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Velocity Measurement from the Spectral Phase of a
Match-Filtered LFM Chirp.

Samuel Pinson

Abstract—Chirp signals are very convenient to perform acous-
tic measurement with high signal-to-noise ratios. But measure-
ment using those signals may present some drawbacks if a
transducer or a target is moving. Indeed match-filtered chirp
signals are not Doppler tolerant. The Doppler effect affects
their amplitude, delay and resolution. To perform a correct
match filtering that includes the Doppler shift requires a prior
knowledge of the Doppler velocity. In this paper, it is demon-
strated that the Doppler velocity can be extracted directly
from the Doppler cross-power spectrum. More precisely, the
quadratic coefficient of the Doppler cross-power-spectrum phase
is proportional to the relative velocity. Consequently, the method
has a low computational cost.

Index Terms—Doppler effect, ambiguity function, linear-
frequency-modulation (LFM) chirp, velocity measurement, pulse
compression.

I. INTRODUCTION

WHEN USING A CHIRP for acoustic measurement,
the match-filter output can be strongly affected by

the Doppler effect. Pulse compression without a proper
compensation of the Doppler effect affects amplitude, delay
and resolution of the signal [1]. To perform the correct
correlation to compensate the relative motion between a
source and a receiver or between an active system and a
target, it is necessary to first measure the relative velocity
or the target relative velocity. One way to measure the
relative velocity is to calculate the maximum likelihood by
cross-correlating the match-filter output with the ambiguity
function calculated for a wide range of velocities. But that
operation might be computationally expensive for embedded
system or to deal with an important number of measurements.

For particular applications such as underwater acoustic
communications [2] a rough velocity estimation can be made
measuring the time interval between two pulses obtained after
match filtering and use a phase locked loop [3] to optimize
the Doppler effect compensation. Under some conditions, it
is possible to extract directly the information from the match-
filtered signal. In [4], it is shown that the relative velocity can
be measured from the instant frequency variation in a match-
filtered echo if the source signal is linear-period modulated
(LPM). In this paper, it is shown that the relative velocity can
be assessed directly from a selected echo in the signal when
the chirp has a linear-frequency modulation (LFM).
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II. THEORY

Considering a moving source transmitting a LFM chirp and
a fixed receiver, the analytical emitted signal is given by:

s(t) = w(t) exp
[
i2π
(
f0t+

α

2
t2
)]

, (1)

where w(t) is an envelope centered at the origin (typically a
Gaussian or a rectangle function can be used). f0 + αt is the
instant frequency. The Doppler dependent received signal is:

r(t) = As(η(t−∆t)) , (2)

where A is an amplitude factor due to the wave propagation,
η = 1 + v/c is the time-stretching factor, c is the sound-speed
and v is the radial relative velocity and is defined positive
when the source is moving towards the receiver.

After match filtering, the received signal becomes:

χr(t) = As(η(t−∆t)) ∗ s(−t) , (3)

where ∗ is the convolution operator and ∆t is the travel time
between source and receiver.

A. Ambiguity function

To deduce the relative velocity v, one can match the received
signal with numerous Doppler stretched emitted signals s(ηt)
and find the maximum of correlation. Nevertheless, the emitted
chirp has a long duration and it might be a better strategy to
work on the match-filtered signal. Thus the compressed pulse
can be windowed and the processing can be performed on a
shorter signal. Then the match-filtered signal can be compared
to the ambiguity function:

χaf (t, η) = s(η(t)) ∗ s(−t) , (4)

by searching for the maximum of correlation between χr(t)
and χaf (t, η):

η = argmax
η

[χr(t) ∗ χaf (−t, η)] . (5)

This operation requires to compute convolutions for a large
number of relative velocity and is consequently computation-
ally expensive.

B. Doppler cross-power spectrum

Instead of correlating the match-filtered signal with the
ambiguity function for various relative velocity, it is preferable
to extract the velocity directly from the signal. More precisely,
the velocity can be extracted from the Doppler cross-power
spectrum:

FT{χr(t)} = FT{r(t)}×FT{s(t)}∗ = R(f)×S∗(f) , (6)
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where FT{.} means the Fourier transform.

To derive the Doppler cross-power spectrum, the Fourier
transform of the emitted LFM signal is first calculated:

S(f) = FT{s(t)}

=

∫ ∞
−∞

w(t) exp
[
i2π
(
f0t+

α

2
t2 − ft

)]
dt .

(7)

Inside the integral, the exponential term is varying much
faster than the smooth function w(t). This kind of integral
can be evaluated by the asymptotic approximation of stationary
phase [1]:∫ ∞
−∞

w(t) exp [iφ(t)] dt = w(tst)

√
i2π

φ′′(tst)
exp [iφ(tst)] .

(8)
where tst is the time of stationary phase where φ′(t) = 0. The
phase term in 7, its derivative and its second derivative are:

φ(t) = 2π
(
f0t+

α

2
t2 − ft

)
,

φ′(t) = 2π (αt+ f0 − f) ,

φ′′(t) = 2πα , .

