wi(t) := λiπit+ µi

∫ t

0

%
(II)
i (1− e−µis)ds.

We thus find that κ(N)
i (·)/

√
N converges to an appropriately scaled one-dimensional Brownian mo-

tion.

11



By doing similar steps for 〈κ(N)
i + κ

(N)
j 〉t, for i 6= j, we find that the quadratic covariation between

κ
(N)
i (·)/

√
N and κ(N)

j (·)/
√
N equals 0. We conclude from the above that κ(N)(·)/

√
N converges

to an appropriately scaled d-dimensional Brownian motion; the variance of component i at time t is
wi(t), and the covariances are all 0.

It also follows that this term is essentially proportional to N1/2−β , which is a constant if α ≥ 1, and
vanishes otherwise.

Define M̃MM(t) := (M̃1(t), . . . , M̃d(t))
T; we also write

Wi(t) := λiπi + µi%
(II)
i (t) = 2λiπi − λiπie−µit.

Based on the above, we obtain that M̃ (N) converges as N → ∞ to the solution M̃MM(t) of the stochastic
differential equation, in self-evident notation,

dM̃MM(t) = −MM̃MM(t)dt+
√
V 1{α≤1} + diag{WWW (t)}1{α≥1} dB(t).

From this stochastic differential equation it follows by applying standard techniques that the resulting limit-
ing process is a centered Gaussian process, with

Cov
(
M̃i(t), M̃j(t)

)
= e−µit−µjt

∫ t

0

eµis+µjsλiλj (πiDij + πjDji) ds

=
λiλj
µi + µj

(
1− e−(µi+µj)t

)
(πiDij + πjDji)

if α ≤ 1. If α ≥ 1, on the contrary, the covariance is 0 if i 6= j, and %(II)
i (t) if i = j.

Now consider the limiting distribution of the total population of the system; from the above, it immediately
follows that we have the weak convergence

d∑
i=1

M̃
(N)
i (t)→ M̃(t) :=

d∑
i=1

M̃i(t),

which is a centered Gaussian process of the Ornstein-Uhlenbeck type, characterized by its covariance v(II)(t, u),
as given in (10).

Theorem 6.1. Consider Model II. As N → ∞, the process M̃ (N)(·) converges weakly to a centered
Gaussian process with covariance structure v(II)(·, ·) given in (9).

7 Numerical experiments

In this section, we illustrate the results with two plots. In all cases, we consider a Model I scenario with a
two-state Markov chain. We assume that q12 = q21 = 5, and λ = [20, 10].
In the first figure, Fig. 2, we plot the covariance of a system starting in stationarity for two scenarios. In the
first scenario (dashed line) µ = [2, 1], whereas in the second scenario (full line) µ = [1, 2].
For the second plot, we assume µ = [1 , 2] and apply the scaling λ 7→ Nλ and Q 7→ NαQ. Fig. 3 shows
the stationary variance of the number of jobs. We divide this variance by the theoretically predicted growth
factor N2γ , and plot it against α. The dashed line corresponds to N = 100, the full line to N = 100 000.
We plot the limit M(t) in gray.
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Appendix A

In this appendix we characterize the probability generating functions Ξij(·, ·, ·, ·) by setting up a system of
partial differential equations. The starting point for this is the system of Kolmogorov equations related to the
transient probabilities of the number of jobs present (jointly with the background state) at two time epochs:

pij(m,n, t, u) := P(M(t) = m,M(t+ u) = n, J(t) = i, J(t+ u) = j);

we suppress the u as this is held fixed for the moment. Standard arguments from Markov chain theory
immediately yield the equations, for i, j ∈ {1, . . . , d}, m,n ∈ {0, 1, 2 . . .}, and qi := −qii,

pij(m,n, t+ ∆t, u) = pij(m,n, t, u) (1− (λi + λj +mµi + nµj + qi + qj)∆t)

+ pij(m− 1, n, t, u)λi∆t + pij(m,n− 1, t, u)λj∆t

+ pij(m+ 1, n, t, u) (m+ 1)µi∆t + pij(m,n+ 1, t, u) (n+ 1)µj∆t

+
∑
k 6=i

pkj(m,n, t, u)qki∆t +
∑
k 6=j

pik(m,n, t, u)qkj∆t+ o(∆t);

here pij(−1, n, t, u) and pij(m,−1, t, u) are to be understood as 0. As a consequence, with p′ij(m,n, t, u)

denoting the derivative of pij(m,n, t, u) with respect to t, it is readily obtained that the transient probabilities
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satisfy the following system of (ordinary) differential equations:

p′ij(m,n, t, u) = λi (pij(m− 1, n, t, u)− pij(m,n, t, u)) + λj (pij(m,n− 1, t, u)− pij(m,n, t, u))

+µi ((m+ 1)pij(m+ 1, n, t, u)−mpij(m,n, t, u)) + µj ((n+ 1)pij(m,n+ 1, t, u)− npij(m,n, t, u))

+

d∑
k=1

pkj(m,n, t, u)qki +

d∑
k=1

pik(m,n, t, u)qkj .

