Morphological Principal Component Analysis for Hyperspectral Image Analysis

Abstract : This paper deals with a problem of dimensionality reduction for hyperspectral images using the principal component analysis. Hyper-spectral image reduction is improved by adding structural/spatial information to the spectral information, by means of mathematical morphology tools. Then it can be useful in supervised classification for instance. The key element of the approach is the computation of a covariance matrix which integrates simultaneously both spatial and spectral information. Thanks to these new covariance matrices, new features can be extracted. To prove the efficiency of these new features we have conducted an extended study showing the interest of the structural/spatial information.
Type de document :
Article dans une revue
ISPRS International Journal of Geo-Information, MDPI, 2016, 5 (6), pp.83
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01256379
Contributeur : Gianni Franchi <>
Soumis le : jeudi 14 janvier 2016 - 16:58:36
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : samedi 16 avril 2016 - 10:51:40

Fichier

MPCA_14_FRANCHI_ANGULO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01256379, version 1

Collections

Citation

Gianni Franchi, Jesus Angulo. Morphological Principal Component Analysis for Hyperspectral Image Analysis. ISPRS International Journal of Geo-Information, MDPI, 2016, 5 (6), pp.83. 〈hal-01256379〉

Partager

Métriques

Consultations de la notice

285

Téléchargements de fichiers

321