Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm

Abstract : Ultrashort single-walled carbon nanotubes, i.e. with length below ~30 nm, display length-dependent physical, chemical and biological properties that are attractive for the development of novel nanodevices and nanomaterials. Whether fundamental or applicative, such developments require that ultrashort nanotube lengths can be routinely and reliably characterized with high statistical data for high-quality sample production. However, no methods currently fulfill these requirements. Here, we demonstrate that photothermal microscopy achieves fast and reliable optical single nanotube analysis down to ~10 nm lengths. Compared to atomic force microscopy, this method provides ultrashort nanotubes length distribution with high statistics, and neither requires specific sample preparation nor tip-dependent image analysis. Ultrashort single-walled carbon nanotubes (usCNTs) hold unique physical, chemical and biological properties that can be used for applications in diverse areas. In condensed matter physics, both theory and experiments have shown that the nanotube electronic band-gap increases as their length shortens down to tens of nanometers in response to quantum confinement effect along the length axis
Type de document :
Article dans une revue
Scientific Reports, Nature Publishing Group, 2015, 5, pp.17093 (1-10). 〈10.1038/srep17093〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01254740
Contributeur : Bernadette Bergeret <>
Soumis le : mardi 12 janvier 2016 - 16:08:56
Dernière modification le : jeudi 11 janvier 2018 - 06:23:28

Fichier

GaoSRep2015_17093.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Zhenghong Gao, Laura Oudjedi, Romain Faes, Fabien Moroté, Christèle Jaillet, et al.. Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm. Scientific Reports, Nature Publishing Group, 2015, 5, pp.17093 (1-10). 〈10.1038/srep17093〉. 〈hal-01254740〉

Partager

Métriques

Consultations de la notice

392

Téléchargements de fichiers

83