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Abstract. The design and optimization of novel structures is an essential part of the next-generation solar
cells development. Indeed, the technological steps involved in the development of high-performance solar
cells involve a huge set of interdependent physical and geometrical parameters: layers thicknesses, dopings,
compositions, and defect characteristics. In this work, we propose a new open-source and free solar cell
optimizer: SLALOM — for SoLAr ceLl multivariate OptiMizer — that implements a rigorous multivariate
approach, which improves from the one-parameter-at-a-time procedure that is traditionally used in the
field to a state-of-the-art multivariate approach. Applied to indium gallium nitride (InGaN) solar cells, it
shows its potential to become a useful tool for the development of novel solar cells. SLALOM is
implemented to be extended to any semiconductor simulation engine. Several models for solar cells have
been implemented in SLALOM, including, for instance, InGaN. One can adapt these models to any solar
cell technology by changing the parameter set, the here proposed generic code structure remaining

unchanged.
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Numerical design and optimization are crucial in the
development of new solar cell technology, where the main
objective is to optimize the solar cell efficiency with respect
to the material properties and device technological
parameters. This development involves complex steps,
including the active layers elaboration, doping, passiv-
ation, and device realization, and thus involves a large set
of technological and physical parameters to optimize: the
layers’ composition, their dopings, thicknesses, optical
parameters, absorptions, mobilities, and diffusion lengths.
All these parameters are interdependent: e.g., the optimal
absorption depends on the available layer thickness and the
diffusion length, while the optical parameters depend on
the composition.

The traditionally used standard experimental or
theoretical procedure to study the impact of these
parameters, or at least a subset of them, is the parametric
analysis: the solar cell efficiency variation is studied with
respect to the variation of one arbitrarily chosen
parameter, while the other parameters are kept constant
[1-5]. One experimental example of this procedure could
be the study of the impact of the N-doping on the solar cell
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efficiency by elaborating a solar cell with multiple
N-doping concentrations in a feasible range, while keeping
the P-doping, the composition, the layers’ thicknesses,
and all the other parameters constant. Similarly, the
theoretical procedure would study by numerical simula-
tion the impact of the N-doping concentration on the solar
cell efficiency while keeping all the other parameters
constant. The experimental and the theoretical proce-
dures suffer from two killing drawbacks. First, and
whatever the choice of the optimized parameters, the
method does not converge toward the optimum efficiency
as it ignores parameters’ interdependence. In our example,
the optimal N-doping is only optimal for the chosen values
for the P-doping and the other parameters such as the
absorption and the diffusion length. The second drawback
of the parametric analysis is the fact that it requires a
huge number of evaluations of the efficiency, so large that
their effective evaluation is hardly possible. For instance,
the simultaneous impact of N-doping, P-doping, N-layer,
and P-layer thicknesses could be studied by using 400
samples (100 for each parameter variation range) that are
experimentally quasi-impossible and theoretically very
long to perform. Indeed, each complete simulation usually
takes up to 10min on a high-performance calculation
server, leading to days of computing for the whole
problem.
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Fig. 1. The parametric analysis procedure.

The method that is proposed in this paper brings a
solution to both drawbacks by using a multivariate
approach implemented in a complete free and open-source
software: SLALOM, which stands for “SoLAr cell
multivariate OptiMizer.” This approach is shown to be
altogether effective, precise and efficient in time, thus
drastically decreasing the optimization time and conse-
quently the overall solar cell development time.

In the next section the mathematical procedure used in
SLALOM is detailed. In Section 2, the software implemen-
tation is reviewed thoroughly. The SLALOM method and
software are then applied to InGaN-based solar cells and
the results are discussed in Section 3, before a final
conclusion.

1 Solar cell multivariate optimization
1.1 Review of the traditional parametric analysis

The parametric analysis described in the previous section is
illustrated in Figure 1.

The first step in this standard one-by-one parametric
analysis consists in defining a set of technological and
physical parameters: for instance, for a compound
superconductor, its composition, its P- and N-type doping
concentrations, its layers’ thicknesses, among other equally
important parameters.

