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Abstract—The development of marine current turbines arrays
has been an active research topic for some years. However,
many studies are still necessary in order to fully understand the
behaviour of such arrays. One of these studies is the assessment
of interaction effect between turbines in close proximity. In order
to highlight these interaction effects, experiments were carried
out in the IFREMER flume tank of Boulogne-Sur-Mer (France).
Those experiments focused on elementary interactions between
two or three 3-bladed horizontal axis turbines. To complete
these experiments, a three-dimensional software is developed
at LOMC (Université du Havre) to simulate marine current
turbines in a free flow. This paper presents the experimental
and numerical results obtained for different configurations of
elementary interactions.

Index Terms—Marine current turbine, Interacting turbines,
Experiment, Numerical computations, Wake, Performance.

I. INTRODUCTION

The development of marine current turbines arrays has been
an active research topic for some years [1]–[5]. However,
many studies are still necessary in order to fully understand
the behaviour of such arrays. One of these studies is the
assessment of interaction effect between turbines in close
proximity. In order to describe those effects, the study of
three cases of elementary interactions is proposed. The three
configurations are described in red, green and blue in Fig. 1.

The first configuration (red in Fig. 1), representing the one
studied by Mycek et al. [4], is composed of two turbines
aligned with the upstream flow. The second (green in Fig. 1)
and third one (blue in Fig. 1) were already experimentally
studied by, among others, Kervella et al. [5]. These two last
configurations are composed of two rows of turbines, one with
a single turbine and the other one composed two turbines. The
only difference between the second and third configuration is
the order of those two rows of machines.

The first part of this paper is dedicated to the presentation
of the numerical method used to compute the flow around
three bladed horizontal axis marine current turbines. Some
new features were recently implemented in the software in
order to speed up the calculation for multi-turbines config-
urations. This consists of an iterative method to the solve
the linear system representing interaction between turbines.
Additionally, a well suited preconditioner was added to obtain
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Fig. 1. Marine current turbines array with example of elementary interactions.

an accurate and computationally efficient numerical model.
Then in a second part, experimental results of interactions
between two aligned turbines are given. The third part of
this paper is dedicated to numerical results obtained for the
three configurations of elementary interactions presented here.
Eventually, conclusions are drawn and an outlook on future
numerical and experimental works is given.

II. NUMERICAL METHOD

The software developed to compute marine current tur-
bines [6] is based on the Vortex method [7]–[9]. This method is
an unsteady Lagrangian method where the flow is discretised
using vorticity carrying particles. And the turbines are repre-
sented using a panel method [10]. At first, general outlines
of the Vortex Method will be presented. Then, in a second
phase, the numerical development carried out to reduce the
computational cost for simulation with several turbines will
be detailed.

A. Vortex Method

The Navier-Stokes equations for an unsteady and incom-
pressible flow are used in their velocity/vorticity (−→u ,−→ω )



formulation:

∇ · −→u = 0, (1)

D−→ω
Dt

=
(−→ω · ∇)−→u + ν∆−→ω , (2)

where −→u is the velocity field, −→ω = ∇ ∧ −→u is the vorticity
field and ν is the kinematic viscosity. Equation (2) basically
represents the momentum equation in the velocity-vorticty
formulation.

(−→ω · ∇)−→u stands for the stretching term and
ν∆−→ω for diffusion. Thanks to viscous splitting (see Chap. 5 of
Cottet & Koumoutsakos [9]), diffusion is handled via a Particle
Strength Exchange model initially developed by Degond &
Mas-Gallic [11] and Choquin & Huberson [12]. Additionally,
an LES model with a turbulent eddy viscosity based on the
work of Mansour et al. [13] completes the numerical model for
diffusion. One can refer to [6] for more detailed information.
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Fig. 2. Decomposition of the Vortex method.

The Helmholtz decomposition of the velocity field (eq. (3))
is used in order to decompose the velocity vector:

−→u = ∇∧
−→
ψ +∇φ+−→u∞ = −→u ψ +−→u φ +−→u∞. (3)

Thus the velocity field is divided into three parts:
• a potential component −→u φ representing the influence

of the turbines blades on the flow (see Fig. 2). This
component −→u φ of the velocity field is obtained using
a panel method [10] to solve

∆φ = 0. (4)

Equation (4) is obtained by introducing equation (3)
in the continuity equation (eq. (1)). Evaluation of this
potential velocity may lead to some increases in term of
computational cost for multiple turbines computations.
Sub-section II-C details more precisely the developed
computational techniques in order to cope with this
difficulty.

