N
N

N

HAL

open science

Determinantal point processes associated with Hilbert
spaces of holomorphic functions

Alexander 1. Bufetov, Yanqgi Qiu

» To cite this version:

Alexander I. Bufetov, Yanqgi Qiu. Determinantal point processes associated with Hilbert spaces
of holomorphic functions. Communications in Mathematical Physics, 2017, 351 (1), pp.1-44.

10.1007/s00220-017-2840-y . hal-01256224

HAL Id: hal-01256224
https://hal.science/hal-01256224

Submitted on 14 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01256224
https://hal.archives-ouvertes.fr

arXiv:1411.4951v2 [math.PR] 12 Sep 2015

Determinantal point processes associated with
Hilbert spaces of holomorphic functions

Alexander |. Bufetov, Yanqi Qiu

Abstract

We study determinantal point processes®induced by the reproducing ker-
nels of generalized Fock spaces as well as those on the sniDdnduced by the
reproducing kernels of generalized Bergman spaces. Inrdtecfise, we show that
all reduced Palm measure$ the same ordeare equivalent. The Radon-Nikodym
derivatives are computed explicitly using regularized tiplitative functionals. We
also show that these determinantal point processes ackinighe sense of Ghosh
and Peres, hence reduced Palm measufrdgferent ordersare singular. In the sec-
ond case, we show that all reduced Palm measuofesl orders are equivalent. The
Radon-Nikodym derivatives are computed using regulamatliplicative function-
als associated with certain Blaschke products. The gueariance of these deter-
minantal point processes under the group of diffeomorpsisith compact supports
follows as a corollary.

Keywords. Determinantal point processes, Palm measures, gener&iotk spaces,
generalized Bergman spaces, regularized multiplicatinetfonals, rigidity.
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1 Introduction

1.1 Main results
1.1.1 The case off

Lety : C — R be aC?-smooth function and equip the complex plaevith the mea-
suree2¥(2)d\(z), whered) is the Lebesgue measure. Assume that there exist positive
constantsn, M > 0 so that

m < A < M, (1)
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whereA is the Euclidean Laplacian differential operator.

Denote by#,, the generalized Fock space with respect to the weight*) and letB,,
be the reproducing kernel of,,, whose definition is recalled in Definitidh 1. The con-
dition (1) implies in particular the useful Christ’s pointwise esdit@ for the reproducing
kernel B,,, see Theorer.1 below.

By the Macchi-Soshnikov theorem, the kerizl induces a determinantal point pro-
cess orC, which will be denoted by, . For more background on determinantal point
processes, see, e.al], [14], [21], [15] and§2 below.

Letp € C* andgq € C* be two tuples oflistinctpoints inC. Denote b)AP)‘ij andP},
the reduced Palm measuresif, conditioned ap andq respectively. For the definition,
see, e.g.17], here, we follow the notation and conventions off [

Our first main result is that, under the assumption Palm measurdE'ij andIP’qu of
the same order are equivalent.

Theorem 1.1(Palm measures of the same ordért « satisfy(1) and letp, q € C* be
any two tuples of distinct points id. Then

1) The limit
. (z=p1)... (2 = pr)
Yo q(Z) == lim Z log
P R—)oo{ 2€2:|z|<R <Z B ql) o <Z - QZ)
E o (z—=p1)... (2= p0)
EHDBw zeZ:ZzgRl i (z—q)... (2= q) }

exists forIP’qu-aImost every configuratiof and the functior?, — e?*»(?) is inte-
grable with respect t(ﬁ”qu.

2) The Palm measurd@j'gw and IP’qu are equivalent. Moreover, fquBw-aImost every
configurationZ, we have
Py, 2%r.a(%)

()= . 2)
P, By ()

Definition 1.1 (Ghosh E], Ghosh-Pere§]). A point proces® on C is said to be rigid if
for any bounded open sét C C with Lebesgue-negligible boundaf\D, there exists a
function Fp defined on the set of configurations, measurable with respéoeo-algebra
generated by the family of random variablgg, : A ¢ C\ D bounded and Bor¢|
where# 4 is defined by

#4(Z) = the cardinality of the finite set N A,
such that

#p(Z) = Fp(Z \ D), for P-almost every configuratiofs overC.
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Proposition 1.2 (Rigidity). Under the assumptiofil), the determinantal point process

Pp, is rigid in the sense of Ghosh and Peres.

Proposition8.1in the Appendix now implies

Corollary 1.3 (Palm measures of different orderg)nder the assumptio(l), if ¢ # k,
then the reduced Palm measuﬂé"% andIPqu are mutually singular.

Remarkl.1 In the particular case/(z) = 1|z|* (Ginibre point process), the results of
Theoreml.1and Corollaryl.3were obtained in17] with a different approach, where the
authors used finite dimensional approximation by orthogpalgnomial ensembles. The
rigidity in the case)(z) = %|z|2 is due to Ghosh and Pereg,[their original approach

will be followed in our proof of Propositioa.2.

1.1.2 The case ob

In the case of Bergman spaces on the unit disthe situation becomes quite different
and the corresponding determinantal point processesditéisie are not rigid.

Consider a weight functiow : D — R* and equipD with the measures(z)d\(z).
Assume that satisfies that

/D(l —12])? B, (2, 2)w(2)d\(2) < . (3)

We will denote by%,, the generalized Bergman spaceldwith respect to the weighit,
and byB,, its reproducing kernel, the definition is recalled in Defont3.2.

Again, by the Macchi-Soshnikov theorem, the reproducemgé&l B, induces a deter-
minantal point process an, which we denote bz, .

Letp € D’ be an/-tuple of distinct points ifD and denote by, the reduced Palm
measures oP g, atp.

Under the assumptiors), we show, for any <€ D’ of distinct points inD, the reduced
Palm measur@’j'gw is equivalent td®z_ . In particular, any two reduced Palm measures are
equivalent. For the weight = 1, this result is due to Holroyd and Sob(].

We now proceed to the statement of our main result in the caBe Bor an/-tuple
p = (p1, -, pe) Of distinct points inD, set

(=) =[] 2. @

Theorem 1.4. Letw be a weight such thgB) holds. Letp € D be an/-tuple of distinct
points inD. Then
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1) The limit
Sp(2) = lim | D loglby(z)| —Ee,, > log|by(2)| (5)

r—1-
z€Z:|z|<r z€Z:|z|<r

exists forPz_-almost every configuratio® and the functiorz — ¢?%®) is inte-
grable with respect t®p .

2) The Radon-Nikodym derivativi@’jgw/dIP’Bw is given by the formula:

dP®, £255(2)
dPBw - EPBw (625")

, for Pg,_-almost every configuratiof. (6)

Theoreml.4 will be obtained from

Proposition 1.5. Let w be a weight such thgB) holds. Letp € D’ andq € D* be two
tuples of distinct points ifd. Then the Radon-Nikodym derivatiig}, /dP}, is given by

dP’, ¢25.0(2)
quBw< By (e20)

, for P, -almost every configuratiof, (7)

wheresS, ,(Z) is defined fofP}, -almost every configuratiof, given by

Spa(®) = lim | 3" logly()bo(z) | —Ery, Y loglby(2)be(z)7'] | (@)
2€2:|2|<r 2€2:]2|<r

Remarkl.2 If ¢ (resp.w) is a radial function, then the monomidls*),,~, are orthogo-
nal in the corresponding Hilbert space, hence the detentahpoint proces®p, (resp.
P, ) can be naturally approximated loythogonal polynomial ensemblds particular,

if 1(z) = 3|2|* forall z € C, thenPp, is the Ginibre point process, see chapter 15 of
Mehta’s book [6]; if w(z) = 1 for all z € D, thenPp, is the determinantal point pro-
cess describing the zero set of a Gaussian analytic funatidhe hyperbolic dis®, see
[18]. Our study, however, goes beyond the radial setting andraihods work for more

general phase spaces as well.

Remarkl.3. The regularized multiplicative functionals are necessary{heoreml.1,
Theoreml.4 and Propositiori.5: indeed, wherw = 1, for Pp_-almost every configura-
tion Z onD, the points in the configuratioh violate the Blaschke condition:

D (11— 2]) = o0, )
zZ€Z
whence for any € D, we have,
H |b,(2)| = 0, for Pp_-almost every configuratios, (20)

Z€Z
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so the simple multiplicative functional is identically To see §), we use the Kolmogorov
three-series theorem and the fact (Peres and Virély fhat, forPp_-distributed random
configurationsZ, the set of modul{|z| : z € Z} has same law as the set of random vari-
ables{U/®*}, whereU,, Us, ... are independent identically distributed random vari-
ables such thdt; has a uniform distribution if0, 1]. A direct computation shows that

Ep,, > (1—]2)) =Y (1-EU/*)) = .