(9)

One can see that the phase is stationary at t = (f − f0)/α.
Using 8, the equation 7 results in:

S(f) = w

(
f − f0
α

)√
i

α
exp

[
−iπ

(f − f0)2

α

]
. (10)

To calculate the Fourier transform of the received signal,
one can make the same calculation with the stationary phase
at t = (f/η−f0)/(ηα), or use the Fourier transform property
FT{s(ηt)}(f) = 1/ηS(f/η):

R(f) =
A

η
w

(
f/η − f0

α

)√
i

α

× exp

[
−iπ

(f/η − f0)2

α
− i2πf∆t

]
.

(11)

S(f) has a wideband spectrum. So it is not possible to
extract the velocity information by looking at the spectrum
shift in frequency. But one can notice the Doppler phase
dependence by looking at the argument of the Doppler cross-
power spectrum:

arg [R(f)× S∗(f)] = π
(f − f0)2

α
−2πf∆t−π (f/η − f0)2

α
,

(12)
which is a quadratic polynomial:

arg [R(f)× S∗(f)] = p2f
2 + p1f + p0 , with:

p2 =
π

α

(
1− 1

η2

)
,

p1 = −2π

α
f0

(
1− 1

η

)
− 2π∆t ,

p0 = 0 .

(13)

The coefficient p2 depends only on fixed parameters and the
relative velocity. Note that the coefficient p1 depends on the
time delay ∆t plus an additional delay f0α−1(1−1/η) due to
the Doppler effect. Making the approximations η2 ≈ 1+2v/c

and (1 + 2v/c)(1 − 2v/c) ≈ 1, the relative velocity can be
written as a simple function of the quadratic term coefficient:

v ≈ p2αc

2π
. (14)

For the active case (a fixed monostatic emitter/receiver and
a moving target), we have:

η =
1 + v/c

1− v/c
≈ 1 + 2v/c . (15)

In that case, it is straightforward that equation 14 simply
has to be divided by 2 to obtain the target relative speed
(v ≈ p2αc/(4π) ).

C. Implementation

To extract the coefficient p2 and deduce v, the following
algorithm is proposed.

1) Perform the match filtering χr(t) = r(t) ∗ s(−t).
2) Make an automatic detection of the compressed pulse

of interest.
3) Select a small portion of the signal that contains the

pulse.
4) Compensate the pulse delay to center it around t = 0.
5) Compute the fast Fourier transform.
6) Unwrap the spectral phase.
7) Fit the unwrapped phase with a quadratic polynomial.
8) Calculate v using equation 14.
Unwrapping the spectral phase is generally a delicate

operation. This is why step 4 consists in delaying the selected
pulse such that the spectral-phase variation is minimized.

III. EXAMPLE

For the example, a Gaussian function is chosen for the LFM
chirp envelope w(t):

w(t) =
1

σ
√

2π
exp

[
−1

2

t2

σ2

]
, (16)

where σ = 125 ms. The frequency is modulated around
f0 = 1/2(fmax + fmin) with α = (fmax − fmin)/(4σ).
Frequencies fmin = 1 kHz and fmax = 10 kHz are the
instant frequencies at t = ∓2σ. The wave speed is set to
the water sound speed c = 1500 m/s. A single pulse in the
received signal is considered with a time delay ∆t = 200 ms.
Match-filtered signals for v = -2, 0 and 2 m/s are plotted in
Fig. 1. The effect of v 6= 0 on the simulated signals shows a
lowered maximum amplitude, a time spreading with a varying
instant frequency, and a shifted maximum peak time of the
envelope. The additional delay corresponding to the Doppler
effect f0α−1(1− 1/η) = ±0.2 ms for v = ∓2 m/s is visible
in Fig. 1a and 1c.

In practice the match-filtered signal may be composed of
multiple echoes. Taking the application example of an at
sea seismic measurement with a hydrophone moored on the
seafloor and a towed source, the pulse corresponding to the
direct path between source and receiver must be distinct from
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Fig. 1: Simulated match-filtered signal for v =-2 m/s (a), 0 m/s (b) and 2 m/s
(c)
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Fig. 2: (a) Pulse extracted from the simulated signal. (b) Pulse with delay
compensation. (c) Phase of the pulse Fourier transform. (d) Unwrapped phase.

the seafloor or sea-surface reflection such that they do not
overlap. Thus the pulse can be detected by a peak detection
and the signal portion containing that pulse can be extracted.
The selected portion of the simulated pulse with v = 2 m/s is
displayed in Fig. 2a. The pulse appears in the middle of the
selected portion that is considered as a delay by the fast Fourier
transform algorithm (FFT). The consequence is a rapid phase
change as a function of frequency and possible difficulties
to unwrap the phase. This is overcome by swapping left and
right signal portion halves (Fig. 2b). Then the phase can be
taken from the FFT for frequencies between fmin and fmax
(Fig. 2c) and be unwrapped (Fig. 2d). The final step consists
in fitting the unwrapped phase with a quadratic polynomial to
obtain its coefficient p2 and calculate v.

IV. CONCLUSION

A method has been described to measure radial relative
velocity between a source and a receiver or between an
active system and a target when using a LFM chirp source
signal. It has a low computational cost and operates on match-
filtered signal if the echo of interest does not overlap another
one. It has been demonstrated that the Doppler velocity is

proportional to the quadratic coefficient of the Doppler cross-
power-spectrum unwrapped phase. Thus there is no need to
calculate various correlations to find the best match between
the match-filtered signal and the ambiguity function.
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