Depending on whether the undertook optimization is
theoretical or experimental, the second step consists in
defining the structure set to simulate or actually
elaborating the samples within that set. The set is made
up of n samples with only one varying parameter. For
instance, one could elaborate 10 samples, or simulate
them, with a composition z varying from 0.1 to 0.5 while
the P- and N-type doping concentrations, layers’ thick-
nesses, and all other parameters are kept constant among
all the samples.

'SLALOM source code is available for download on GitHub
(https://github.com/sidihamady/SLALOM), HAL (https://hal.
univ-lorraine.fr/hal-01897934) and on the author website (http://
www.hamady.org/photovoltaics/slalom _source.zip). Further in-

structions for its effective use are given in Appendix A.

The third step consists in characterizing or simulating
these samples to extract the main performance figure, that
is, for solar cells, the photovoltaic efficiency. The sample for
which the efficiency is optimal in then identified and the
varying parameter set to the optimal value. The procedure
then iterates for the next parameter, keeping all other
parameters constant.

This procedure, albeit simple to handle, suffers from
two major drawbacks. The first one is its mathematical
uncertainty: at the end of the procedure, the highest
obtained efficiency is not guaranteed to be the optimal one
since the procedure ignores the interdependence between
the solar cell parameters. For instance, an optimal
composition obtained with this procedure is only valid
for the set of doping concentrations and layers’ thicknesses
that were kept constant in the set. If the procedure had
been started with a different parameter set, the optimal
composition found would have been different. The direct
practical consequence of this issue is that the maximum
feasible efficiency is actually missed. An indirect conse-
quence is that the actual optimum could corresponds to a
set of parameters that is easier to achieve practically than
the found one.

The second major drawback of this parametric analysis
is its time-consumption. If performed experimentally, it
implies the elaboration of a high number of samples,
increasing the overall cost. Besides, the elaboration of a set
of solar cells with one and only one varying parameter is not
straightforward. Usually, these difficulties are addressed by
elaborating a smaller set of samples based on the user
experience in the material and process. This procedure is
however not usable when developing a new technology. On
the simulation side, this drawback is only related to the
calculation time. Usually, with standard industry simu-
lators, a single complete solar cell simulation, outputting
current—voltage characteristic under solar AM1.5 standard
illumination as defined at NREL [6], takes a few minutes on
a server with two 8-core Xeon processors and 32 GB of
RAM. It can however take up to 20 min and more if more
complex structure and more complete models are consid-
ered. In this one-by-one parametric procedure, the total
needed time varies linearly with the number of parameters,
both for experimental measurement and theoretical
determination of the optimal parameters.

1.2 Review of the brute force optimization

A second procedure sometimes used is the so-called brute
force optimization. In this procedure, each parameter
varies in a given range. The procedure iterates, on each
value of a given parameter, in the whole n-dimension
space — n being the parameter number — so that all
possible combinations are tested. The total number of
characterizations or simulations needed is thus equal to
m", where m is the number of points taken within each
parameter range.

For instance, if one deals with 5 parameters and 10
samples per parameter, the total number of character-
izations or simulations will be equal to 10°. Even for this
small number of samples, this method is absolutely not
usable for solar cells, since the individual simulation time
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are on the order of tens of minutes, implying years for a
single optimization on our server with two 8-core Xeon
processors and 32 GB of RAM.

The brute force optimization is therefore completely
unusable experimentally, or even numerically, for more
than two or three parameters. Its only advantage is that it
guaranteed to yield the absolute optimum within the tested
points. This advantage is however completely annihilated
by the fact that an acceptable precision can only be
obtained for a high number of points within each parameter
range, implying again a crippling computation time.

1.3 Newton-based optimization methods

The third and last procedure, the one that is proposed in
this paper, consists in using state-of-the-art mathematical
optimization algorithms to find the parameter set that
yields the optimal solar cell efficiency. These algorithms
take the parameters interdependency into account. They
have been carefully designed to use the least possible
computing time, leading to a very small need in computer
resources if compared to the previously described basic
procedures. This mathematically secured procedure is
largely used in physical engineering areas such as
mechanical, electrical, or civil engineering [7-9]. We have
used this method for the design and the optimization of
solar cells [10-12] and propose with this paper, to fully
detail and completely release it and the software behind it
for the free use of all, under the MIT License.

