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1. Introduction and formulation of the problem

Many interesting new results about conformal field theories 
(CFTs) in d > 2 dimensions have been recently obtained using the 
bootstrap approach. In this method one uses the operator prod-
uct expansion (OPE) associativity to constrain the CFT data (local 
operator dimensions and their OPE coefficients). Operationally, one 
expands the four point functions in conformal partial waves and 
imposes that expansions in different channels give the same re-
sult.

The resulting “conformal bootstrap equations” have a nice fea-
ture that they are totally mathematically well defined, expressing 
the agreement between convergent power series with nonempty 
and overlapping regions of convergence [1]. In practice one would 
like to know how fast these series converge. This question was al-
ready studied in [1], and here we will give it a fresh look, but first 
let us explain why this is important. For us the main interest in 
this question comes from the need to put on solid ground Gliozzi’s 
approach to the bootstrap.

Recall that there are currently two competing approaches to the 
numerical bootstrap. In the first one, known as the linear/semidef-
inite (LSD) programming [2–10],1 one actually does not truncate 
the expansion, or rather truncates it at such high dimension and 
spin of the exchanged operators that the truncation error is abso-
lutely negligible. The obtained results take form of rigorous bounds 

* Corresponding author at: Laboratoire de Physique Théorique de l’École Normale 
Supérieure (LPTENS), Paris, France.

1 We just cite a few papers where important development steps of the method 
were made.
http://dx.doi.org/10.1016/j.physletb.2016.01.004
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
on the space of CFT data. It is using this approach that most nu-
merical results were obtained. Here we will only highlight the 
study of the 3d Ising model which yielded world’s most precise 
estimates on its leading critical exponents [6,8–10].

In the second approach, by Gliozzi and collaborators [11–13], 
one does truncate the expansion pretty severely, keeping just a 
handful of low-dimension operators. One then completely neglects 
the truncation error and, expanding around the usual middle point 
to a finite order, gets a system of nonlinear equations to solve 
for the dimensions of the retained operators and their OPE co-
efficients. This method has several advantages over the LSD pro-
gramming: it is more intuitive, not so heavy on the numerical 
side, and is applicable for both unitary and non-unitary theories. 
On the other hand it is not as systematic, lacking as of now a 
built-in mechanism to estimate the truncation-induced error. There 
are e.g. small but noticeable differences between the 3d Ising criti-
cal exponents determined by using Gliozzi’s approach [12] and the 
LSD programming [8,10]. The LSD results are rigorous; they also 
agree with Monte Carlo (while being more precise), while Gliozzi’s 
approach does not.

We consider it an important open problem to find a modifica-
tion of Gliozzi’s approach which would keep its above-mentioned 
positive features, while allowing to estimate an error induced by 
the truncation. Having a good control over the rate of convergence 
of the conformal block expansion is a prerequisite for this task.

For concreteness and simplicity, in this paper we will study 
a conformal four point function of identical Hermitean primary 
scalar operators:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = g(u, v)/(x2 x2 )�φ . (1.1)
12 34
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The function g(u, v) depends on the usual conformally invariant 
cross ratios and can be expanded in conformal blocks of the ex-
changed primaries:

g(u, v) =
∑
O

λ2
O gO(u, v) . (1.2)

We are interested in the convergence rate of this expansion. We 
will work in the Euclidean space although the Minkowski case is 
also interesting [14–17]. We will consider here the unitary case 
when all OPE coefficients are real and hence λ2

O > 0.
The convergence question was already studied in [1]. To state 

their result we need some CFT kinematics. It is standard to 
parametrize any four point function configuration in the Euclidean 
space in terms of a complex number z ∈ C\(1, +∞). This is done 
by mapping the four points to a plane, and then moving them 
within this plane to positions 0, z, 1, ∞. The relation between u, 
v and z is

u = |z|2, v = |1 − z|2 . (1.3)

It is very convenient to further map the range of z to the unit disk 
by introducing the variable

ρ = z/(1 + √
1 − z)2, |ρ| < 1 . (1.4)

This has the meaning of placing the points at the positions ρ , −ρ , 
1, −1. The inverse transformation is z = 4ρ/(1 +ρ)2. From now on 
we switch from u, v to use ρ as our main conformally invariant 
parameter. If needed, one can go back to u, v via (1.3), (1.4).