• a rotational component −→u ψ representing the wake of the
turbines (see Fig. 2). The component −→u ψ is the solution
of the equation

∆
−→
ψ = −−→ω , (5)

obtained by introducing the Helmholtz decomposition
(eq. (3)) in the vorticity definition −→ω = ∇∧−→u [6].

• a constant vector −→u∞ representing the upstream tidal cur-
rent. The upstream velocity can be modified as presented
in ref. [14] in order to take into account for ambient
turbulence.

In order to make the link between the rotational and the
potential parts of the velocity, particles are emitted at the
trailing edge thanks to a Kutta-Joukowski condition [6], [15],
[16]. The emitted particles are then advected in the flow as
shown in Fig. 2. The emission scheme was recently modified
in order to take into account more precisely the blades’
feet influence on the near wake of the turbine. Thanks to
those modifications an improvement of the near wake (≤ 4
diameters) representation was achieved.

As for the potential part −→u φ of the velocity, representing the
influence of the turbines, it is obtained by using a distribution
of normal dipoles on the turbines surface S. In order to achieve
that, the turbine is divided into NP surface elements. Each of
those elements is defined by its centre P , its normal vector
−→n (P ), its surface dsP and µP its normal dipole supposed
constant on the surface element. Thus, the velocity −→u φ can
be expressed on each point M as the sum of the contribution
of each surface element Pj :

−→u φ(M) =
1

4π

NP∑
j=1

µPj
∇M

(−−−→
MPj · −→n (Pj)

|
−−−→
MPj |3

)
dsPj

. (6)

The dipole distribution is obtained at each time step thanks
to a slip condition at the centre P of each surface element.
This slip condition imposes a normal velocity equal to zero in
the mobile frame of the blade:

−→u (Pj) · −→n (Pj) = −→uΩ(Pj) · −→n (Pj) ∀j ∈ J1, NP K, (7)

where −→uΩ(Pj) represents the velocity induced at the centre
of the surface element j by the rotation of the blade. This slip
condition (7) on each surface element leads to the resolution
of the linear system (8). The linear system (8) is a matrix
system of size NP and needs to be solved at each time step:

A−→µ =
−→
b , (8)

where the matrix A is call influence matrix and its components
Aij are:

Aij =

(
1

4π∇Pi

(−−−→
PiPj ·−→n (Pj)

|
−−−→
PiPj |3

)
dsPj

)
· −→n (Pi)

∀i, j ∈ J1, NP K.
(9)

The ith elements of
−→
b , the right hand side of eq. (8) is

basically the translation of the free slip condition (eq. (7))

bi = −
(−→u∞(Pi) +−→u ψ(Pi)−−→uΩ(Pi)

)
·−→n (Pi) ∀i ∈ J1, NP K,

(10)

B. Turbine description and geometrical parameters

The turbines used in this study are anti-clockwise three
bladed horizontal axis turbines. The turbines blades are de-
signed from a NACA63418 profile. More details about the
blades geometry are given in Pinon et al. [6]. An example of
the mesh used in numerical simulation is shown in Figure 3.
The different parameters describing the mesh are:
• dh the inter-particle spacing;
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Fig. 3. Description of the mesh

• NTEB
the number of element representing a blade trailing

edge (red in Figure 3);
• NTEH

the number of element representing the hub trail-
ing edge (blue in Figure 3);

• ε the smoothing parameter which is proportional to dh:

ε = 1.5× dh. (11)

The ε smoothing parameter is used in order to desingularise
the Biot & Savart equation, solving equation (5) and not
presented here. The reader can refer to ref. [6] for clarification.
The different parameters values describing the meshes are
presented in Table I.

dh NTEB
NTEH

ε NP

0.158 5 6 0.236 488
0.113 7 8 0.169 641
0.072 11 12 0.107 964
0.053 15 16 0.079 1278
0.034 23 24 0.051 1914

TABLE I
DESCRIPTION OF THE DIFFERENT MESH PARAMETERS.