Given a set of parameters pertaining to the solar cell
operation (e.g., composition, doping concentrations, layers
thicknesses), it goes by expressing the overall solar cell
efficiency n as a nonlinear function f, called the objective
function, of the parameter set expressed as an n-dimension
vector P:

0= f(P1, Py, Py, ..., P,) :f(P). (1)

This function f can be the mathematical form of any
procedure, whether it be an algebraic expression, the result
of a numerical computation, or even that of experimenta-
tions. It takes as its input the given set of parameters and
yields the value of the corresponding solar cell efficiency. In
the case presented in this paper, the evaluation of the
objective function f requires the use of a semiconductor
simulation engine that allows the numerical evaluation of
the solar cell efficiency from its known physical and
geometrical parameters.

Once f is carefully defined, one can use it inside a
mathematical algorithm designed to find the parameter
vector that maximizes the efficiency fusing an initial guess
and a numerical iterative procedure. Such algorithms are
numerous in the literature and are available in freely usable
software libraries such as SciPy [13].

We mainly used two of these algorithms that we
demonstrated, after a comprehensive study involving 10 of
them, to be suitable for the optimization of solar cells.

The first one is the Sequential Least Squares Program-
ming (SLSQP) method [14]. The iterative algorithm used
in it starts from an initial guess, a given vector of

Solar Cell Parameters {P1, P2, ..., Pp}
(Doping, Composition, Thickness ...)
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Fig. 2. The procedure used for extracting the solar cell efficiency
by solving the coupled Poisson and continuity PDE system for
voltage ranging from 0 to V¢, the open-circuit voltage.

parameters IB(k), and constructs the next vector 13(k+1) by
using Newton’s method to find the best direction, where the
gradient function vanishes, in the n-dimensional param-
eters space. After a number of iterations, the SLSQP
method converges to the point maximizing the objective
function, i.e., the solar cell efficiency in our case. Each
parameter in the objective function is constrained: it is
allowed to vary in a range defined by the technological
feasibility and the underlying physics. An alternative, the
SQP method [14] can handle more complex constraints
including nonlinear equality and inequality constraints.
The second algorithm that drew our interest is the
Broyden—Fletcher—Goldfarb—Shanno (BFGS)-based itera-
tive algorithm [15]. It uses a quasi-Newton method
seeking for the maximum of a nonlinear function of n
variables using gradient evaluations and approaching the
second derivatives (Hessian matrix). The BFGS algorithm

(i) starts from a given initial vector 2 and approximated
Hessian matrix; (ii) then it calculates the best direction in
the n-dimensional parameters space using the Hessian
matrix; (iii) next it updates the solution vector using a step
size in the found direction; (iv) thereafter it updates the
Hessian matrix using the new vector; and finally it iterates
all these steps until the obtained solution is bracketed
within the desired precision. This method has the same
convergence criteria as the Newton method while it is
demonstrated to be faster than the other quasi-Newton
methods. Two versions of this algorithm are used in this
work: the L-BFGS, L for limited memory that better
handles a high number of parameters, and, more crucial for
our application, the BFGS-B algorithm (B for bound
constrained) that is the constrained version. The L-BFGS-B
method has the criteria needed in our application: perfor-
mance and constraints.

As hinted earlier, the function fthat we need to optimize
could be any nonlinear explicit function, or an experimental
procedure, or extracted from a solution of coupled partial
differential equations (PDE). In our case, the function f1is
described in Figure 2: the Poisson and continuity PDE
system is solved by a semiconductor device simulator under
solar AM1.5 [6] illumination in a large voltage range. The
corresponding current is calculated for each voltage value.
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The photovoltaic efficiency is then extracted from this
simulated current—voltage characteristic.

