Rocchio Algorithm to Enhance Semantically Collaborative Filtering

Abstract : Recommender system provides relevant items to users from huge catalogue. Collaborative filtering and content-based filtering are the most widely used techniques in personalized recommender systems. Collaborative filtering uses only the user-ratings data to make predictions, while content-based filtering relies on semantic information of items for recommendation. Hybrid recommendation system combines the two techniques. In this paper, we present another hybridization approach: User Semantic Collaborative Filtering. The aim of our approach is to predict users preferences for items based on their inferred preferences for semantic information of items. In this aim, we design a new user semantic model to describe the user preferences by using Rocchio algorithm. Due to the high dimension of item content, we apply a latent semantic analysis to reduce the dimension of data. User semantic model is then used in a user-based collaborative filtering to compute prediction ratings and to provide recommendations. Applying our approach to real data set, the MoviesLens 1M data set, significant improvement can be noticed compared to usage only approach, content based only approach.
Type de document :
Chapitre d'ouvrage
Valérie Monfort, Karl-Heinz Krempels. Lecture Notes in Business Information Processing, 226, Springer International Publishing, pp.295-311, 2015, 〈10.1007/978-3-319-27030-2_19〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01255469
Contributeur : Azim Roussanaly <>
Soumis le : mercredi 13 janvier 2016 - 17:13:56
Dernière modification le : mardi 24 avril 2018 - 13:30:34
Document(s) archivé(s) le : samedi 16 avril 2016 - 09:41:16

Fichier

LNSpringer2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sonia Ben Ticha, Azim Roussanaly, Anne Boyer, Khaled Bsaies. Rocchio Algorithm to Enhance Semantically Collaborative Filtering. Valérie Monfort, Karl-Heinz Krempels. Lecture Notes in Business Information Processing, 226, Springer International Publishing, pp.295-311, 2015, 〈10.1007/978-3-319-27030-2_19〉. 〈hal-01255469〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

361