C. Case of interacting turbines

The linear system (8) has to be solved at each time step. In
the case of computation with a single turbine, the matrix A is
constant. Indeed the definition of its components Aij (eq. (9))
is only geometrical. And as the turbine geometry is supposed
constant over time, therefore the matrix A is constant over
time as shown in Fig. 4. The influence matrix being constant,
its inverse matrix A−1 can be evaluated at the beginning of
the computation, stored and re-used at each time step. This
configuration only costs a single matrix-vector multiplication
per time step, which is not critical.

Unfortunately the situation becomes more complicated for
simulations with several machines. In fact, as shown in Fig. 5,
the influence matrix A is modified at each time step as the
relative position between turbines changes over time (relation
5 (green) in Fig. 5). Therefore, the linear system (8) needs

to be fully resolved at each time step. Matrix inversion being
unaffordable for large turbines array configuration, an iterative
method was then chosen to solve the system with a more
reasonable computational cost.

In order to solve this linear system (8) efficiently, differ-
ent iterative methods were tested: a Jacobi method, a basic
Conjugate Gradient (CG) and a Bi-Conjugate Gradient Sta-
bilized (Bi-CGSTAB). The influence matrix A being neither
symmetrical nor positive-definite nor diagonally dominant, the
Bi-CGSTAB method [17] was the only method which assures
the solution convergence for such matrices. The matrices being
close to symmetry, close to diagonal dominance and with
only very few negative eigen values, the other methods were
however tested.

Table II depicts convergence comparison of different iter-
ative methods in the case of a configuration with 4 turbines
for different mesh sizes dh (see Table I of Sub-section II-B).
The integer values stand for the number of iteration i required
for the leftover |Axi − b|/|b| to reach the machine precision
(≈ 2.2 · 10−16). If the method needs more than 500 iterations
to reach that precision, then the leftover value is displayed
in parenthesis. As assumed, and now further validated by the
results presented in Table II, the Bi-CGSTAB method is the
only one to converge whereas the two other methods hardly
achieve a leftover of 10−2 after 500 iterations.

Moreover, it is well known that an appropriate precondi-
tioning can highly reduce the number of iterations necessary
to obtain the convergence of an iterative method. A basic
Jacobi preconditioning was first tested without much success
(see Table II). One of the most noticeable property of the
influence matrix A is that the diagonal blocks represent the
influence between two panels of the same turbine (relation 1
to 4 in Fig. 5). Thus in the case of n interacting turbines, the
matrix A has a natural n constant diagonal blocks property
and only the non-diagonal blocks change over time. Taking
advantage of this property, a block-Jacobi preconditioner is
also used in order to speed-up the Bi-CGSTAB method (see
Table II). One can clearly observe that only 3 iterations per
time step are now required with this preconditioning. Con-
jugate Gradient methods with a block-Jacobi preconditioner
also performs well with only 5 iterations per time step. The
Conjugate Gradient algorithm being less CPU time consuming,
this alternative could have being chosen as a more effective
solution. However, convergence is not mathematically proven
for our matrices so the conservative solution of block-Jacobi
preconditioning Bi-CGSTAB algorithm was finally chosen. A
complete and detailed description regarding this aspect of the
method is under preparation for future publication. However,
this new block-Jacobi preconditioned Bi-CGSTAB method
really speeds up the computation. And it offers the possibility
of multi-turbines configurations, even for fine discretisations of
the turbines. Some examples of multi-turbines configurations
will be presented in the following section IV.
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Fig. 4. Influence matrix construction in the case of a single turbine.
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Fig. 5. Influence matrix construction in the case of a two interacting turbines.

III. EXPERIMENTAL STUDY

A. Experimental setup
The experimental set-up used at the IFREMER flume tank

of Boulogne-sur-Mer (France) is described in Fig 6 and much
more details are available in ref. [18] and [19]. The main
experimental parameters used during those trials are:
• the upstream velocity U∞ = |−→u∞|,
• the ambient turbulence intensity I∞

I∞ = 100
√

1
3 [σ2(u∞)+σ2(v∞)+σ2(w∞)]

ū2
∞+v̄2∞+w̄2

∞
, (12)

whose values are set either to I∞ = 3% or 15%.
• the Tip Speed Ratio (TSR)

TSR =
ΩxR

U∞
, (13)

where R = D/2 stands for the radius of the turbine model
and Ωx stands for its rotation speed.