The mathematical algorithm takes this function fand
gives, after a number of iterations, the parameter vector
maximizing the efficiency. The two suitable optimization
algorithms presented in the present section, SLSQP and
BFGS, were used and throughly tested with respect to two
major criteria: the number of function evaluations (i.e., the
overall optimization speed) and its robustness (i.e.,
convergence in a wide range of initial parameter values).

All this was implemented in the SLALOM open-source
piece of software, using the open-source SciPy library [13] for
optimization and opening for various semiconductor simu-
lator engines. The next section describes in detail this
implementation in order to provide the reader with the
ability to use the SLALOM software for her or his own
purpose.

2 The multivariate optimizer implementation
2.1 SLALOM architecture

Figure 3 shows the SLALOM general architecture. The
basic rules used in the implementation of SLALOM were as
follows:

— Simplicity — KISS principle: Keep It Simple and
Straightforward,

— Modularity and modification friendliness;

— Code correctness and efficiency.

SLALOM is written in vanilla Python [16] but it could
be re-implemented in other interpreted languages (such as
Lua) or compiled ones (such as C++). It uses the
SciPy [13] and NumPy [17] numerical packages, which
are Python interfaces to a collection of state-of-the-art
numerical and scientific routines written in C and Fortran.
These routines are freely available from http://netlib.org
and could be accessed by any language that can interface C
routines. The monitoring and visualization part of
SLALOM was written using Tkinter [18] for the user
interface and Matplotlib [19] for 2D curve plotting.

It is composed of seven main modules:

— glalom.py, the SLALOM startup module, sets the
parameters, the optimization method and controls the
whole process.

— slalomCore.py, the SLALOM core class, implements the
optimization using one of the mathematical algorithms
provided by the SciPy package, and controls the device
simulation engine. As a class with defined and modular-
ized functionalities, it can be extended by creating a new
inherited class. This inheritance mechanism allows
modularity, clearness, and reliability by keeping un-
changed a highly tested base code.

— slalomDevice.py is a class defining a set of devices (e.g.,
InGaN_PN) for easier and more robust optimization
work. For any project, this class can be reimplemented to
include any set of relevant devices.

— slalomDeviceGui.py is a class providing an interface to
create a new device type. It is only used if the device type

Linux Remote Server Linux
Simulator: Silvaco ; tiberCAD ; ... Workstation
SSH Server .

Simulator:
Silvaco
SSH protocol tiberCAD

Server: Public key
Client: Private key

Linux or Windows Client

SLALOM Optimizer
SSH Client
Bash (Linux) or Gitbash (Windows)

SLALOM Optimizer

Case #1: Client/Server Case #2: Local

Fig. 3. The SLALOM optimizer general architecture.

specified in slalom.py is not defined in slalomDevice.py.
slalomDeviceGui.py uses the Tkinter graphical toolkit
that is assumed already to be installed on the client (this
is generally the case, except for some CentOS or Red Hat
machines). If Tkinter is not installed, this class is not
used.

— slalomMonitor.py is used to monitor the optimizer either
in client—server configuration using SSH or locally if it
runs on the same machine as the optimizer. slalomMo-
nitor uses the slalomWindow class that provides
visualization and control functionalities. If Tkinter is
not installed, this class is not used.

— slalomSimulator.py is the class interfacing the solar cell
simulator engine. This class encapsulates to a common
python interface the functionalities that are specific to
the simulator, either commercial simulators such as
Silvaco® and tiberCAD® or free simulators such as
Afors-HET [20], SCAPS [21], PC1D [22], and AMPS-1D
[23]. It can furthermore be extended to include any
simulator that can be launched from the command line
and that outputs its results in text files (i.e., any well-
designed simulator).

— slalomWindow.py: it the common class providing the
visualization and control functionalities used by the
SLALOM Graphical User Interface part. It is only
available if Tkinter is installed.