The convergence bound proved in [1] states2:∣∣∣∣∣∣
∑

O:�O>�∗
λ2
O gO(ρ)

∣∣∣∣∣∣ �
(2�∗)4�φ

�(4�φ + 1)
|ρ|�∗ , �∗ → ∞ . (1.5)

This should be read as follows. In the lhs we have the tail of the 
conformal block expansion corresponding to the primary opera-
tors of dimension above some cutoff dimension �∗ (and all spins). 
This is the error we will make in the four point function if we 
drop all such operators. We now hold ρ fixed and take the limit 
�∗ 	 1.3 Since any configuration corresponds to |ρ| < 1, we see 
that for large �∗ the tail becomes exponentially small, because of 
the factor |ρ|�∗ . One configuration particularly important for the 
bootstrap analysis is z = 1

2 , which gives ρ = 3 − 2
√

2 ≈ 0.17. We 
see that the convergence at this point is quite fast.

Simple numerical experiments in gaussian CFTs where the con-
formal block expansion is exactly known can be used to check that 
the exponentially decreasing factor |ρ|�∗ in (1.5) is best possible. 
On the other hand, the same experiments indicate that the power 
of �∗ in the prefactor is not optimal. Improving the prefactor will 
be the main goal of our paper.

2. Review of [1]

That the prefactor in (1.5) is not optimal has a simple origin in 
the way that estimate was derived in [1]. Let’s review the deriva-
tion, and then see how it can be improved.

Step 1. One observes that the conformal blocks have an expan-
sion of the form [18]

gO(ρ) =
∑
δ, j

fδ, jC j(cosφ)rδ , (2.1)

2 a ≈ b and a � b (x → x0) mean limx→x0 (a/b) = 1 and lim supx→x0
(a/b) � 1, 

respectively.
3 More precisely, the bound (1.5) sets in for �∗ 	 �φ/(1 − |ρ|) [1].
where in the lhs ρ = reiφ , in the rhs δ, j are the dimensions and 
spins of the primary operator O = O�,l and of its descendants. In 
particular δ = � + n, n ∈ N0, while j ranges between l ± n. The C j

are Gegenbauer polynomials in cosφ. The only important thing for 
us is that they take their maximal value, normalized to 1, at φ = 0. 
Finally fδ, j are relative coefficients of descendants with respect to 
that of the primary. Let’s normalize the conformal block by setting 
the primary coefficient to one: f�,� = 1. The rest of the coefficients 
are then fixed by conformal symmetry. It’s important that they are 
all nonnegative:

fδ, j � 0 . (2.2)

This condition is satisfied as long as the primary field is above the 
unitarity bound (which is true since we assume we have a unitary 
theory).

Step 2. Two simple consequences of (2.1) are:

|gO(reiφ)| � |gO(r)| , gO(r) > 0 . (2.3)

This means that it’s enough to study convergence at real ρ , since 
for nonzero φ it will be only faster.

Step 3. So from now on we specialize to the real axis. Consider 
two series representations of the same function g(r): the confor-
mal block expansion

g(r) =
∑
O

λ2
O gO(r) (2.4)

and

g(r) =
∑

δ

pδ rδ . (2.5)

To obtain the second series we simply plug in the series repre-
sentation (2.1) of each conformal block into (2.4) and collect all 
powers of r with their respective coefficients. So pδ = ∑

λ2
O fδ, j

where the sum is over all descendants having the scaling dimen-
sion δ (no matter what j and the primary are). Clearly pδ � 0. 
We will call a power series whose all coefficients are positive a 
coefficient-positive series.

Now the tail of the first series is strictly smaller than the tail of 
the second series:∑
O:�O>�∗

λ2
O gO(r) <

∑
δ>�∗

pδ rδ . (2.6)

This is because the tail on the rhs contains all terms which are 
present on the lhs, and in addition it contains contributions of 
descendants of dimension δ > �∗ coming from primaries of di-
mension �O ��∗ .

As a matter of fact, Ref. [1] established the convergence esti-
mate on the tail of the second series, and used (2.6) to say that 
the first tail satisfies the same estimate. It is here that the prefac-
tor optimality is lost. Here we will try to do better, but first let us 
complete the review.