Z€Z k

The determinantal point proce®s, in the casev = 1 describes the zero set of a
Gaussian analytic function db:

F]DJ<Z) = Zgn'zn7
n=0

where (g,).>0 IS @ sequence of independent identically distributed stahdomplex
Gaussian random variables. Direct computation shows that

E||Fp|[3> = oo andE|| Fp||j;, = oo,

hence the random holomorphic function almost surely bedavagther to the Hardy space
H? nor to the Bergman space, thus it is not surprising that thesst of 3, almost surely
violates Blaschke condition.

1.2 Quasi-invariance

LetU = CorD. Let F : U — U be a diffeomorphism. Its support, denotedsayp(F'),
is defined as theelative closuran U of the subsefz € U : F(z) # z}. The totality of
diffeomorphisms with compact supports is a group denotelifiy(U), i.e.,

Diff.(U) := {F U — U)F is a diffeomorphism ansupp(F’) is compac} .

The groupDiff.(U) naturally acts on the set of configurationsiéngiven any diffeomor-
phismF € Diff.(U) and any configuratio on U,

(F,2) — F(2) :={F(z) : z € Z}.
Recall that the Jacobian- of the functionF' : U — U is defined by
Jp(z) = |det DF(2)|.

Corollary 1.6. LetPx be a determinantal point process b which is either the determi-
nantal point proces®p, on C or the determinantal point proce&s,, onD. Then under
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Assumptiorfl) in the case of or, in the case ob Assumptior{3), P is quasi-invariant
under the induced action of the grolpft.(U).

More precisely, letF' € Diff.(U) and letV C U be any precompact subset con-
taining supp(F'). For Px-almost every configuratiof the following holds: ifZ (V' =

{q1,...,q}, then

dPy o F ) :det[K(F(Qi)v F(Qj))]ﬁj:l ) dP%
dPg det[K (¢;, 4;))¢ dP

1,7=1

(Z) - H Jr(q),

whereq = (q1,...,q) € Ut andp = (F(q),..., F(q)) € U’

Proof. This is an immediate consequence of Theofefy Propositionl.5 and Proposi-
tion 2.9 of [1]. O

1.3 Unified approach for obtaining Radon-Nikodym derivatives

In this section, let us describe briefly the main idea of oufiesh approach for obtaining
the Radon-Nikodym derivatives in Theoreind, Theoreml.4 and Propositiorn..5.

1.3.1 Relations between Palm subspaces
If p € C’is an/-tuple of distinct points of”, we define thé®alm subspace
Fyp) ={p € Fy o) ="-=pp) =0} (11)

Let BZ) denote the reproducing kernel &, (p).
Similarly, if p € D’ is an/-tuple of distinct points ob), we define the Palm subspace

B(p) ={p € B, :pp1) == w(p) =0}, (12)

and denote its reproducing kernel BY.

By Shirai-Takahashi's theorem, which motivates our tewtogy, see Theorerd.1
below, these Palm subspaces are related to the reduced IwmumsBz, (resp.BP) is
the correlation kernel dP‘ij (resp.P}, ), i.e., we have

Py, = Py (resp.P} =Ppy).

Proposition 1.7. For any pair of/-tuplesp, q € C* of distinct points inC, we have

) Gop)
‘fi/)(p) = (Z— Q1)"‘(Z_ qz> f%z)(CI) (13)
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Proposition 1.8. Letk,¢ € N U {0} and letp € D, q € D* be two tuples of distinct
points inD, then

¢ k -1
zZ — pj z — q]'
B(p) = = - - B.(q). 14
-T2 (L) n @
J= J=
In particular, we have
z Dj
t%&) - — w
(p) ey 1— Djz

Comments. e The proofs of Propositions.7 and1.8 are immediate from the defini-
tions (L1) and (L2) and basic properties of holomorphic functions.

¢ Notice the analogy of the above Propositidng and 1.8 with Proposition 3.4 in

[1].

e A common feature, which is crucially used later, of Proposg1.7and1.8, is the
following relations

lim (z=p1) - (z—po)
21500 | (2= q1) -+ (2 — qo)

—1. (15

=1and lim |
|z]—1— ey 1—-p;z

The rate of convergence in%) also plays an important role for defining the regu-
larized multiplicative functionals, s&&.2and§6.2

1.3.2 Radon-Nikodym derivatives as regularized multipliative functionals

For obtaining the Radon-Nikodym derivatives in questior,will first develop in The-
orem4.1, the most technical result of this paper, a general methoagularized mul-
tiplicative functionals. This result, an extension of Rvsjtion 4.6 of [], is, we hope,
interesting in its own right; the stronger statement is alsoessary for our argument in
the case of, in which Proposition 4.6 ofl] is not applicable.

By Theorem4.1, under the assumptiofi)on+, we can show that the regularized mul-
tiplicative functional, i.e., the formula, is well-defined. This regularized multiplicative
functional is then shown to be exactly the Radon-Nikodyniva¢ive between the desired
reduced Palm measures of the same order for the determiipamaproces®p, .

The regularized multiplicative functionals in the caséddre technically simpler and
the full force of Theorem.1lis not needed.

1.4 Organization of the paper

The paper is organized as follows. In the introduction sed}i, we give necessary defi-
nitions and notation and state our main results. The basiermabs in the theory of deter-
minantal point processes are recalled2nThe definitioins concerning generalized Fock
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spaces and generalized Bergman spaces are givi&h in §4, our main ingredienteg-
ularized multiplicative functionalss defined. We also state the most technical Theorem
4.1in §4. We then apply Theorer.1to prove our main results for determinantal point
processes associated with generalized Fock spadésaind to prove the main results in
the case of generalized Bergman space$6inThe sectior7 is devoted to the proof of
Theorem4.1 In the Appendix8, we give details for the fact that rigid point processes
have singular Palm measures with different orders.

Remarkl.4. Part of our main results in this paper were announced]in [

2 Spaces of configurations and determinantal point pro-
cesses

For the reader’s convenience, we recall the basic defirsigon notation on determinantal
point processes.

Let E be a locally compact complete separable metric space esgijph a sigma-
finite Borel measurg. The space’ will be later referred to aphase spacelhe measure
1 is referred to aseference measui@ background measur®y a configuratioriC on the
phase spac#, we mean a locally finite subset®fC FE. By identifying any configuration
X € Conf(F) with the Radon measure

my = Z Oz,
zeX
where), is the Dirac mass on the point the space of configuratiorisonf(£) is iden-
tified with a subset of the spaé8(£) of Radon measures ofi and becomes itself a
complete separable metric space. We equipf( E) with its Borel sigma algebra.
Points in a configuration will also be called particles. lis{haper, the italicized letters
asX, Y, Z always denote configurations.

2.1 Additive functionals and multiplicative functionals

We recall the definitions of additive and multiplicative @iimnals on the space of config-
urations.

If o : £ — Cis a measurable function afi, then the additive functional (which is
also called linear statisticj,, : Conf(£) — C corresponding to is defined by

So(X) =Y (@)

provided the sun) . p(x) converges absolutely. If the supn_ . o(z) fails to con-
verge absolutely, then the additive functional is not defiagX.
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Similarly, the multiplicative functionall’, : Conf(£) — [0, oo] associated with a
non-negative measurable functipn £ — R™, is defined as the function

Uy(X) == H 9(@),

zeX

provided the producf | ¢g(z) absolutely converges to a value [in oo]. If the product
zeX

[T g(x) fails to converge absolutely, then the multiplicative ftiocal is not defined at

zeX

the configuratiori.

2.2 Locally trace class operators and their kernels

Let L?(E, 1) denote the complex Hilbert space @fvalued square integrable functions
on E. Let.# (E, 1) be the space of trace class operatord. (¥, ;1) equipped with the
trace class norm- || #, . Let.#1 1..(E, 1) be the space of locally trace class operators, that
is, the space of bounded operatéfs L*(E, ) — L*(E, u) such that for any bounded
subsetB C E, we have

xsKxB € A(E, ).

A locally trace class operatdc admits a kernel, for which we use the same symbol
K. In this paper, we are especially interested in locallydrelass orthogonal projection
operators. Let, thereforé] € .#; ), be an operator of orthogonal projection onto a closed
subspacd. C L?(E, 11). All kernels considered in this paper are supposed to gatisf
following

Assumption 1. There exists a subsét C E, satisfyingu(E \ E) = 0 such that

e For anyq € E, the functionu,(-) = II(-,¢) lies in L2(E, 1) and for anyf e
L*(E, 1), we have

(ILf)(q) = {f, Uq>L2(E,u)-

In particular, if f is a function inL, then by lettingf (q) = (f, vq)r2(&,.), fOr any
q € E, the functionf is defined everywhere oA (which is slightly stronger than
almost everywhere defined d).

e The diagonal valueH(q, q) of the kernelll are defined for aly € E and we have
I1(q, q) = (vq, vg) L2(5,u)- MoOreover, for any bounded Borel subgetC F,

tr(xgllxg) = /H(:C,x)d,u(x).