2.2 Customizing SLALOM

SLALOM is freely available under the MIT license and
continuously updated. As for now, SLALOM natively
supports the widely used Silvaco® Deckbuild/Atlas
simulation engine and tiberCAD®, and is being extended
to support free simulators such as Afors-HET [20], SCAPS
[21], PC1D [22], and AMPS-1D [23]. Extending it to yet
another solar cell simulator is straightforward if it is
designed in the command-line scriptable standard way,
which is the case for all well-designed simulators:
command line interface, well-defined syntax in input
raw text files including device parameters, output to raw
text files.

For the Silvaco® tools, the optimizer constructs the
device input in a modular way: the Deckbuild input file
includes C files that define the physical models for the
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Table 1. Bandgap E,, affinity X, permittivity ¢, and densities of states in the conduction band N and in the valence
band Ny of GaN and InN [29-31]. The absorption is given by equation (2), the C and D values being fitting from
experimental data [32], with E,, the incident photons energy and E, the InGaN bandgap for a given indium composition z.

E,(eV) X(eV) Ne(em ™) Ny(ecm™?) €
GaN 3.42 4.1 2.3x 10" 4.6 x 10" 8.9
InN 0.7 5.6 9.1 x 107 5.3 x 1017 15.3
20F T T T T T T z 3 20F T T T T T T
| -BFGS-B . .
15 F R R R R R e O 15 NN LA
Z z
.§ 10 -§ 10
- 5 * 5
2 4 6 8 10 12 14 8 10 12

Index

Fig. 4. Efficiency of the InGaN PN solar cell determined by
SLALOM using the L-BFGS-B and SLSQP methods, with the
initial point chosen relatively far from the global optimum.

bandgap, the mobility, the refractive index (both for its
real and imaginary parts that models absorption), and the
recombination mechanisms along their dependence on
composition, temperature.

This architecture offers the ability to control in detail
the physical models and to change the parameters in a set of
small and consistent files. All these files share one C header
file including the main material parameters. These files are
used by the optimizer to create the simulation input set
that it uploads to the calculation server if needed. The
optimizer then controls Deckbuild and monitors its output.

For the tiberCAD® tool, the same methodology as for
Silvaco® is used, and could have been used for any other
command line scriptable simulator. The software has only
been adapted to the tiberCAD® syntax constraints: each
optimization parameter is recognized with a specific
comment line before the corresponding statement.

3 Application to InGaN solar cells

This next section presents the main results of the
application of SLALOM to InGaN PN junction solar cells
and details about the software behavior for a higher
parameter number.

3.1 Optimization of an InGaN PN junction solar cell

The developement of high-efficiency and low-cost thin films
third-generation solar cells are crucial for the coming next
30 years. The InGaN alloy has the potentiality to play a
major role in their development, thanks to its high
absorption coefficient [24] and resistance to extreme
conditions such as high temperature or high irradiance [25]
and thanks to its bandgap that can be tuned and adapted to
almost the whole solar spectrum [26]. Nevertheless, this

Index

Fig. 5. Efficiency of the InGaN PN solar cell determined by
SLALOM using the L-BFGS-B and SLSQP methods, with the
initial point choosen in the close vicinity of the global optimum.

potential is not yet exploited and the best photovoltaic
efficiency reported today does not exceed 3% [27,28]. This
efficiency is indeed still highly limited by the not-high-
enough quality of the elaborated layer for high indium
composition, along with the difficulties to realize ohmic
contacts and to grow p-doped InGaN.

In this context, we used SLALOM to precisely seek the
optimal efficiency that can be achieved by InGaN PN
junction solar cells, using as-realistic-as-possible physical
models with parameters extracted from experimental data,
with the aim to simultaneously optimize the cell 5 following
parameters : the Indium composition alongside the P and N
layers dopings and thicknesses. These parameters and the
used models have been detailed previously [10,11]. Table 1
and equation (2) give the values that were taken for the
bandgap, the affinity, the density of states, and the
absorption. To ease its use with this particular configura-
tion, the complete simulation files for Silvaco® are
packaged with the SLALOM distribution.

afcm™) =10° \/C(Eph — Ey(z)) + D(Ep, — Eg(ac))2

C(eV™1)=3.525 — 18.29 2 + 40.22 2° — 37.52 2 4 12.77 *

D (eV %)= —0.6651 + 3.616 = — 2.460 2* (2)