Step 4. Notice that the full four point function with points posi-
tioned at r, −r, 1, −1 has in the limit r → 1 the asymptotics

〈φ(r)φ(−r)φ(1)φ(−1)〉 ≈ 1/(1 − r)4�φ , (2.7)

which follows from applying the OPE for the two pairs of oper-
ators which become close to each other. Notice that as usual we 
normalize the operators with the unit two point function coeffi-
cient. Given (1.1), this gives the asymptotics for g(r):

g(r) ≈ 24�φ /(1 − r)4�φ (r 	 1) . (2.8)
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Putting together this fact with the power series representa-
tion (2.5), we find ourselves within the assumptions of the Hardy–
Littlewood (HL) tauberian theorem, which establishes the asymp-
totics for the integrated coefficients pδ :

P (E) :=
∑
δ�E

pδ ≈ (2E)4�φ

�(4�φ + 1)
, E → ∞ . (2.9)

A physicist would normally try to fit a powerlaw assumption about 
pδ to the asymptotics (2.8), obtaining

pE ≈ 24�φ E4�φ−1

�(4�φ)
(naive), (2.10)

and then by integration (2.9). Notice however that in a CFT pδ is 
not a smooth function but a discrete sequence. It’s not a totally ob-
vious matter to show that the result (2.9) still holds under these 
circumstances. The assumption pδ � 0 is crucial. The naive argu-
mentation gives a quick way to recover the answer but it’s not a 
substitute to the proof. In fact it’s known to fail completely for the 
subleading terms in the asymptotics. See the book [19] for a thor-
ough review of the HL theorem and its ramifications.

From (2.9), the tail can be estimated as follows (denote r = e−t , 
t > 0):

∑
δ>�∗

pδ e−tδ = t

∞∫
�∗

dE [P (E) − P (�∗)]e−t E

� t

∞∫
�∗

dE P (E)e−t E

≈ t

∞∫
�∗

dE
(2E)4�φ

�(4�φ + 1)
e−t E

� (2�∗)4�φ

�(4�φ + 1)
e−t�∗ . (2.11)

Here we integrated by parts in the first line, then dropped the 
negative term −P (�∗), used the HL estimate on P (E), and the 
asymptotic behavior of the incomplete gamma function to con-
clude. The last step requires �∗ 	 �φ/t .

Putting together this estimate and (2.6) we obtain (1.5) for real 
r < 1. By Step 2, the same bound is valid for all complex ρ = reiφ .

It’s instructive to compare (2.11) with an estimate we would 
have obtained if we just approximated the sequence pδ by the 
naive powerlaw (2.10):

∑
δ>�∗

pδ e−tδ ≈
∞∫

�∗

dE pE e−t E

≈ 24�φ �
4�φ−1
∗

t �(4�φ)
e−t�∗ (naive) . (2.12)

The reason why this naive estimate has a better prefactor can be 
traced back to having dropped −P (�∗) in the chain of estimates 
leading to (2.11). If P (E) is a nice powerlaw, there is a near cance-
lation between P (E) and −P (�∗) for E close to �∗ , which sharp-
ens the bound.4 To justify this cancelation in general, we would 
need some sort of subleading asymptotics for P (E), and unfor-
tunately this is not available; see the discussion after Eq. (4.20) 
in [1]. So (2.11) is the best we currently have in full generality.

4 We thank Petr Kravchuk and Hirosi Ooguri for discussions concerning this point.
3. 3d conformal blocks on the real axis

As indicated in the previous section, the loss in the prefactor 
of the convergence rate estimate of [1] comes from treating the 
primaries and the descendants in the conformal blocks on equal 
footing. There are many terms in the rhs of (2.6) which are not 
present in the lhs. To improve the estimate we should think of 
a conformal block as a whole, instead of separating it into con-
stituents. However, conformal blocks in general are complicated 
special functions, while the HL theorem is for sums of powers of r. 
While there are generalizations of the HL theorem valid for more 
general functions of r, here we will demonstrate a more simple-
minded approach.

We stumbled on the possibility of this approach while studying 
the conformal blocks in 3d. We will therefore start by presenting 
these results, which are of independent interest.

As shown in [20], conformal blocks on the real axis satisfy 
an ordinary differential equation. This is not obvious since as a 
function of complex ρ they satisfy a partial differential equation. 
However there are in fact two PDEs: the well-known second order 
one coming from the quadratic Casimir, and in addition a fourth 
order one coming from the quartic Casimir. Taken together these 
two PDEs imply an ODE on the real axis.

The relevant ODE is obtained by specializing to the case of 
equal external operator dimensions by setting P = S = 0 in (4.10a) 
of [20]. It takes the form

D4 g�,l(r) = 0 (3.1)

with

D4 = (r − 1)3(r + 1)4r4 d4

dr4

+ 2(r − 1)2(r + 1)3r3{(2ε + 5)r2 + 2ε − 1} d3

dr3

− 2(r − 1)(r + 1)2r2
{
(c2 − (ε + 4)(2ε + 3)) r4

− 2(2ε2 + c2 + 3ε − 5)r2 − 2ε2 + c2 + ε
} d2

dr2

− 2(r + 1)r
{
(2ε + 3)(c2 − 2(ε + 1))r6

+ (4(−2ε2 + ε + 3) − c2(2ε + 5))r4

+ (c2 + 2(ε − 1)) (1 − 2ε)r2 + (1 + 2ε)c2

} d

dr

+ (1 − r){(2(2ε + 1)c2 − c4)r
6 + 2(−c4 + 2(2ε + 1)c2)r

5

+ (c4 + 2(6ε − 1)c2)r
4 + 4r3(c4 + 2c2(2ε − 1))

+ (c4 + 2c2(6ε − 1))r2 + 2(2c2(2ε + 1) − c4)r

+ 2c2(2ε + 1) − c4} .