B
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2.3 Definition of determinantal point processes

A Borel probability® on Conf(E) will be called a point process of. Recall that the
point proces® is said to admit-th correlation measurg, on E* if for any continuous
compactly supported functiop: E* — C, we have

*

/ Z @(xl,...,xk)P(df)C):/gp(ql,...,qk)dpk(ql,...,qk),

Conf(E) Tl 2pE€X Ek

where}" denotes the sum over all orderkeduples ofdistinctpoints(xy, . .., ;) € X*.
Given a bounded measurable subdet E, we define#, : Conf(E) — NU {0} by

# 4(X) = the number of particles i N A.

Then the point procesB is determined by the joint distributions 64, , ..., #u4,, if
A1, ..., A, range over the family of bounded measurable subseks of

A Borel probability measur® on Conf(E) is called determinantal if there exists an
operatorkK € .7} 1,.(E, 1) such that for any bounded measurable functipfor which
g — 1 is supported in a bounded sBt we have

Ep¥, = det (14 (g — 1)K x5). (16)

The Fredholm determinant is well-defined sirige- 1) K'x s € . (E, ). The equation
(16) determines the measufeuniquely and we will denote it b, and the kerneK
is said to bea correlation kernebf the determinantal point proceBg. Note thatP is
uniquely determined by, but different kernels may yield the same point process.

By the Macchi-Soshnikov theorem], [21], any Hermitian positive contraction in
A1oc(E, 1) defines a determinantal point process. In particular, tbgeption operator
on areproducing kernel Hilbert spadaduces a determinantal point process.

Remark2.1 If o : E — C is a Borel function such thatv(z)| = 1 for p-almost every
xz € E,andifIl € .7 .. is the operator of orthogonal projection onto a closed satsp
L C L*(E, p), thenll andaIla define the same determinantal point process, i.e.,

]P)al'[a = PH-

Note thataIl@ is the orthogonal projection onto the subspace) L.

2.4 Palm measures and Palm subspaces

In this paper, by Palm measures, we always nreaocedPalm measures. We refer to
[17], [5] for more details on Palm measures of general point prosesse
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Let P be a point process dtionf(E). Assume thaP admitsk-th correlation measure
pr on E*. Then forp,-almost everyy = (qi,...,q.) € E* of distinct points inE, one
can define a point process @i denoted byP? and is called (reduced) Palm measur@of
conditioned aty, by the following disintegration formula: for any non-néga Borel test
functionu : Conf(E) x E*¥ — R,

/ > w R0 = [atd) [ w@0laakap), @7

Conf(E) 11 akEX Ek Conf(E)

Wherez*: denotes the sum over all mutually distinct poigts. . ., ¢x € X.

Informally, P is the conditional distribution ok \ {¢i, ..., g} on Conf(E) condi-
tioned to the event that all particles . . ., g, are in the configuratiof(, providing thatX
has as distributiof?.

Now let P; be a determinantal point process Onnf(F) induced by the projection
operatorl. Letq = (¢1,...,qx) € E* be ak- -tuple of distinct points irE C E, whereE
is as in Assumption. Set

L(q) ={p e L:o(@)="=¢(q) =0} (18)

The spacd.(q) will be called thePalm subspacef L?(E, 1) corresponding te. Both
the operator of orthogonal projection frohd(E, 1) onto the subspack(q) and the re-
producing kernel of.(q) will be denoted byT".

Explicit formulae forII in terms of the kernell are known, see Shirai-Takahashi
[20]. Here we recall that for a single poingte E, we have

O R (19)

If I1(q, q) = 0, we setll? = II. In general, we have the iteration
19 = (- (TT0)% ... )2,
Note that the order of the poings, ¢-, - - - ¢ has no effect in the above iteration.

Theorem 2.1(Shirai and Takahash?[]). For anyk € N and forp,-almost every:-tuple
q € E* of distinct points in¥, the Palm measurg]; is induced by the kernél:

qu—[ == an.

2.5 Rigidity

Let P be a point process ovérl. We will use the following result on the rigidity of point
processes (see Definitidnl).
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Theorem 2.2(Ghosh f], Ghosh and Peres]). LetP be a point process o6 whose first
correlation measure; is absolutely continuous with respect to the Lebesgue measd
let D be an open bounded sbtwith Lebesgue-negligible boundary. lebe a continuous
function onC. Suppose that for any < ¢ < 1, there exists &?-smooth functio®. such
that®. = ¢ onD, andVarp(Ss,) < €. Then the point procedis rigid.

3 Generalized Fock spaces and Bergman spaces

Lety : C — R be a function satisfying the assumptidn &nd denote

dvy(2) = e 2P dA(2),
whered)\ is the Lebesgue measure @h Let &(C) denote the space of holomorphic
functions onC.

Definition 3.1. If the linear subspace
fgw = Lz((C, d’U¢) N ﬁ(@)

is closed inL?(C, dvy), then it will called generalized Fock space with respecth® t
measurelv,. The orthogonal projectio® : L?(dv,) — %, is given by integration
against a reproducing kernBl, (z, w) (analytic inz and anti-analytic inv):

/f w)By(z,w) W@ dA(w). (20)

Definition 3.2. Let D c C be the open unit disc. A weight functiean : D — R* is
called aBergman weightif it is integrable with respect to the Lebesgue measuretiaad
generalized Bergman space

B, = LA(D,wd)\) N O(D)

is closed and the evaluation functiongis— f(z) on %, are uniformly bounded on
any compact subset @f. In such situation, the spacg, is a reproducing kernel Hilbert
space, its reproducing kernel will be denotedzas

We shall need Christ’s pointwise estimate (¢f, [6], [19]) of the reproducing kernel
By(z,w). Theorem 3.2 in19 gives the estimate in the form most convenient for us.

Theorem 3.1(Christ). Lety € C?%(C) be areal-valued function satisfyirfd). Then there
are contants), C' > 0 such that for allz, w € C,

| By (2, w)|2e 2B 20w) < Ceolzmwl, (21)
In particular, for all z € C,

By(z,2)e @) < C. (22)
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Remark3.1 For the Gaussian caséz) = 1|z|?, we have the following explicit formula

| By (2, w)|2e™2E)-20w) — p=2elzul?,

4 Regularized multiplicative functionals

As (10) shows, simple multiplicative functionals cannot be usedur situation. Follow-
ing [1], we use regularized multiplicative functionals whose mi&éfin we now recall.
Let f : £ — C be a Borel function. Set

Var(Il, f) = // (@) — F) P, o) Pdp(a)dputy). (23)

Introduce the Hilbert spacé(Il) in the following way: the elements &%(11) are functions
f on E satisfyingVar(I1, f) < oo; functions that differ by a constant are identified. The
square of the norm of an elemeht V(II) is preciselyVar (11, f).

Let Sy : Conf(E£) — C to be the corresponding additive functional, such thate
L'(Conf(FE),Py), then we set

S; =S — Ep,S;. (24)
If moreover,S; € L*(Conf(E),Py), then it is easy to see that
Ep,,|S¢|* = Varp, (Sy) = Var(IL, f). (25)

Definition 4.1. Let V,(II) be the subset of functions € V(II), such that there exists an
exhausting sequence of bounded sub&gts,,~1, depending orf, so that

f.

The identity @5) implies that there exists a unique isometric embeddingr{esic
spaces)

V(IT)
fXE, —

S : Vo(II) — L*(Conf(E), Pr)
extending the definition2), so that we have
Sp=1lim » f(o)~Ep, ) fl2)
zeXNEn, zeXNEn,

Definition 4.2. Given a non-negative function: £ — R such thalog g € V(II), then
we set

U, = exp(glogg).

If moreover,\ffg € L'(Conf(E),Py), then we set

Yy

7 A
EPH \Ijg

g _=
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The function¥, is called the regularized multiplicative functional asated tog and
Pr;. For specifying the dependenceBn, the notatiorﬁ? will also be used. By definition,
for P-almost every configuratiot, the following identity holds:

10g@?<x):,}i_{& Z log g(x Epn< Z log g(x ) (26)

zeXNEn, zeXNEn,
Clearly@gH is a probability density foPy;, sinceEp,, (@gn) =1.

Theorem 4.1.Let E, C E be a Borel subset satisfying(x z,[Ixx,) < oo and such that
if ¢ € L satisfiesy g\ g, = 0, theny = 0 identically.

Letg be a nonnegative Borel function dnsatisfyingg|z, = 0, g|z: > 0 and such that
for anye > 0 the subsets, = {z € E : |g(z) — 1| > ¢} is bounded. Assume moreover
that there exists an increasing sequence of bounded sulisgts., exhausting the whole
phase spac#& and

/ l9(z) — 1Tz, 2)dp(z) < oo 27)
En
/ l9(z) — 1PTI(z, 2)du(z) < oo (28)
Ec
/ 19() — 9(3) Tz, ) Pdpa()dpa(y) < oo. (29)
EcxES
And
Tim tr(xp, g - 1*xg;xe,) = 0. (30)
Then

U, € L'(Conf(E), Py).