The experimental trials were performed using three bladed
horizontal axis turbines regulated in rotation speed. The three
experimental models of turbine had a 0.70m diameter, which
corresponds to a scale of around 1/25th and Reynolds number
range from 1.4 × 105 to 4.2 × 105. The Reynolds number is
based on the turbine radius R, the free stream velocity U∞
and the kinematic viscosity ν. The turbines performances are
measured thanks to a load cell and a torque sensor (see Fig 6).
Hence the performances are determined by the calculation of
power coefficient CP and trust coefficient CT :

CP =
MxΩx

1
2ρπR

2U3
∞
, (14)

CT =
Fx

1
2ρπR

2U2
∞
, (15)

with Mx the axial moment (or torque), defined as the x-
component moment (x being the upstream current direction),



Without preconditioning Jacobi Jacobi by blocs
preconditioning preconditioning

dh Jacobi CG Bi-CGSTAB CG Bi-CGSTAB CG Bi-CGSTAB
0.158 (10−2) (10−2) 194 (100) 94 5 3
0.113 (10−2) (10−2) 193 (10−2) 123 5 3
0.072 (10−1) (101) 269 (101) 150 5 3
0.053 (10−1) (101) 301 (100) 164 5 3
0.034 (10−1) (100) 288 (109) 143 5 3

TABLE II
CONVERGENCE COMPARISON OF DIFFERENT ITERATIVE METHOD IN THE CASE OF A CONFIGURATION WITH 4 TURBINES FOR DIFFERENT MESH SIZES dh.

THE INTEGER VALUES STAND FOR THE NUMBER OF ITERATION i NEEDED FOR THE LEFTOVER |Axi − b|/|b| TO REACH THE MACHINE PRECISION
(≈ 2.2 · 10−16). IF THE METHOD NEEDS MORE THAN 500 ITERATIONS TO REACH THAT PRECISION THEN THE LEFTOVER ORDER OF VALUE IS DISPLAYED

IN PARENTHESIS.
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Fig. 6. Schematic view of the experimental setup for the case of two interacting turbines aligned with the upstream current (red in Fig. 1).

ρ the fluid density and Fx the axial force on the whole
turbine (including the blades, hub and mast). As for the
wake measurements, a two components Laser Doppler Ve-
locimetry (LDV) system was used. The present study aims
to numerically reproduce the elementary interaction effects
obtained experimentally between two or three turbines. On
the contrary to [14], the paper will not take into account the
effects of the ambient turbulence and for that reason, only
the experimental results obtained with the lower turbulence
intensity (i.e. I∞ = 3%) will be considered. The experimental
results used in this paper for numerical/experimental validation
are those of Mycek et al. [19] for the configuration with
two aligned turbines and those of Kervella et al. [5] for the
configurations with three turbines.

B. Experimental results

The first elementary interaction presented here is the case
of two aligned turbines with the flow as presented by the
red box in Figure 1. This corresponds to the simplest but

most critical interaction possible as the wake of the upstream
turbine directly hits the second turbine. Figure 7 displays
the wake velocity maps downstream of a single turbine and
downstream of a second turbine with all the same Tip Speed
Ration (TSR = 3.67). This experimental comparison of ve-
locity maps shows strong differences between the two wakes.
Indeed the velocity deficit is more important in the near wake
(x+∗ ≤ 2) for the second turbine configuration than in the
case of a single turbine. This can be explained by the fact that
the flow has absolutely not recovered its infinite velocity −→u∞
at the location of the second turbine, indicated by the black
line of Figure 7(a). On the contrary, the velocity recover in the
far wake (x+∗ ≥ 4) is better in the wake of a second turbine
than in the case of a single machine.