Here ε = d/2 − 1 while c2 and c4 are the quadratic and quartic 
Casimir eigenvalues expressed in terms of the primary dimension 
and spin:

c2 = 1
2 [l(l + 2ε) + �(� − 2 − 2ε)],

c4 = l(l + 2ε)(� − 1)(� − 1 − 2ε). (3.2)

It turns out that the above equation can be solved in d = 3 by a 
judicious substitution. To guess the substitution, consider first the 
conformal blocks of the “leading twist” operators for which

� = l + 2ε, l = 0,1,2 . . . (3.3)
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For l � 1 this is the minimal dimension allowed by the unitarity 
bound, and the corresponding operators are the conserved cur-
rents. In the z variable, these conformal blocks can be inferred 
from Eq. (2.32) in [18] (see also (A.6) in [20]):

gl+2ε,l(z) = zl+2ε
2 F1(l + ε, l + 2ε;2l + 2ε; z)

(z < 1 real) . (3.4)

This is valid for all d. For d = 3 we can use the hypergeometric 
identity (see [21], 2.1.5)

za
2 F1(a,a + 1

2 ;b; z) = (4r)a
2 F1(2a,2a − b + 1;b; r) . (3.5)

Adjusting the normalization constant, we obtain an astonishingly 
simple formula

gl+1,l(r) = rl+1/(1 − r2) (d = 3) . (3.6)

Consider now the case of d = 3 and general � = l + τ , where τ
is the twist. We propose the following substitution:

g�,l(r) = r�h�,l(x)/(1 − x), x = r2. (3.7)

The variable x is natural since it is known that for equal external 
dimensions the conformal block stripped off from the leading r�

has an expansion in even powers of r [18]. Separating 1/(1 − x) is 
then motivated by (3.6).

Specializing in (3.1) to d = 3 and rewriting it in terms of h�,l(x)
we obtain

D̃h�,l(x) = 0 , (3.8)

where

D̃ = 8(x − 1)x3 d4

dx4
+ 8{(2� + 5)x − 2� − 3}x2 d3

dx3

+ 2{[4�2 + 2�(τ + 10) − τ 2 + τ + 15]x
− 4�2 − 2�(τ + 4) + τ 2 − τ − 3}x

d2

dx2

+ {(2� + 1)[2�(τ + 2) + (1 − τ )τ ]x
+ τ (−4�2 + 2�τ − τ + 1)} d

dx
+ (� − 1)(τ − 1)(2� − τ ). (3.9)

We recognize the differential equation for the generalized hyperge-
ometric function 4 F3, so we can write the solution in closed form:

h�,l(x) = 4 F3

[
1

2
,
τ − 1

2
,� − τ

2
,� − 1;� − 1

2
,� + 1 − τ

2
,
τ

2
; x

]
(d = 3). (3.10)

This explicit formula came as a surprise to us since normally con-
formal blocks in odd dimensions are hard to deal with. In even 
dimensions there are explicit formulas for any complex z [22–24]
from which one can specialize to real z but the results (see sec-
tion 5) look still more complicated than (3.10). For general d on 
the real axis there are formulas in terms of 3 F2’s [6,20], but they 
contain several terms unless l = 0, 1. Notice that (3.10) also re-
duces to a 3 F2 if l = 0.

4. Improved convergence estimate

Using the results from the previous section, we will now im-
prove the convergence rate estimate in d = 3. Consider the func-
tion ĝ(r) defined by removing from g(r) contributions of all scalars 
of dimension 1/2 < � < 1, if there are any such scalars exchanged. 
The rationale for doing this will be clear below. For now notice 
that g(r) and ĝ(r) have the same asymptotics:

ĝ(r) ≈ g(r) ≈ 24�φ /(1 − r)4�φ (r → 1) . (4.1)

This is because the subtracted conformal blocks have (1 − r)−1 sin-
gularity and cannot change the asymptotics (notice that 4 F3 stays 
finite as r → 1).