If the subspacg/gL is closed and the corresponding operator of orthogonal @etpn
[1¢ satisfies, for sufficiently larg&, the condition

tr(Xg>rI Xg>R) < 00 (31)
then we also have

Pre = \Il - Ppy.



16 Alexander I. Bufetov, Yanqi Qiu

Remark4.1 Note that

(v llg = 1PxesTTe,) = [ dut) [ lo(o) = 1FI0G, ) Pduto)
Remarkd.2 The above theorem is an extension of Proposition 4.6 Joffe replace the
convergence of .. |g(z) — 1|°II(x, z)dy(x) in Proposition 4.6 of ] by the convergence
of [,.lg(x) — 1|3€H(x,x)du(x). This extension is crucial for treating the case of Fock
spacé, since the former condition is already violated indhge of the Ginibre point
process.

5 Case ofC

5.1 Examples

In this section, we assume that: C — R is a measurable function dp, the condition

(1) is not necessarily satisfied. Recall that we denbtg(z) = e~2¥(*)d\(z) and de-

note.%, = {f :C— (C)f holomorphic, | | f|*dv, < oo} . If the evaluation functionals
C

ev,(f) := f(z) defined on%,, are uniformly bounded on compact subsets, thgnis a
closed subspace @f*(C, dvy). In this case, denote by, the reproducing kernel of,,
we have

By(z,w) =Y fi(2) f3(w),
j=1
where(f;)32, is any orthonormal basis oF,.

Assumption 2. The measurév,, satisfies

(1) the evaluation functionalss, defined on%,, are uniformly bounded on compact
subsets;

(2) the polynomials are dense.ifi,;

3) Je TLPBw(z, 2)dvy(2) < oo.

Example5.1 (A radial case)Let o > 0, and sety,(z) = 3|z|* then the measure
dvy, (2) = e #I"d\(2) satisfies Assumptiog if and only if 0 < o < 2. Indeed, the
first two conditions in Assumptiof are satisfied bylv,,, by all « > 0. Now one can see
that the third condtion is equivalent to

o0

12" 132 40
)YPRLLCLARNS (32)

el I TP
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A direct computation shows that

2m [ 2n+ 2 Hzn_1||2L2(dv ) 1
ni|2 P
z = —1 e and ~ . 33
|| ||L2(dv,¢,) . < N ) ||Zn||%2(vd)) n2/04 ( )

The series32) converges if and only il < o < 2.
Remark5.2 As shown in Examplé&.1, the third condition in Assumptiof is too strict:

indeed, it fails already for the Ginibre point process (esponding ta)(z) = 3|z|?).

LetP, be the determinantal point process induced by the opelgtdfor any/-tuple
q=(qi,...,q) € C*of distinct points, set

Fola) = {f € Z|f(@) =+ = fla) = 0},

and Iethb denote the operator of orthogonal projection oﬂg. Recall that the Palm
distributionIP’qu of P, conditioned at; is induced byBy, i.e.,

Pqu — IP)BZ)
Given a positive integef € N, introduce the closed subspace
7 = {1 e 7|10 =1 == "0 =0}. (34)

Denoterf) the operator of orthogonal projection or:@f). LetPgi be the determinantal
point process induced b?ff).

Remarks.3. In general, we do not ha\z@f = 2'.7,. Indeed, let)(z) = 1|z|?, we have
2%y, ¢ Fy. This can be seen from the closed graph theorem: otheniiseygerator
M, . 7, — %, of multiplication by the functiorr is bounded, which contradicts the
explicit computation §3):

12"z,

I

2 Ty
R F P

see also the related discussion after Theorem 2}in [

Proposition 5.1. If ¢ satisfies Assumptiod, then for any/ € N and any/-tupleq =
(q1,...,q) € C* of distinct points, we have equivalence of measures:

0
IP’qu ~ IPSBL.
Moreover, if one sets

(z—q1)...(z—q) 2
s

9q(2) =
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then the Radon-Nikodym derivative is given by the reguddrinultiplicative functional
Py, _p

© = T9q
dPy,
In particular, given any twd-tuplesq and g’ of distinct points, the corresponding Palm
measure®), andP, are equivalent.

Proof. First note that, under Assumpti@nfor any/ € N and any-tupleq = (¢, ..., q) €
C’ of distinct points,
Fulg) = Er ko)
Next we use Proposition 4.6 of][ We now verify the assumption of Proposition 4.6
of [1] for the pair( w),g) Note thathf)(z,z) = O(|z|*) for |z| — 0 and|g(z) — 1] =
O (1/]z]?), for |z| — oo. Recall thathf)(z,z) < By(z, z). Hence, under Assumptidh)
we have

/|g —1|B( (2, 2)dvy (2 /|g 1|ZB$)(2,z)de(z)<oo.

|2|<1 |z|>1

a0
l//l/) .

The pair(Bff), g) satisfies all assumptions of Proposition 4.671h pnd Propositiorb.1
follows immediately. 0

5.2 Proof of Theorem1l.1

We now derive Theorer.1from Theorem4.1l. From now on, the functiog is assumed
to satisfy the conditionl() until the end of this paper.

Let/ > 1andletp = (p1,...,pe),q = (q1,...,q) € C* be any two fixed-tuples of
distinct points; lely be the function defined by the formula

N R R Ol
g(z> - ‘gP,Q( )| - (Z—ql)“'(Z—Qg) : (35)

Let0 < € < 1 be a small fixed number. Chooge > max{|px|,|q| : &k = 1,...,¢},
large enough, such that outside := {z € C : |z| < R.}, we have|g(z) — 1| < e.
Finally, forn € N, letE,, = {z € C: |z] < max(R.,n)}.

We start with a simple but very useful observation that cobowls 28), (29), (30) and
(31 in Theorem4.1are preserved under taking finite rank pertubation.

Remarks.4. Assume that the paily, I1) satisfies the condition28), (29), (30) and @1)
in Theorem4.1. If I = II + IT', wherelI’ has finite rank andkan(IT) L Ran(I'), or
Il = [1—IT', wherell has finite rank an&an(II') C Ran(II), then conditionsZ8), (29),
(30) and 1) hold for the new paifg, ﬁ) . If g is unbounded, then the conditioh?) for
the pair(g, IT) does not imply the condition for the pdis, ﬁ). The condition 27) is on
the other hand usually easy to check directly.
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Lemma 5.2. Let g be the function defined by the formi{&b). We have

/|g(z) —1|Bj(2, 2)e” 2" d)\(z) < oo and /|g(z) - 1|?’B1‘1(z,z)e_2w(z)d)\(z) < 0.
En

Eg

Proof. We first note that for any smadl> 0, there exist€’. > 0, such thatifz—gq| < ¢,
then

Bi(z,2) < Colz — qil*. (36)

Indeed,BfL is the orthogonal projection to the subspagg(q), hence we have

By (z,w) =) fi(2) f;(w), (37)

where(f;)%2, is any orthornomal basis o¥(q). The convergence is uniform on any
compact subset @. Thus the functiofig(z) — 1| B} (z, z)e~**() is bounded or¥,, this
implies the first inequality in the lemma.

By Theorem3.1, there exists a consta@t > 0, such that

By (2, 2)e” ) < By(z,2)e ) < C.

Sincelg(z) — 1]> = O(1/|z|®) as|z| — oo, there exist€” > 0, such that

/ 9(2) — 1P Bl (2, 2)e 2P d)(z) < ¢ / #d)\(z) < oo.

|z|>Re
EZ

Lemma 5.3. Let g be the function defined by the form&b). We have
/ lg(2) — g(w)|2\B;(z,w)|2de(z)de(w) < 0. (38)
E¢xES

Proof. SinceBz is a finite rank perturbation oB,, and sincey is bounded onEy, it
suffices to show that

L= / / 19(2) — g(w)[2| By (2, w) Pdvy (2)dvy (w) < 0. (39)
|2|>Re,|w|>Re

Christ’s pointwise estimate2() in Theorem3.1, implies that there exists € C, such
that ~
a o 9
g(2) :1+;+E+O(1/|Z| ) as|z| = oo.
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Thus it suffices to show that

[2 = //
‘Z‘ZR5,|W‘ZR5

To this end, write

<KF -

& mdy
§/|w>RS dA(w) /IC+w|>RE X{lw\22\<\}|w(w+o|26 d\(¢)

& —5\¢|
" /Iw>Rs Arw) /C+1U>Rs Xlwl<2(cl |w(w + C)Pe dA(C)-

The first integral is controlled by

1P s
4 /WRE dA(w) /C eTN(C) < oo,

jw]*

2

L1 el (2)d\ (w) < co. (40)

z w

while the second integral is controlled by

|C|2 -6
dX(w / w el
/|;u> ] ( ) (CX{‘ |<2|C|}|R€w|2 (C)