Our goal is to transform these differential equations into a system of partial differential equations for the
corresponding probability generating functions. To this end, multiply both sides of the equation by zmwn,
and sum over m,n = 0, 1, 2, . . .. This results in the following equation:

∂

∂t
Ξij(z, w, t, u) = (λi(z − 1) + λj(w − 1)) · Ξij(z, w, t, u)

−µi(z − 1)
∂

∂z
Ξij(z, w, t, u)− µj(w − 1)

∂

∂w
Ξij(z, w, t, u)

+

d∑
k=1

Ξkj(z, w, t, u)qki +

d∑
k=1

Ξik(z, w, t, u)qkj ,

which in matrix notation coincides with Eqn. (1).

Appendix B

As will be proven in Appendix C below, the statement (5) can be refined to, for some constant κ (whose
precise form is irrelevant here),

EM (N)(t) = (N %(I) +N1−ακ)(1− e−µ∞t) + o(1). (13)

Likewise, for any x ≥ 0,

E
(
M (N)(t) |M (N)(0) = x

)
= (N%(I) +N1−ακ)(1− e−µ∞t) + xe−µ∞t + o(1). (14)

In the sequel we write a(N) := N%(I) +N1−ακ. Applying an elementary time shift, we obtain that

E
(
M (N)(t)M (N)(t+ u)

)
=

∫ ∞
0

E
(
M (N)(t)M (N)(t+ u) |M (N)(t) = x

)
P(M (N)(t) ∈ dx)

=

∫ ∞
0

xE
(
M (N)(u) |M (N)(0) = x

)
P(M (N)(t) ∈ dx).

By plugging in (14), the expression in the last display equals∫ ∞
0

x
(
a(N)(1− e−µ∞u) + xe−µ∞u + o(N1−α)

)
P(M (N)(t) ∈ dx)

=
(
a(N)(1− e−µ∞u) + o(N1−α)

)
EM (N)(t) + e−µ∞u E

(
(M (N)(t))2

)
= (ξN (u) + o(N1−α))(ξN (t) + o(N1−α)) + e−µ∞u E

(
(M (N)(t))2

)
,

where ξN (u) := a(N)(1 − e−µ∞u). Now note that, due to the computations underlying [5, Thm. 2], with
%(I)(t) and ς(I)(t) as defined in Section 3.2, and with ψ(N) = o(Nmax{1,2−α}), that

E
(

(M (N)(t))2
)
−
(
EM (N)(t)

)2
= N2−ας(I)(t)1{α≤1} +N%(I)(t)1{α≥1} + ψ(N).
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We now turn our attention to characterizing the covariance between M (N)(t) and M (N)(t + u). Based on
the above we have

Cov(M (N)(t),M (N)(t+ u)) = E
(
M (N)(t)M (N)(t+ u)

)
− E

(
M (N)(t)

)
E
(
M (N)(t+ u)

)
= (ξN (u) + o(N1−α))(ξN (t) + o(N1−α)) + e−µ∞u

(
ξN (t) + o(N1−α)

)2
+ e−µ∞u

(
N2−ας(I)(t)1{α≤1} +N%(I)(t)1{α≥1} + ψ(N)

)
−
(
ξN (t) + o(N1−α)

) (
ξN (t+ u)) + o(N1−α)

)
.

A direct computation now yields that the zero-order terms cancel, and that we end up with (7).

Appendix C

In this appendix, we establish (13). The idea is to manipulate differential equation (4), so as to characterize
the behavior of mmm(t) for N large. The first step is to postmultiply the equation by the fundamental matrix
F := D + Π. We obtain, multiplying the equation by N−α as well,

mmm(t) = mmm(t)Π−N−αmmm(t)MF +N1−α πππTΛF −N−αmmm′(t)F.

Iterate this equation once, we obtain

mmm(t) = mmm(t)Π−N−αmmm(t)MΠ +N1−απππTΛΠ−N−αmmm′(t)Π
−N−αmmm(t)ΠMF −N1−2απππTΛFMF +N1−απππTΛF −N−αmmm′(t)Π + o(N−α).