Figures 4 and 5 show the efficiency of the InGaN PN
solar cell as determined by the optimizer using the L-
BFGS-B and SLSQP methods with the initial point
choosen far from the global optimum (first case, Fig. 4)
and near it (second case, Fig. 5). Each index corresponds
to a set of parameters choosen by the optimizer in the
variation domain defined in slalomDevice.py. Both
methods converge to the same set of optimal parameters
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Fig. 6. Current—voltage characteristic of the InGaN PN solar cell
at the optimum.

in about 2h for L-BFGS-B and 1h for SLSQP on a Red
Hat Linux server with two 8-core Xeon processors and
32 GB of RAM. When the initial point is choosen in the
close vicinity of the global optimum (second case, Fig. 5),
the algorithm converges faster to the optimum (50 min for
SLSQP and 90 min for L-BFGS-B). This point illustrates
the fact that it is necessary to use a reasonable strategy
to efficiently find the global solar cell optimal efficiency
considering the complexity of the underlying physical
model (drift-diffusion) and its nonconvex nature.

The optimal set of parameters gives an optimal efficiency
of about 18%, a short-circuit current of 26.8mA /cm? an
open-circuit voltage of 0.85 V, and a fill factor of 78%. It lies in
the vicinity of the following set of values: a P-layer thickness
0f 0.01 wm, an N-layer thickness of 1 wm, a P-layer doping of
10" em ™2, an N-layer doping of4 x 10*® cm ™, and an indium
composition of 56%. Figure 6 shows the current—voltage
characteristic near the optimal point, while Figure 7 plots the
external and internal quantum efficiency spectra.

Unfortunately, this very high efficiency is not reachable
for many technological reasons, among which, for
instance, the required 56% indium composition, which
is not feasible today. Solving this problem requires
optimizing the solar cell while taking into account the
limits of material technology, mainly related to InGaN
elaboration and to solar cell fabrication. This can be done
in SLALOM by setting the optimization parameters range
to technology limits in slalomDevice.py: the correspond-
ing optimizations and results can be found in previously
published literature [11,12].

For comparison purpose, we can evaluate the time
that would have been needed for the same optimization if
we had used the brute force method, with only five
samples per parameter: the total number of points would
have been 5° = 3125. The total duration would have been
about 100 h on the same machine, as we have tested. The
parameter precision would have been equal to the range
divided by the number of samples per parameter. For
thickness, for example, the resolution would have been about
0.2 pm (for five points per parameter), meaning that the
optimal thickness is known within this uncertainty. Seeking
higher resolution renders the brute force method become
completely infeasible: its execution time varies as n"”", where n
is the number of points and m the number of parameters.
Again, as a comparison, for the optimization methods
(L-BFGS-B and SLSQP) the resolution is determined by the
Jacobian step, which is, in this case, equal to the range

1Fz T T T
3
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@
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IS : : : :
= :
c
© :
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o —~External | :
*<Internal | : :
oL i b i t

0.2 0.3 07 05 0.6 07 08
Wavelength (um)

Fig. 7. External and internal quantum efficiency spectra of the

InGaN PN solar cell at the optimum.

divided by 50, meaning 0.02 um, 10 times better than
previously. Therefore, with a far better resolution, the
L-BFGS-B and SLSQP methods are at least two orders of
magnitude faster than the brute force method.

3.2 Optimization with many parameters

For the sake of clarity, this paper only presents solar cell
optimizations with a reduced number of parameters,
namely, five for the InGaN PN junction. Detailed
applications of SLALOM with up to 11 parameters can
be found in references [10-12].

Using SLALOM with up to 11 parameters, and
probably more, does not raise specific adaptation or coding
difficulties, as the underlying mathematical method has
been shown to work for any parameter number. However,
specific convergence issues can arise from the finite
precision inherent to any computer calculation. Indeed,
a rapid and precise convergence for a high number of
parameters requires an all the more precise evaluation of
the function to be optimized.