2|<|> 1P s
:27r/ lo < Lo =gN(¢) < oo.
2|¢|>Re s Ra |Ra|2 <C>

The proof of the lemma is complete. O

Lemma 5.4. Let g be the function defined by the formi{&b). We have
: Plo — 112y oo B _
Jim tr(xe, Bylg — 1 xp Byxe,) = 0. (41)

Proof. SinceBZ is a finite rank perturbation aB,, by Remarks.4, it suffices to check
the same conditior4(l) for the new pair(g, By). By applying again Christ’s pointwise
estimate 21), we have

I3(n) :=tr(xg, Bylg — 11*x5: BeXE,) = X5, Bulg — Lxe: | 5s
- / / 19(w) — 1P| By (2, w)Pe P25 4 (2)dA(w)

|zi<n [wl=n

<c / / lg(w) — 1€~ A (2)dA(w)
|2/ <n w]>n

< / / @e-élz-w'w(z)de):c’ / dA(w) / e~HIdA(C)

2
|w
j2i<n [ul2n fwl2n fw+¢l<n

s+n
<’ / % / e OlldN(¢) :47r2C'// E/ re°"dr.
w s>n S s—n

lw|=n lw|—n<[¢[<|w|+n
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Now since there exists” > 0, such thate=%" < C"e=%/2 for all » > 0, we have

o—0(s—n)/2 00 ,—on(t—1)/2
I3(n) < C" / —ds = C’”'/ fdt.
S 1

s>n

By dominated convergence theorem, we have
lim I3(n) = 0.
n—o0

O

Proof of Theoreni.l By Lemmab5.2, Lemma5.3and Lemmab.4, the conditionsZ7),
(28), (29), (30) are satisfied by the pa(y, B;})). Moreover, let

OA(Z’) — ‘gp,q(z>|

9p.a(2)

then by Propositiod.7, we have

V9(2)Fy(a) = a(2)gp.a(2) Fy(a) = a(2) Fu(p).

Hence/g(2)7,(q) is a closed subspace &f(dv,). And (B])? = aBja is locally
of trace class, this implies the conditiodl]. Now the formula 2) of Radon-Nikodym
derivativedIP‘ij /dIPqu follows from Theoremt.1and Remark. L O

Remark5.5. Under the condition)), we also have the same result as in Proposiidn

5.3 Proof of Proposition1.2

Lemma 5.5. There exists a constardf > 0, depending only on), such that for any
C?-smooth compactly supported functipn C — R, we have

Vare,, (5,) < € [ [Vplw)laAw) (42)

Proof. Let ¢ : C — R be aC?-smooth compactly supported function. Our convention
for the Fourier transform ap will be

P& = / o(w)e W8\ (w), where(z, w) == R(2)R(w) + I(2)I(w).
C
By definition, we have

VarpB / lp(2) | | By (2, w)] e‘zw(z)_zw(w)d)\(z)d)\(w).
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By Theorem3.1and Plancherel identity for Fourier transform, we obtain

Vare,, (5 < € [ [ 16(2) = ptw)fe = arzpanw)
= [[ 1etc+ w) = ptw)Pe ¥ arw)aro

= [l 1P e K an@an)
C2
Now since|e™?™&¢) — 1| = 2| sin(w (€, ¢))| < 27[¢|[¢|, we have

Vare,, (5,) < € [ 1€RIBOPICane)anQ
<o [ EPREPaNG = " [ IVelw) aAw).

O

Proof of PropositionL.2. We will follow the argument of Ghosh and Pere3. By The-
orem?2.2, it suffices, for any fixed bounded open getvith Lebesgue-negligible bound-
ary and anys > 0, to construct a functio®d, € C?(C) such thatd.|], = 1 and
VaI'PBw(Sq>5) <.

Letro = 2sup{|z| : z € D}. By Lemmab5.5, it suffices to construct a radial function

O (2) = e(]2]),

with ¢. a function inC?(R. ) such that.|,/2) = 1 and

/OO | () |*rdr < e.
0

To this end, first we take.(r) = (1 — elog™ (r/ro))+, wherelog™ (z) = max(log z, 0).
Note thatd. |y, ep1/e00) = 0 @and @.(r) = —e/r on the interval(rg, ro exp(1/e)).
Next we smooth the function, at the points:, andr,exp(1/¢) to obtain a function
¢. € C*(R,) such thate. identically equals ta on [0, ry/2] and ¢. is supported on
[10/2, 2rgexp(1/e)] such that¢l(r)| < ¢/r forall » > 0. Hence we have

0 2rg exp(1/e) 52
/ | (r)|?rdr < / —dr = ¢ + *log4.
0 &

0/2 r

This completes the proof of the proposition. O



Determinantal processes and holomorphic function spaces 23

6 Case ofD

6.1 Analysis of the conditions on the weightu

Letw : D — R* be a Bergman weight. We collect some known results from taealiure
on the sufficient conditions on the Bergman weighto that the inequality3:

/D(l —12])2 By (2, 2)w(2)dA(2) < oo

holds.
Examples.1 (Classical weights)Assumew(z) = (1 — |2]?)%, a > —1. Then

a+1 1
7 (1 — zw)ot?’

B,(z,w) =

hence(1 — |2])?B.(z, z)w(z) is bounded and the inequalit$)(holds.

Example6.2 (A class of logarithmatically superharmonic weightsgt
w(z) = e~ 2¢(2)
Assume
1) ¢ € C*(D) andAyp > 0;
2) the function(Ap(2))~'/? is Lipschitz onD;
3) there exist’;,a > 0 and0 < t < 1, such that
(Ap(2)) 2 < O1 (1~ [2]);
(Ap(2) ™2 < (Ap(w)) ™2 + t]z — w| for |z —w| > a(Ap(w)) "2
By [13, Lemma 3.5], the weight is a Bergman weight and

sup(1 — |2])? B, (z, 2)w(2) < oo.
zeD

Hence the inequality3) holds. Some concrete such examples are

e w(z) = (1 —|2/)*exp(h(z)) with a > 0 andh(z) any real harmonic function on
Dj;

o w(z)=(1—z])*exp(—B(1 —|z*)™ + h(z)) witha > 0,3 > 0,7 > 0 andh(z)
any real harmonic function ab.
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Proposition 6.1. Letw;, w, be two Bergman weights dh such that

/D (1= [2)°Ba, (2, 2)on(2)dA(2) < o.
Letw be a Bergman weight di and assume that there exist_' > 0 such that
wi(z) < w(z) < Cuws(2)
thenw satisfies the conditio(B).

Proof. Since B, (z,z) = supy,, _, |f(2)]?, we haveB,(z,z) < ¢*B,,(z,z). By the
assumption, we have

/D(l — 12])2Bu(2, 2)w(2)d\(z) < 026'/]])(1 — 12])% By, (2, 2)wa(2)d\(2) < oo.
L

Example6.3. Letw be a Bergman weight. Assume that there exist > 0 and leta, 5
be eithel) > a>p > —-1ora > >a—1> —1, such that

(1= ]2)* Sw(z) < C(1—[2*)”

thenw satisfies the conditiorB].

6.2 Proof of Theoreml.4and Proposition 1.5

Letk,/ € NU {0}, letp € D* be an/-tuple ofdistinctpoints andy € D* a k-tuple of
distinct points. Set

2 2
z — pj
1-— ﬁjz

]_—(ij
Z—Qj

9(2) = 1Bp(2)bg(2) P = ] ]

i=1

k
i=1

By virtue of PropositiorL.8, to prove Propositiod.5and hence Theorem4, it suf-
fices to prove that the pafy, BY) satisfies the assumption of Proposition 4.614f This
is done in the following

Lemma 6.2. Takes > 0 small enough and lek, = Ule U.(q;), whereU,(¢;) is a disc
centred at point; with radiuse in D. Then we have

lg(z) — 1|BY(z, z2)w(z)dA\(2) + lg(2) — 11*BY(z, 2)w(2)d\(z) < c0.  (43)

E- E¢
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Proof. Fore > 0 small enough, there exists > 0 such that for any € E., we have

k
Bi(z,2) < C]] Iz —al®

1=1
whencelg(z) — 1|B(z, z) is bounded ort., and the first integral in4Q3) is bounded.
For the second integral, the identities

2
_ U= P = pl)
1 —pjzf?

Z—pj
1—]5]'21

Y

together with the same identities fgr: j = 1, ..., k, imply that there exist6” > 0 such
that

lg(z) — 1] < C'(1 — |z|) for z € EZ.
Note also that sincRan(B?) C Ran(B, ), we haveBl(z, z) < B,(z, z), hence by our
assumptiong), we have

l9(2) — 1P BY(z, 2)w(2)d\(z) < C// (1 —|2])2Bu(z, 2)w(2)dA(z) < oo.

E¢ E

c
€

7 Proof of Theorem4.1

Recall that we denote by an orthogonal projection ob?(E, 1) which is locally in trace
class.