Thus, the wake of the downstream turbine dissipates more
quickly than the one of a single turbine. The encountered
phenomenon is complex because vortical coherent structures
issuing from the wake of the upstream turbine combined
with wake generated turbulence increase the overall turbulence
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(a) Single turbine velocity map
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(b) Downstream turbine velocity map

Fig. 7. (a) Wake velocity map of a single turbine and (b) wake velocity map
of the downstream turbine for two aligned turbines configuration with inter-
device distance of a1 = 4D as presented on the schematic representation
of Figure 1. The other parameters are U∞ = 0.8m.s−1 and TSRsingle =
TSRup = TSRdown = 3.67. x∗ = x/D, y∗ = y/D and x+∗ corresponds
to a non dimensional downstream position from the second turbine x∗ =
a1/D + x+∗.

intensity at the location of the downstream turbine, indicated
by the black line of Figure 8(a). The turbulence intensity
level at this location is around 12% to be compared with the
ambient turbulence I∞ = 3% of the upstream flow. A higher
wake dissipation for higher ambient turbulence I∞ was already
highlighted in previous studies [18] but the case of two aligned
turbines is much more complex. Some evidences of that can
be observed on the power coefficient CP of the downstream
turbine, whose determination is not trivial. However, a detailed
study on the second turbine efficiency is presented in ref. [19]
based on experimental results. Some experimental/numerical
cross validation on this configuration were already presented
using the same numerical tool [4] and some improvements
on this results are going to be presented and discussed in the
following section together with new numerical results on three
turbines configurations.

IV. NUMERICAL STUDY

A. The case of two aligned turbines

As mentioned earlier, this configuration of elementary in-
teraction is critical if ones want to accurately compute perfor-
mances of turbines arrays. In order to validate the performance
assessment of the second device in such a configuration, a ratio
rCP

(eq. (16)) between the downstream device performance
CdownP (TSR) with respect to the single turbine performance
CsingleP (TSR) = CupP (TSR) is calculated either experimen-
tally or numerically. A similar ratio rCT

(eq. (17)) is evaluated
for thrust coefficient CT :
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(a) Single turbine turbulence intensity map
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(b) Downstream turbine turbulence intensity map

Fig. 8. (a) Turbulence intensity map in the wake of a single turbine and
(b) turbulence intensity map in the wake of the downstream turbine for two
aligned turbines configuration with inter-device distance of a1 = 4D as
presented on the schematic representation of Figure 1. The other parameters
are U∞ = 0.8m.s−1 and TSRsingle = TSRup = TSRdown = 3.67.
x∗ = x/D, y∗ = y/D and x+∗ corresponds to a non dimensional
downstream position from the second turbine x∗ = a1/D + x+∗.

rCP
(TSR) =

CdownP (TSR)

CupP (TSR)
(16)

rCT
(TSR) =

CdownT (TSR)

CupT (TSR)
. (17)

These two ratios evaluate the proportion of a single turbine
performance attained by the downstream turbine. Figure 9
presents numerical and experimental values of these ratios
as a function of the inter-devices distance a1/D. First, the
two experimental curves (for TSR = 3 and 4) show that
these two ratios grow with the inter-devices distance a1/D. As
expected, this growth proves that the more distance between
turbines, the better the second turbine performances are. But
those experimental results also show that even for large
distances between the two devices, the downstream turbine
performances are highly reduced. For instance, for the given
turbulence intensity of I∞ = 3%, the power coefficient CP
of the downstream turbine only attains around 80% of the
single turbine performance for an inter-device distance a1

of 10 diameters (D). Thus, there is a loss in performance
of 20% for the second turbine even 10D behind. These
experimental results, as well as some others, are well presented
and discussed in Mycek et al. [19].

Secondly, Figure 9 also presents the numerically predicted
values together with the experimental ones. The computations
were run using a discretisation dh = 0.072 of Table I for
an overall computations of 24 s for the configuration with 4
diameters inter-devices distance to 32 s for the 8 diameters
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Fig. 9. Numerical and experimental comparison of CP and CT ratio of
equations (16) and (17) for a given TSR = TSRup = TSRdown indicated
in the legend. Most experimental results were reproduced from ref. [19] and
the former numerical results from ref. [4].

one. The presented values are the average values of the last
4 s of the overall computation.

