?. {1, By a real line in C 3 we mean a set of the form {a + tb : t ? R} where a, b ? C 3 Moreover, d (t,0,0) ?(l t ) is also a real line and it intersects d (t,0,0) ?(L k 1 ,t )?. . .?d (t,0,0) ?(L k 4 ,t ) at d (t,0,0) ?(a 1,t ),..., d (t,0,0) ?(a 4,t ) The cross-ratio of the last four points equals that of a 1,t, d (t,0,0) ?(a 4,t ) equals the cross-ratio of d (t,0,0) ?(L k 1 ,t ),..., d (t,0,0) ?(L k 4 ,t ), we obtain our claim. Now observe that the complex t-axis is the singular locus of V and its image S by ? is the singular locus of ?(V ). Clearly, S is a smooth complex Nash curve,t ), respectively, depend algebraically on s = ?(t, 0, 0) ? S (cf + t and ?(t), respectively. The last two paragraphs imply that for t ? R with |t| small)) = ?(t) Since S is a smooth complex Nash curve, we may assume that h 1 , h 2 are defined in some, Moreover, the crossratios h 1 , h 2 of d (t,0,0) ?(L 1,t ), . . . , d (t,0,0) ?(L 4,t ) and d (t,0,0) ?(L 1 : S ? C are complex Nash functions. On the other hand We have ?(t) = ? 1 (t) + i? 2 (t) where ? 1 , ? 2 are real valued continuous functions and h 1 (s) = u 1 (s) + iv 1 (s), where u 1 , v 1 are real Nash functions)) = 0 for t ? R with |t| small. Since u 1 , v 1 satisfy the Cauchy-Riemann equations and h 1 is not constant, neither of u 1 , v 1 is constant. Consequently, ? 1 | R , ? 2 | R are semi-algebraic functions, which contradicts the fact that h 2 (?(t)) = ?(t) for real t

J. Bochnak and W. Kucharz, Local algebraicity of analytic sets, J. Reine Angew. Math, vol.352, pp.1-14, 1984.

J. Fernández-de-bobadilla, On algebraic representatives of topological types of analytic hypersurface germs, Journal of Algebraic Geometry, vol.21, issue.4, pp.789-797, 2012.
DOI : 10.1090/S1056-3911-2011-00575-4

C. G. Gibson, E. Looijenga, A. Du-plessis, and K. Wirthmüller, Topological stability of smooth mappings, Lecture Notes in Mathematics, vol.552, 1976.
DOI : 10.1007/BFb0095244

H. Hironaka, Stratification and Flatness, Real and complex singularities (Proc. Ninth Nordic Summer School Sijthoff and Noordhoff, pp.199-265, 1976.
DOI : 10.1007/978-94-010-1289-8_8

K. Kurdyka and G. Raby, Densit?? des ensembles sous-analytiques, 10] S. Lojasiewicz, Ensembles semi-analytiques, pp.753-771, 1965.
DOI : 10.5802/aif.1186

H. Matsumura and C. Algebra, Mathematics Lecture Note Series, 1980.

T. Mostowski, Topological equivalence between analytic and algebraic sets, Bull. Polish Acad. Sci. Math, vol.32, pp.7-8, 1984.

D. Popescu, General N??ron desingularization, Nagoya Mathematical Journal, vol.100, pp.97-126, 1985.
DOI : 10.1017/S0027763000000246

R. Quarez, The Artin conjecture for Q-algebras, Revista Matem??tica Complutense, vol.10, issue.2, pp.229-263, 1997.
DOI : 10.5209/rev_REMA.1997.v10.n2.17404

M. Spivakovsky, A new proof of D. Popescu's theorem on smoothing of ring homomorphisms, Journal of the American Mathematical Society, vol.12, issue.02, pp.381-444, 1999.
DOI : 10.1090/S0894-0347-99-00294-5

R. Swan, Néron-Popescu desingularization, Algebra and geometry, Lect. Algebra Geom, vol.2, pp.135-192, 1995.

B. Teissier, Résultats récents sur l'approximation des morphismes en algèbre commutative [d'après Artin, pp.784-259, 1994.

A. N. Varchenko, THEOREMS ON THE TOPOLOGICAL EQUISINGULARITY OF FAMILIES OF ALGEBRAIC VARIETIES AND FAMILIES OF POLYNOMIAL MAPPINGS, Mathematics of the USSR-Izvestiya, vol.6, issue.5, pp.949-1008, 1972.
DOI : 10.1070/IM1972v006n05ABEH001909

A. N. Varchenko, The relation between topological and algebro-geometric equisingularities according to zariski, Functional Analysis and Its Applications, vol.36, issue.5, pp.87-90, 1973.
DOI : 10.1007/BF01078878

A. N. Varchenkovancouver and B. C. , Algebro-geometrical equisingularity and local topological classification of smooth mappings, Proceedings of the International Congress of Mathematicians, pp.427-431, 1974.

H. Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp.205-244, 1965.