This computer-specific limitation leads to a limit, which
is above 11 on our Xeon processors, of the number of
parameters that can be optimized simultaneously. This
limit can however be overcome by carefully choosing the
optimization starting point close to the expected optimum.
This starting point can itself be found using approximate
physics arguments, or an optimization with a limited
number of parameters, or both.

4 Conclusion

A new solar cell optimization method is presented in this
paper. This method isimplemented in SLALOM, an easy-to-
use, portable, and open-source software. SLALOM imple-
ments mathematical multivariate methods for the rigorous
optimization of solar cell parameters taking into account the
parameters’ interdependencies and speeding up the optimi-
zation procedure by two orders of magnitude. SLALOM is
freely distributed with a complete set of cases implementing
physical models and data extracted from experimental
measurements for realistic and precise solar cell simulation.
Its use was presented in this paper for the optimization of an
InGaN PN solar cell. The absolute optimal efficiency was
obtained for a set of five parameters crucial to the solar cell
design and elaboration: the indium composition, thicknesses,
and doping concentrations for the InGaN structure.
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Appendix A: SLALOM guide for free
download and use

The SLALOM piece of software is distributed under an
open-source MIT license for free use, modification, and
redistribution. Its source code is available for download and
use from three sources:

— the international GitHub platform, at https://github.
com/sidihamady/SLALOM,

— the French Open Archive initiative HAL, at https://hal.
univ-lorraine.fr/hal-01897934,

— the author website, at http://www.hamady.org/photo
voltaics/slalom__source.zip.

A comprehensive installation and use guide is included
in the distribution and can be downloaded here : https://
github.com/sidihamady /SLALOM /blob/master/Guide/
slalom guide.pdf.

Finally, the authors will naturally answer happily to any
solicitation regarding help in installing or using SLALOM.

References

1. X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang,
Q. Hou, J. Li, J. Phys. D: Appl. Phys. 40, 7335 (2007)

2. S'W. Feng, C.M. Lai, C.H. Chen, W.C. Sun, L.W. Tu, J.
Appl. Phys. 108, 093118 (2010)

3. H. Movla, D. Salami, S.V. Sadreddini, Appl. Phys. A 109,
497 (2012)

4. M. Nawaz, A. Ahmad, Semicond. Sci. Technol. 27, 035019
(2012)

5. J.Y. Chang, Y.K. Kuo, IEEE Electron Device Lett. 32, 937
(2011)

6. NREL, Reference Solar Spectral Irradiance: ASTM G-173
(2004)

7. A.K. Hartmann, H. Rieger, in Optimization algorithms in
physics (CiteSeer, 2002), Vol. 2

8. K.S. Lee, Z.W. Geem, Comput. Methods Appl. Mech. Eng.
194, 3902 (2005)

9. E.S. Mistakidis, G.E. Stavroulakis, in Nonconvex optimiza-
tion in mechanics: algorithms, heuristics and engineering
applications by the FEM (Springer Science+Business Media,
Berlin, 2013), Vol. 21

10. S. Ould Saad Hamady, A. Adaine, N. Fressengeas, Mater.
Sci. Semicond. Process. 41, 219 (2016)

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31.

32.

EPJ Photovoltaics 9, 13 (2018) 7

A. Adaine, S. Ould Saad Hamady,
Superlattices Microstruct. 96, 121 (2016)
A. Adaine, S. Ould Saad Hamady,
Superlattices Microstruct. 107, 267 (2017)
E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open
source scientific tools for Python, http://www.scipy.org/
(2001)

S.J. Wright, J. Nocedal, Numerical optimization (Springer,
Berlin, 1999)

R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, STAM J. Sci. Comput.
16, 1190 (1995)

G. van Rossum, Python programming language, https://
www.python.org/ (2017)

S. van der Walt, S.C. Colbert, G. Varoquaux, Comput. Sci.
Eng. 13, 22 (2011)

J.W. Shipman, Tkinter 8.5 reference: a GUI for Python,
www.nmt.edu/tce/help/pubs/tkinter/tkinter.pdf (2013)
J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007)