The key idea is to apply the argument from section 2 not to the 
function g(r) but to the function

g̃(r) = (1 − r2)ĝ(r) , (4.2)

which has the accordingly modified asymptotics

g̃(r) ≈ 24�φ+1/(1 − r)4�φ−1 (r → 1). (4.3)

On the other hand the same function admits a representation

g̃(r) =
∑

O:�O�1

λ2
O g̃O(r), g̃�,l(r) = r�h�,l(r

2) . (4.4)

From the explicit formula for (3.10) we see that h�,l(x) is a 
coefficient-positive series in x. In fact, the coefficients are all posi-
tive as long as τ � 1, which must be true by unitarity for l � 1. If 
there were scalars in the interval 1/2 < τ < 1, their h�,l(x) func-
tions would have negative coefficients, but we removed all such 
scalars by hand.

We can now run Steps 3, 4 of the section 2 argument verbatim 
and get the following tail estimate:

∑
O:�O��∗

λ2
O g̃O(r) � 24�φ+1�

4�φ−1
∗

�(4�φ)
r�∗ . (4.5)

Dividing by (1 − r2) we get the corresponding estimate in terms of 
conformal blocks:

∑
O:�O��∗

λ2
O gO(r) � 24�φ+1�

4�φ−1
∗

�(4�φ)
r�∗/(1 − r2). (4.6)

This improves the previous result (1.5) by one power of �∗ in the 
prefactor.5

5. Synthesis and conclusions

The method used in the previous section can be stated syn-
thetically as follows. Considers a representation of the conformal 
blocks factoring out a power of 1/(1 − r2):

gO(r) = g̃O(r)/(1 − r2)γ , γ � 0. (5.1)

The O-independent parameter γ should be chosen so that the 
functions g̃O(r), like conformal blocks themselves, are coefficient-
positive series in r. Or at least this last property should hold for all 
operators O of dimension larger than some fixed dimension �0. 
Under these assumptions one obtains the convergence rate esti-
mate

∑
O:�O��∗

λ2
O gO(r)� 24�φ+γ �

4�φ−γ
∗

�(4�φ + 1 − γ )
r�∗/(1 − r2)γ ,

�∗ 	 �φ/(1 − r). (5.2)

In d = 3 we had �0 = 1, γ = 1. Moreover from the “leading 
twist” conformal blocks (3.6) we know that this is best possible.

5 Notice however that the constant coefficient is a factor of 8�φ larger, so the 
new estimate is nominally better than the old one only for �∗ > 8�φ (assuming 
that r2 � 1).
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What about the even dimensions? Notice that a necessary con-
dition to have the representation (5.1) is that the conformal block 
should grow as r → 1 at least as fast as 1/(1 − r)γ . From the ex-
plicit expressions from [22,23] it is easy to get that the d = 2, 4
conformal blocks behave in this limit as

g�,l(r) ∼
{

log 1
1−r , d = 2 ,

1
(1−r)2 log 1

1−r , d = 4 .
(5.3)

It follows that in d = 2 the value γ = 0 is optimal and we cannot 
improve the convergence rate estimate.

In d = 4 the necessary condition says that we could go at most 
to γ = 2. To determine the actual value of γ we need a more 
detailed analysis. The exact expression for the d = 4 blocks on the 
real axis which follows from [22,23] is

gd=4
�,l (r) = r�

1 − r2
{ f�+l(r

2) f�−l−2(r
2)

+ 2r2

l + 1
[ f ′

�+l(r
2) f�−l−2(r

2)

− f�+l(r
2) f ′

�−l−2(r
2)]} . (5.4)

It’s easy to see from here that γ = 1 is allowed. Indeed, both 
terms in braces are coefficient-positive series as long as � � l + 2
i.e. above the spin l unitarity bound. Moreover, having analyzed 
Eq. (5.4) analytically and numerically, it seems that the optimal 
value lies between 1 and 2, with γ = 3/2 being our best bet. How-
ever we do not have a rigorous proof of this fact.

In conclusion, in this paper we presented a method which 
allows to improve convergence rate estimates for the conformal 
block expansions in various dimensions over the previous work [1]. 
We presented improved results in d = 3, 4, while in d = 2 improve-
ment turns out impossible.6 We believe that such studies will be 
important for the future implementations of truncation schemes in 
the conformal bootstrap.

6. Note added

An interesting analysis of the OPE coefficient asymptotics and 
convergence properties of the conformal block expansion has just 
appeared in [25], especially concerning the limit when the di-
mensions of the external operator become large. There are nice 
similarities between our formulas for conformal blocks with pow-
ers of 1/(1 − r2) taken out, and the results of their appendix A.
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