Iterating once again to replace all occurrences ofmmm(t) bymmm(t)Π, we obtain, with nnn(t) := mmm(t)Π,

mmm(t) = nnn(t)−N−αnnn(t)ΠMΠ −N1−2απππTΛFMΠ +N1−απππTΛΠ−N−αnnn′(t)
−N−αnnn(t)ΠMF −N1−2απππTΛFMF +N1−απππTΛF −N−αnnn′(t) + o(N−α).

Now postmultiply this equation by NαΠ111. Recalling that F111 = 111 and Π111 = 111, we obtain

nnn′(t)111 = −nnn(t)ΠM111 +NπππTΛ111−N1−απππTΛFM111 + o(1).

which leads to, using nnn(t)111 := φ(t) and Π = 111πππT,

φ′(t) = −µ∞φ(t) +Nλ∞ −N1−απππTΛFM111 + o(1).

We find that, with φ(0) = 0,

EM (N)(t) =

(
N
λ∞
µ∞
− 1

µ∞
N1−απππTΛFM111

)
(1− e−µ∞t) + o(1).

Appendix D

We first focus on the first term in the right hand side of (8). To this end, consider the following decomposition:

M(t) := M (1)(t, t+ u) +M (2)(t, t+ u), M(t+ u) := M (2)(t, t+ u) +M (3)(t, t+ u),

whereM (1)(t, t+u) are the jobs that arrived in [0, t) that are still present at time t but have left at time t+u,
M (2)(t, t + u) the jobs that have arrived in [0, t) that are still present at time t + u, and M (3)(t, t + u) the
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jobs that have arrived in [t, t + u) that are still present at time t + u. Observe that, conditional on J , these
three random quantities are independent. As a result,

E(Cov(M(t),M(t+ u)) | J)) = E(VarM (2)(t, t+ u) | J).

Mimicking the arguments used in [8], it is immediate that M (2)(t, t + u), conditional on J , has a Poisson
distribution with parameter ∫ t

0

λJ(s)e
−µJ(s)(t+u−s)ds.

We conclude that

E(Cov(M(t),M(t+ u)) | J)) = E
(∫ t

0

λJ(s)e
−µJ(s)(t+u−s)ds

)
=

d∑
i=1

πiλi

∫ t

0

e−µi(t+u−s)ds =

d∑
i=1

πi
λi
µi

(
1− e−µit

)
e−µiu.

Now analyze the second term in the right hand side of (8). First observe that it can be written as

Cov

(∫ t

0

λJ(r)e
−µJ(r)(t−r)dr,

∫ t+u

0

λJ(s)e
−µJ(s)(t+u−s)ds

)
.

This decomposes into I1 + I2, where

I1 :=

d∑
i=1

d∑
j=1

λiλjKij , where Kij :=

∫ t

0

∫ s

0

e−µi(t−r)e−µj(t+u−s)πi (pij(s− r)− πj) drds,

I2 :=

d∑
i=1

d∑
j=1

λiλjLij , where Lij :=

∫ t

0

∫ t+u

s

e−µi(t−r)e−µj(t+u−s)πj (pji(r − s)− πi) drds.

Let us first evaluate Kij ≡ Kij(t, u). To this end, substitute w := s− r (i.e., replace r by s− w), and then
interchange the order of integration, so as to obtain

Kij = e−µj(t+u)πi

∫ t

0

(∫ t

w

e(µi+µj)sds

)
e−µi(t+w) (pij(w)− πj) dw.

Performing the inner integral (i.e., the one over s) leads to

Kij =
1

µi + µj
e−µj(t+u)πi

∫ t

0

(
e−µiw+µjt − e−µit+µjw

)
(pij(w)− πj) dw.

For Lij ≡ Lij(t, u), again by a substitution and by interchanging the order of integration, we obtain
L

(1)
ij + L

(2)
ij , where

L
(1)
ij := e−µj(t+u)πj

∫ u

0

(∫ t

0

e(µi+µj)sds

)
e−µi(t−w) (pji(w)− πi) dw,

L
(2)
ij := e−µj(t+u)πj

∫ t+u

u

(∫ t+u−w

0

e(µi+µj)sds

)
e−µi(t−w) (pji(w)− πi) dw,

which reduce to

L
(1)
ij :=

1

µi + µj
e−µj(t+u)πj

(
eµjt − e−µit

) ∫ u

0

eµiw (pji(w)− πi) dw,

L
(2)
ij :=

1

µi + µj
e−µitπj

∫ t+u

u

(
eµi(t+u)−µjw − eµiw−µj(t+u)

)
(pji(w)− πi) dw.

Now Eqn. (9) follows.
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