R. Stangl, M. Kriegel, M. Schmidt, Afors-het, version 2.2, a
numerical computer program for simulation of heterojunc-
tion solar cells and measurements, in 2006 IEEE jth World
Conference on Photovoltaic Energy Conversion (IEEE,
2006), Vol. 2, pp. 1350-1353

M. Burgelman, P. Nollet, S. Degrave, Thin Solid Films 361,
527 (2000)

P.A. Basore, D.A. Clugston, PC1D version 4 for Windows:
from analysis to design, in Conference Record of the Twenty
Fifth IEEE Photovoltaic Specialists Conference, 1996 (IEEE,
1996), pp. 377-381

H. Zhu, A K. Kalkan, J. Hou, S.J. Fonash, Applications of
AMPS-1D for solar cell simulation, in AIP Conference
Proceedings (AIP, 1999), Vol. 462, pp. 309-314

E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.A. Al-Heji, X.
Chen, R.M. Farrell, S. Keller, S. DenBaars, U. Mishra, Appl.
Phys. Lett. 98, 021102 (2011)

N. Fressengeas,

N. Fressengeas,

. S.J. Pearton, F. Ren, E. Patrick, M.E. Law, A.Y. Polyakov,

ECS J. Solid State Sci. Technol. 5, Q35 (2016)

P.G. Moses, C.G. van de Walle, Appl. Phys. Lett. 96, 021908
(2010)

C.A.M. Fabien, A. Maros, C.B. Honsberg, W.A. Doolittle,
IEEE J. Photovolt. 6, 460 (2016)

N.G. Young, E.E. Perl, R.M. Farrell, M. Iza, S. Keller, J.E.
Bowers, S. Nakamura, S.P. DenBaars, J.S. Speck, Appl.
Phys. Lett. 104, 163902 (2014)

V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, S.V. Ivanov,
V.V. Vekshin, F. Bechstedt, J. Furthmiiller, H. Harima, A.
V. Mudryi, A. Hashimoto, Phys. Status Solidi B 230, R4
(2002)

V.M. Polyakov, F. Schwierz. Appl. Phys. Lett. 88, 032101
(2006)

J. Wu, W. Walukiewicz, Superlattices Microstruct. 34, 63
(2003)

G.F. Brown, J.JW. Ager, III., W. Walukiewicz, J. Wu, Sol.
Energy Mater. Sol. Cells 94, 478 (2010)

Cite this article as: S. Ould Saad Hamady, N. Fressengeas, SLALOM: Open-source, portable, and easy-to-use solar cell optimizer.
Application to the Design of InGaN Solar Cells, EPJ Photovoltaics 9, 13 (2018)



https://github.com/sidihamady/SLALOM
https://github.com/sidihamady/SLALOM
https://hal.univ-lorraine.fr/hal-01897934
https://hal.univ-lorraine.fr/hal-01897934
http://www.hamady.org/photovoltaics/slalom_source.zip
http://www.hamady.org/photovoltaics/slalom_source.zip
https://github.com/sidihamady/SLALOM/blob/master/Guide/slalom_guide.pdf.
https://github.com/sidihamady/SLALOM/blob/master/Guide/slalom_guide.pdf.
https://github.com/sidihamady/SLALOM/blob/master/Guide/slalom_guide.pdf.
http://www.scipy.org/
https://www.python.org/
https://www.python.org/
http://www.nmt.edu/tcc/help/pubs/tkinter/tkinter.pdf

	SLALOM: Open-source, portable, and easy-to-use solar cell optimizer. Application to the design of InGaN solar cells
	1 Solar cell multivariate optimization
	1.1 Review of the traditional parametric analysis
	1.2 Review of the brute force optimization
	1.3 Newton-based optimization methods

	2 The multivariate optimizer implementation
	2.1 SLALOM architecture
	2.2 Customizing SLALOM

	3 Application to InGaN solar cells
	3.1 Optimization of an InGaN PN junction solar cell
	3.2 Optimization with many parameters

	4 Conclusion
	Author contribution statement

	Appendix A: SLALOM guide for free download and use
	References