In [1], a class of Borel functions of, denoted there by#(11), plays a central role in
the proof of the main result. Recall that, by definitier,(I1) is the set of positive Borel
functionsg on E satisfying

(1) 0 < infg < supg < oc;
E E

@) [, lg(x) = 1Mz, 2)dp(x) < oo.

If g € (1), then the subspacgygL, whereL is the range of the orthogonal projection
I1, is automatically closed; we sél’ to be the corresponding operator of orthogonal
projection. The main property a#, (1) that will be used later is stated in the following

Proposition 7.1(Cor. 4.11 of [I]). If g € o%(11) satisfies
sup |g(z) — 1| < 1.
E
Then the operatorl? is locally of trace class, and we have

Py = U, - Pp. (44)
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Letg : E — R be a Borel function, set
9= [ lofa) = 1T, 2)du(z) €0, (45)

and
9= [[ 1@ = ato) PNz, p)Pduta)dut) € .. (40

And then, we introduce a new class of Borel functiongbas follows. Letaz;(11) be the
set of positive Borel functiong on E satisfying

(1) 0 < infg < supg < oc;
E E
@ Llg) = fy lole) — 1P1I(z, x)dp(x) < oo

3) V(g ffE2 l9(x) — g(y) P, y) Pdp(x)dp(y) < oo;

(4) there exists an exhausting sequefég),>; of bounded subsets df, possibly
depending omy, such that

nli_}rgotr(XEnmg — 1|2XE3HXEn) =0. 47)
More precisely, Relation4(7) can equivalently be rewritten as follows:

i /[ xe(@ne W) - PG Fantdnt) 0. @8)

n—oo

Remark7.1 We have the following useful identity

V(g) = lllg, M|l (49)

where||- || zs stands for the Hilbert-Schmidt norm apdII] = gII—Ilg is the commutator
of the operator of multiplication by and the projection operatér.

Remark7.2 The sequencéF,,),>1 in the definition ofez(11) is an analogue of the se-
quence of the subsetéz € C : |z| < n}),>; in the proof of Lemm&.4.

The most technical result in this section is the following

Proposition 7.2. If g € (1) satisfies
sup |g(z) — 1| < 1. (50)
E
Then the operatorl? is locally of trace class, and we have

Ppo = @g“ Py (51)
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Remark7.3. Note that the conditior4(?) holds automatically for any € .« (II), hence
we have
(Il) C (1)

Proof of Theoremt.1. We now derive Theorem.1 from Proposition7.2. The proof is
similar to the proof of Proposition 4.6 of]. Proving the statement faw; (I1) instead of
<7 (I1) requires extra effort, however. For sake of completenes$sd sketch the proof
here.

Let Conf(E; E \ Ey)) stand for the subset dfonf(E) consisting of those configu-
rations whose particles all lie il \ E,. The assumptions of Theoreml imply that
P (Conf(E; E'\ Ey)) > 0. Replacing, if necessary,by g|z: and L by x ¢ L, we may
assume thaj is positive onFE.

By our assumption, we may choo8e< ¢; < ¢ < 1 and a bounded subsg&} C F,
such that

{reE:|glx)—1|>e}CEyCc{zreE:|g(z)—1] >¢e},

and
HX{mGE:\g(m)—l\gg;-Q}HH < 1.

Decomposés; = E;" U E; by setting

Ef={z€eF:g(x)>1}NnFE, andE; ={z € F:g(x) <1} NE;.
Note that

Ef c{zreFE:g(x)>1+e&}andE; C{reF:g(x)<1l—e}.
Then we can decompogeasg = g;g2g3 With

g1 = (9 —1xe + 1,
92 = (9 = Dxp; +1,
93 = (9 = Dxgy +1.

Claim. We havey, € o(1I).

Indeed, the first two and the last condition in the definitibnzg(I1) are immediate
for g;. We now check the third condition. We have

lg(z) —g(y)| (z,y) € Ef x Ef
lg(z) = 1] (z,y) € B x B

r)— = ’
91(x) = g1(y)] l9y) — 1| (2,y) € By x E¢
0 (z,y) x By x By
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whence
Vi = [ ln@) = )P I0Ge. ) (o)t
-/l 1)~ g)PINGe ) Pan)iny)
2 [ duty) [ late) = 1Pl

By (29), (30) and Remarkt.1, we havel/(g;) < oo.
By Proposition7.2, we have

Pnsn == @; . PH-

The rest of the proof of Theorerh 1 follows the scheme of the proof of Proposition
4.6 of [1]. First, we have

119192 —= (H91)92 andIl?y = 1919293 — (Hshgz)g:s‘
Sinceg, is bounded ang, — 1 is compactly supported, the usual multiplicative functéibn

Uy, (%) = [ ] 92(2),

zeX

is well defined and
]P)Hg192 — Cl ‘1/92]?1‘[91 .

The functiong; — 1, although not necessarily bounded, is compactly suppairteldoos-
itive. The usual multiplicative functional,, is also well defined foPr. 4. -almost every
configuration. Indeed, sinag g- is bounded and by Proposition 4.1 df,[there exists
C > 0 such that

1992 (z, x) < Cll(z, x).

Consequently, we have
/ lga() — 1|9 (2, 2)du(x) < C / o) — 1Nz, 2)dp(x) < 0. (52)
E Ef

In the relation §2), we used the fact that — 1 is supported orfZ;” and our assumption
(27). It follows that

Ep 10, (Vgs) = det(1 + (g5 — 1)II79) < oo.
Hence, by Proposition 4.4 in], we have
Pris = C' Wy Prioss = C'CW, Wy, - Proy = C'CW, W, U, - P,

whencePp, = WEIP’H and Theorend.1is completely proved. 0
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Introduce a topology” on «7;(11) generated by the open sets

Ule,g) ={g € @nv(Il) : L(g'/g) <&,V (g'/g) < e},

whereL, V' are defined by formulaélb), (46). With respect to the topology”, a sequence
gn tends tog in e5(11) if and only if

L(gn/g) — 0 and V(g,/g) — 0. (53)

Lemma 7.3. Letg € «4(1l) and let(E,),>1 be the exhausting sequence of bounded
subsets oF such that conditior§47) holds. Denote
Then

g
gn — 4.

n—oo

Proof. Assume thay € .o7;(I1). First, by definition, we have

1
\9n/9 — 1| = 1/9 — 1|xE: < - lg—1].

infg g

It follows that L(g,/g) — 0.
Next, setting

Vo, y) = lgn(x)/9(x) — gn(y)/g(y) *|L(z, y)|?,

V(gn/g) = // v, + // Vi 4 // V.. (54)

EnxEg ESxEn EexES

we have

The first and second terms if4) are equal and

// Vo = //\1—1/9(y)|2\ﬂ(ﬂf,y)\zdu(:c)dﬂ(y)

EnxES EnxES
1
< — 11211 2d d
<o [[ o) = 1P Panta)duty
EnxE¢
= e Tlg = 1xe |2 — 0

The third term in $4) converges to 0 since

1
< _ 2 2
// V, < megQ/ l9(x) — g(y)|*[(z, y)["du(z)du(y),
E¢xES EcxES

and the latter integral tends tbasn — oo. ThusV(g,/g) — 0, and Lemmar.3is
completely proved. O
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Lemma 7.4. Letg, € @4(Il),n > 1, g € a4(Il), and assume that the sequerigg) is
uniformly bounded. 1§, —— ¢, thenL(g,) — L(g) andV (g,) — V(g).

Proof. By definition, we havd.(g,/g) — 0andV(g,/g) — O.
The relationL(g,,/g) — 0 together with the inequality

/ onl) = 9(a) 1o 2)d) < supg / 19(2)/9(x) — 1Pz, 2)dp(x)
implies that
7}1_%10 1(gn — 1) = (9 — Dl 3Emie,e)du@) = 0,
whence
Tim {lgn = | psneaydue) = 119 = Ul @Ene.zae)-

This is equivalent td.(g,) — L(g) asn — oo.

