Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon

Adeline Bailly 1, 2 Damien Arvor 2 Laetitia Chapel 1 Romain Tavenard 1, 2
1 OBELIX - Environment observation with complex imagery
UBS - Université de Bretagne Sud, IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
2 LETG - Rennes - Littoral, Environnement, Télédétection, Géomatique
LETG - Littoral, Environnement, Télédétection, Géomatique UMR 6554
Abstract : Mapping croplands is a challenging problem in a context of climate change and evolving agricultural calendars. Classification based on MODIS vegetation index time series is performed in order to map crop types in the Brazilian state of Mato Grosso. We used the recently developed Dense Bag-of-Temporal-SIFT-Words algorithm, which is able to capture temporal locality of the data. It allows the accurate detection of around 70% of the agricultural areas. It leads to better classification rates than a baseline algorithm, discriminating more accurately classes with similar profiles.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [12 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01254455
Contributor : Adeline Bailly <>
Submitted on : Wednesday, January 13, 2016 - 10:31:32 AM
Last modification on : Tuesday, February 5, 2019 - 12:12:26 PM
Document(s) archivé(s) le : Friday, November 11, 2016 - 12:00:11 AM

Files

main.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01254455, version 1

Citation

Adeline Bailly, Damien Arvor, Laetitia Chapel, Romain Tavenard. Classification of MODIS Time Series with Dense Bag-of-Temporal-SIFT-Words: Application to Cropland Mapping in the Brazilian Amazon. 2016. ⟨hal-01254455⟩

Share

Metrics

Record views

927

Files downloads

265