The presented results shows a rather good agreement be-
tween experimentally and numerically predicted values. In-
deed, the blue curve in Figure 9 represents the recent values
of rCP

and rCT
obtained thanks to the latest development

on the particles emission scheme. These new values have a
better agreement with the experiments than those previously
presented by Mycek et al. [4] (red in Figure 9). This improve-
ment in the numerical result is especially noticeable when
the two turbines are close (i.e. a1 = 4D; and a1 = 6D to
a smaller extent). The results presented in Figure 9 tend to
give a good confidence in the numerical tool to represent the
negative interactions effects on the performance of the second
turbine. However, work is also under progress in order to
assess these ratios for other TSR in order to have accurate
values for different inter-device spacing and different TSR.

Additionally, the ambient turbulence plays an important role
for such a simple configuration (see ref. [19]), for that reason,
similar computations with different ambient turbulences I∞
are already planned following the work of Carlier et al. [14].
And finally, a systematic study of wake assessment, even for
the downstream turbine, is planned the near future in order
to compare with the existing experimental database. So far as
wakes are considered, the following sub-section will present

wake computations for three turbines configurations similarly
to the experimental results of Kervella et al. [5].

B. Interactions between three turbines
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Fig. 10. Numerical wake for the configuration 2 (green in Figure 1) at TSR =
2 for the three turbines configurations. The inter-device distances are defined
so that a3 = 4D and b1 = 2 ∗ b2 = 1D with respect to the scheme of
Figure 1.

Figures 10 and 11 depict instantaneous velocity fields for
three turbines configurations inspired from the experimental
work of Kervella et al. [5]. These two configurations complete
the possible elementary interactions presented in Figure 1
as they refer to the green and blue boxes. The inter-device
distances are defined so that a3 = 4D and b1 = 2 ∗ b2 = 2D.
These instantaneous velocity fields correspond to t ≈ 28.2 s.
The computations were run using a discretisation dh = 0.158
of Table I for 399 unsteady iterations of time dt = 0.07066 s.
The presented results actually do not really match with the
experiments of Kervella et al. [5] in terms of TSR val-
ues. Additionally, as they correspond to the coarsest mesh
discretisation, improvement in the quality of the result are
expected in a near future. However, these results are already
very interesting qualitatively as many physical aspects are
already observable even for these discretisations, like the wake
interaction clearly visible on both Figures 10 and 11 as soon
as the wake of the first row of turbine(s) reaches the second
row.
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Fig. 11. Numerical wake for the configuration 3 (blue in Figure 1) at TSR =
2 for the three turbines configurations. The inter-device distances are defined
so that a3 = 4D and b1 = 2 ∗ b2 = 1D with respect to the scheme of
Figure 1.

V. CONCLUSIONS AND FURTHER WORKS

The three dimensional software [6] developed at LOMC
in partnership with IFREMER was used in order to compute



elementary interactions between tidal turbines. Recent numer-
ical developments carried out to reduce the computational
cost of simulations with several turbines were presented. The
choice of the preconditioned Bi-CGSTAB method to solve the
linear system during simulation with multiple turbines was first
presented and justified.

As a matter of results, this paper presents studies of elemen-
tary interactions between two or three turbines. The study of
two aligned turbines have shown that the performance of the
downstream turbine is highly reduced, especially in the case of
low ambient turbulence. Indeed, the power coefficient CP of
the downstream turbine still presents a 20% loss with respect
to a single turbine, even for an inter-device distance a1 of
10 diameters. Many more details of these interaction effects,
obtained experimentally, are presented in Mycek et al. [19].

The present study mainly focuses on numerical computa-
tions of these elementary interactions. First, the case of two
aligned turbines was computed in terms of performance anal-
ysis. This study highlights the improvement of the numerical
results achieved thanks to the recent development on the par-
ticles emission scheme, with respect to a previous attempt [4].
Preliminary results on the case of three turbines, similarly to
the configuration of Kervella et al. [5], are also presented in
terms of wake velocity maps. These test cases gave accurate
results when compared to the experiments and computations
of arrays with several turbines are close to be accessible.
However, the ambient turbulence plays an important role (see
for instance ref. [19]). For that reason, similar computations
with different ambient turbulences I∞ are already planned
following the work Carlier et al. [14]. And finally, a systematic
study of performances and wake assessment is planned in the
near future in order to compare with the existing experimental
database of two and three turbines interaction for the two ac-
cessible turbulence intensities (i.e. I∞ = 3% and I∞ = 15%).
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une méthode d’intéraction fluide/structure,” in 9èmes Journées de
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