We turn to the proof of the convergentgg,) — V(g). It suffices to prove any
convergent subsequence (inhoo]) of the sequencéV (g, )),>1 converges td/(g). We
have already shown that

/ 92(2) — (@) T(w 2)dpu(z) — 0.
Passing perhaps to a subsequence, we may assumg thay almost everywhere with
respect td1(z, z)du(z). Set
Fu(z,y) = gn(x) — gn(y) and F(z,y) = g(z) — g(y)-
The desired relatio (g,,) — V'(g) is equivalent to the relation
Tim (|l 282 (e Pdp@)ant)) = [F 12 (BxE: @0 Pdp()du)

To simplify notation, we denotéM,(z,y) = |T(xz,y)|?du(x)du(y). It suffices to prove
that

nh_{folo | Fn — F||L2(E><E;dM2) =0. (55)

A direct computation shows that

oz y) = F(ry)  g(r) _ gnly) | F(2,9)(gn(y) —
g(x) glx)  g(y) 9(x)g(y)

Hence we have

gn(x) gn(y)' L1

|Fa(,y) = F(2,9)] < supg- g(@)  g()
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and

| Fn — Fllz2(exE;dv) < supg - ‘
E L2(ExE;dM>)

inng ||F(l‘, y) : |gn(y) - g(y)|||L2(E><E;dM2)

The limit relationV (g,,/g) — 0 implies that

9n(®)  gn(y)
g(z)  g(y)

lim ‘

n—oo

L2(Ex E; dMy)

By definition, ' € L?(E x E; dM>). Since the sequende,,) is uniformly bounded and
gn — g almost everywhere with respect 1&(z, z)du(z), the dominated convergence
theorem yields

Tim [[F(2,y) - 190(y) = 9l 22w 52 sy = O-
This completes the proof 066). Lemma7.4is proved completely.
]

Recall that, in Definitio.1 and Definition4.2, we introduced the subs# (I1) C
V(II) and the functionaﬁfg for functionsg such thatog g € V,(II). Recall also that we
introduced in £3) the notationVar(II, f) for any Borel functionf : £ — C.

Lemma 7.5.If g € o7(11), then
Var(Il, log g) < oo and log g € Vo(II).

In particular, for any functiory € o4(11), the functiona@g is well-defined.

Proof. By the third condition in the definition of7 (11), if g € @4(11), then
Var(Il,g — 1) < oc.

Define a function .
08T if ¢ £0
F(t) .= t2 :
®) { -5 ift=0"
so thatF" is continuous or{—1, co). It follows that for any0 < ¢ < 1 andM > 1, there

existsC. »; > 0, such thatift € [-1+ ¢, —1 + M|, then
log(1+t) —t| < C.pt®. (56)

By the first condition in the definition ofz(I1), we can apply the above inequality to
g — 1. A simple computation yields

llog g(z) —log g(y)* <20M°|g(z) — g(y)|’

57
+8MCZ y(lg(x) — 1P + [g(y) — 1), o)
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wheres = min(1, infg g) andM = max(1,supg g). Inequality £7), combined with the
reproducing property

(x, z) = / (. ) Pdpu(y)

and the second and third conditions @in the definition of<z(11), yields the desired
result:
Var(I1, log g) < oc.

We turn to the proof of the relatiolog g € Vo (IT). By definition, there exists a se-
quence(E,) of exhausting bounded subsets i6f such that the relation4g) holds. It
suffices to show that

lim [[xg, log g —log gllvary = lim {[xg; log gl[vam = 0. (58)

We have

1
Ies gl = [/ Toza(e) = os.g(0) Pz, ) (o)t
n X by
1

T2 //E x5 (2)x, (v) | log g () |1 (, y) *d () dps(y)

e / /Ez Xe; (¥)xx, (7)log g (W) |1z, y)Pdu(z)du(y).

The fact that first integral in the above identity tend$ t@henn tends to infinity follows
from the fact thatvar(I1, log g) < oo. The second and the third integrals are equal, and
sincee < g < M, we may uselog g(x)| < C: al|g(x) — 1| and we get

[ xes e wlozg@)P (. o) Fauta)auty)

(59
<Coar [ xes @i, lote) = 1PN )Pt duto)

The assumptior4@) implies that the last integral irb) tends to) asn tends to infinity.
This completes the proof of the desired relati&g)( O

Proposition 7.6. For anye, M : 0 < e < 1, M > 1, there exists a constaut. ,; > 0
such that ify € .27 (I1) satisfies

e<infg<supg< M (60)
E E
then
log E|U,|2 < Cear(L(g) + V(9)). (61)

Definition 7.1. Let.5" (IT) € «#(I1) be the subset of functions satisfying the condition
(60).



Determinantal processes and holomorphic function spaces 33

By definition | ¥, |2 = W .. If g € ™ (I1), then
L(g*) < 8M°L(g) andV(g*) < 4M?V(g). (62)

Consequently, in order to establighil], it suffices to obtain the estimaté3d) in Lemma
7.7below.

Lemma 7.7. Foranye, M : 0 < ¢ < 1, M > 1, there exists a constagt. ,;, > 0 such
that if g € <7 (IT), then

log EW, < C(L(g) + V(9))- (63)

Denote
9" =1+xg21(g — 1) andg™ =1+ xg<1(g — 1).

Then
g=gtg andgt > 1,9 <1. (64)
Our aim here is to reduce Lemnia/ for ¢ to the same statement for, ¢~
Lemma 7.8. Bothg™ andg~ are in the class#" (II), moreover, we have
L(g™) < L(g) and V(¢*) < V(g). (65)
Proof. Inequalities 65) follow from the elementary inequalities
g% — 1] < |g — 1] and|g™(2) — g*(y)| < [g(x) = g(y)I. (66)

Let (£, ),>1 be the exhausting sequence of bounded subsets suchthho(ds. The first
inequality in ©6) yields the following inequalities for self-adjoint opéves:

Xe g™ — 1P xexe, < xeg — 11X x5, .
Hence ¢7) holds forg* with respect to the sequentE,,),,>1. O

Denote by, (I1)* the subclass of functions is;"" (IT) such that
g € o3(IT) andg > 1.
Similarly, denote by (IT)~ the subclass of functions i (IT) such that
g e M) andg < 1.

Let
M (I)F = g™ ()7 U™ (1)



34 Alexander I. Bufetov, Yanqi Qiu

We reduce the statement of Lemia for generaly in 7" (I1) to the particular case
gin @™ (I1)*. Indeed, assume that we have establistigiia the case ok (I1)*,
then by multiplicativity, for generaj in <" (I1), we have

Ev, = (‘Ilg“ig*) < (E\I/3+ 'E\Tj?)*)lﬂ = (E\i(g*)2 'E\Tj(g*)Q)l/2

< 5 (E¥ (e + EVop).

Now we may apply §3) for functions(¢)? € =™ (II)* and (¢7)* € ™ (1)~
respectively and use the relatioi) together with Lemm&.8, to obtain that
E¥, < C'[L((g*)) + V(")) + L(g7)?) + V(g )?]
< C"|Llg") + V(g*) + LlgT) + V(g 7)]
< C"(L(g) +V(9))-
We now proceed to the proof o88) for functionsg in %e’M(H)i and, consequently,

Lemma7.7. By definition, if g € <" (I1)*, then the sequencés,),~; defined in the
proof of Lemma7.3all stay in the setz; " (IT)* . Since

||§loggn - gloggH% = Var(H7 IOg gn/g)7

passing perhaps to a subsequence, we may assume that

\Ijgn = eXp(gloggn) %) ‘Ilg = eXp(FIOgg)'

By Fatou’s Lemma and Lemma4 , it suffices to establish6@) for a functiong €
M (I1)* such that the subsét: € E : g(x) # 1} is bounded. We will assume the
boundedness dfz € £ : g(x) # 1} until the end of the proof of Propositioh6.

Forany0 < ¢ < 1 and anyM > 1, there existg. 5, > 0 such that ift € [—-1 +
e,—1+ M], then

1
log(1+1t) —t+ §t2 < Con - [t (67)

Recall that for any bounded linear operatbiacts on a Hilbert space, we det| =
Vv A*A. The inequality §7) applied to the eigenvalues of trace class operator witb-spe
trum contained in—1 + ¢, —1 + M] yields the following

Lemma 7.9. Lete, M, C. ) be as in the inequality67). For any self-adjoint trace class
operator A whose spectrum(A) satisfiesr(A) C [-1 + ¢, —1 + M], we have

1
logdet(1 + A) < tr(A) — 5tr(A?) + Coartr(JA]P). (68)
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Proof. The lemma is an immediate consequence of the inequélijyand the identity
logdet(1+ A) = Zlog (I+XN(A

where(\;(A4))2, is the sequence of the eigenvaluesiof O
In order to simplify notation, foy e .z (I1)*, set
h=g—1>0andT,” = VAIIVh > 0; (69)
and forg € o5 (11)~, set
h=g—1<0and7, =IIAIl < 0. (70)
By applying the relationdg), for g € " (I1)*, we have
log BV, = logdet(1 + (g — 1)II) = log det(1 + T,")

71
< tr(T,) — 1tr((T;E)Q) + Ceutr(|T ). (1)

Clearly, the tracesr(7,") andtr(7,") are given by the formula:
tr(Tgi) = /h(:)s)H(:):,x)du(x). (72)

E

Recall that the inner product on the space of Hilbert-Schimperators is defined by
the formula
(a,b)gs = tr(ab”).

Lemma 7.10. For anyg € 5™ (IT)*, we have

(T P) = [ bla 1w, 2)duo) - 3V (0) (73)

E

Proof. If g € oz (I1)*, then

tr((T:H)?) = tr(VRITAIIVA) = tr(TIAIIR) = (I1h, hIT) 5. (74)

g

Note that

ITTRl%s = 1k 7s = /h(x)QH(%x)du(w)- (75)
E

By (49), we have

V(g) = lllg, TWl7s = Il 1|75 = [IAIT — IIA|[;

(76)
= [|AI1|[ %5 + TR 7 — 211, T1R).
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Combining {4), (75) and (76), we complete the proof of the desired identi#s) for
g€ M ()Y,
The argument foy € %‘E’M(H)— is completely the same, since we have
tr((T7)?) = tr(ILFILFIT) = tr(TTFILS).

g

Lemma 7.11.For anyg € 7™ (I1)*, we have

w(IT2P) < Lig) = / l9(2) — 1Pz, 2)du(z). (77)

Proof. First, letg € o7 " (II)*. Recall the definition of andT;" in (69). By the ele-
mentary operator inequality

VRIRIAIV R < VAITWTIV R,

we get
tr(|7,7|%) = tr(VAIIRIAIIVR) < tr(VAIRATIVR) = ||VhITR||%s. (78)
Since

IVAIIA|% s = to(VAIRTIVA) = tr(ITA%/2h1/2TIR)
= (ITR*2, hITh'/?) g < |[TTR%2|| || RITRY? || 115
= ||TIh*"2|| 5| V/AITA| 15,

we also have
IVRITA| 36 < TR |36 = tr(IIRPID) = tr(K*IT) = L(g). (79)

Combining inequalities18) and (79), we obtain the desired inequality{) for g €
oM (1)

The proof of the inequalityq7) for g € g%?f’M(H)‘ is similar just by noting that in
this case|T, |* = —IIAIl = II|A|II and

tr(|7, 1*) = tr(L|A|TL|A[TIA[IL) = tr(y/[A| || R[IV/|A])

< tr(v/[ B[R/ [A]).
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Conclusion of the proof of Lemnra7. It suffices to establish6@) wheng € %a’M(H)i.
An application of §7) yields that

[ (1oest) - o) + 25 1o, )t

E

< CemL(g). (80)

It follows that
log BV, =log E¥, — ES),,

1
<tr(T) — 5tr((T;E)2) + Cetr(|T, %) — ESiog g

g/h(az)ﬂ(x,x)du(x) — %/h(x)QH(93>$)dM(93) + iv(g)

E E

T CL(g) — / log g()1(z, )du(x)

<20 L(g) + 3V (9) = CLag(Llg) + V().
L

Proposition 7.12. Given0 < ¢ < 1 and M > 1, there exists a constadt ,; > 0 such
that if g1, go € 25" (11), then

(1T, - Bl)” < B0, [ xp (Coor(Llanfa) + Vo /o) ~1)- @D

Proof. Let g;, g» be as in the proposition. Set= (g,/g>)?. Applying Propositiorv.6to
the functiong yields

BV, < exp (Coar (L(9) + V(9)) ) < exp (CLa(Llor/9) + Vigr/92) ) ).

By multiplicativity, we have

Jun

2

E‘\Pgl - \1192‘ = E<|\Il91/92 - 1||\Il92‘> < (E‘\I]%P) i <E|\Ilgl/92 - 1|2> .
SinceI[-E‘,\ﬁffgl/g2 > 1, we have
E|¢l91/g2 - 1‘2 < E|¢l91/g2|2 —-1= E{Iv]g -1
Combining the above inequalities, we obtain Propositidr?. O

Slightly abusing notation, we keep the notatiéhfor the induced topology defined
by (53) on ,gz%;’M(H). As an immediate consequence of Proposifiar?, we have
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Corollary 7.13. The two mappings fromv " (I1) to L' (Conf(E), Py;) defined by
g—=U, ¢g—T,
are continuous with respect to the topolagyon .z (II).

Proof of Proposition7.2. The proof follows the proof of Corollary 4.11 ii], the r6le of
Proposition 4.8 of [] played here by Corollary.13 Indeed, ley be a function satisfying
the assumptions(). Takingg, as in Lemm&/.3, we obtain the convergence df~ to I19
in the space of locally trace class operators and hence thk eanvergence dpy,. to
Prs in the space of probability measures@onf(E). By assumptiong,, — 1 is compactly
supported, so by Proposition 2.1 af[we have

Prion = U, - Pp1.
By Corollary7.13 ¥, — ¥, in L!(Conf(E), Py), so we have
U, -Pg— U, Pq
weakly in the space of probability measurest@mf(£), whence
Py = U, - Py

The proof Proposition.2is complete. O

8 Appendix

Our aim here is to show that Palm measures of different o@ensiutually singularfor
a point process rigid in the sense of Ghos Ghosh-Peres.

Let £ be a complete metric space, and Ifebe a probability measure dtionf(E)
admitting correlation measures of all orders; khth correlation measure @fis denoted
by pi.. GivenB C FE abounded Borel subset, gtE \ B) be the sigma-algebra generated
by all events of the ford#. = n} with C ¢ E \ B bounded and Boreh € N, and let
S¥(E \ B) be the completion of(E \ B) with respect td. We can canonically identify
Conf(E) with Conf(B) x Conf(E\ B). Then in this identification, the events§tE \ B)
have the form

Conf(B) x A,

whereA C Conf(F \ B) is a measurable subset. By definition, assumefat §(E \
B), and let(pi, ..., px) € B* be anyk-tuple of distinct points, theft € .2 if and only
if XU {p1,...,pr} € Z . Recall that a point process with distributi®ron Conf(F) is
said to be rigid if for any bounded Borel subgetc E, the function#p is ¥ (E \ B)-
measurable.
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Proposition 8.1. Let B C E be a bounded Borel subset. Assume that the funetign
is §F(E \ B)-measurable. Then, for arly,l € N, k& # [, for p,-almost anyk-tuple
(p1,...,pk) € B*andp-almost any-tuple(qi, . .., ¢) € B', the reduced Palm measures
PPr--Pr gnd P22 are mutually singular.

Proof. For a nonnegative integer, let
bn = {X € Conf(F) : #5(X) =n}.

By assumption, the functiog s is 3¢ (£'\ B)-measurable. Take a sequen#g of disjoint
§(E\ B)-measurable subsets@énf(£) such that for any nonnegative integewe have

P(%,A%,) = 0.

Set
v =] 2.0
n>k
7 =J2.n%..
n>l
The sets?and % are disjoint by construction.
Claim: For pi-almost anyk-tuple (p4, . .., px) andp;-almost anyi-tuple (¢, ..., q)
we have
PPi-Ph(%) =1, PP () = 1.

Indeed, by definition of reduced Palm measufes,(for any non-negative Borel func-
tionu : Conf(E) x E¥ — R, we have

*

/ Z w(Z; 21, .., 2p)P(dZ)

Z1yeees 2L EZ
Conf(E) ! k (82)
Z/Pk(dpl ... dpy,) / w(XUA{p1, - PR} p1y - - i) PP PR (dX),
Ek Conf(E)
where)  denotes the sum ovértuples of distinct pointsy, .. ., z; in Z.

For anyn > k, substituting the function
un(Zs 215y 2k) = Lanne, (2) - Lgr(z1, ..y 21)

into (82), we get

*

R ETACID D PSRN L3
Z1yeeny 2LEZ

Conf(E) (83)

Bk Conf(E)
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Recall that by construction?;,, € §(E \ B), hencdor all py,...,p, € B, we have

Lona, (X U{p1, .- pr})
=L, (X UA{p1,-- - o)) L, (XU {p1, ... i })
=12, (X) - 1g,_,(X) = L0, (X).
Substituting the above equality int83), we get

*

/ Lo, (Z) Y Lpe(a,. .., z)P(d2)

Conf(E) Z1yeees 2L €Z (84)

Bk
Summing up the terms on the left hand side&f)(for n > k, we obtain the expression

oo *

> / Lo, (Z) Y Lpe(z,..., z)P(d2)
-y / 1,2 Y p(a.. 2)Pd2)

-y / 16,2) Y Lpla,. ., 2)P(d2) (85)

:/]lBk(plw--»pk)pk(dpl---dpk) = pr(B"),

Ek
where we used the fact thatif=0, ...,k — 1, then

VZEC, Y. Ip(a....,z)=0.

Similarly, summing up the terms on the right hand side8d) for n» > &, we obtain the
expression

[e.e]

S / PP (2 N Coi)pi(dps - - dpy)
n:kBk

:/]P)pl ~~~~~ Pk (U Z ﬂ%n_k> pk(dpl .. dpk) (86)
ot n>k

:/IP”” """ P () pr(dpy .. . dpg).
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By (84),

pr(B*) = /Ppl """ YY) pr(dpy - . - dpy). (87)

Bk

The equality 87) immediately implies that
PP-Pr(%) = 1, for py-almost anyk-tuple (py, . .., pi) € B".
The same argument yields that
ot () =1, for p;-almost anyl-tuple (¢, ..., q) € B

The claim is proved, and Propositi@nlis proved completely. O
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