The characteristics of Magnesium-Lanthanum alloy obtained by an electrochemical process
Mounir Sahli, Khaled Chetehouna, Francois Faubert, Chaimae Bariki, Nicolas Gascoin, Nadir Bellel

To cite this version:
Mounir Sahli, Khaled Chetehouna, Francois Faubert, Chaimae Bariki, Nicolas Gascoin, et al.. The characteristics of Magnesium-Lanthanum alloy obtained by an electrochemical process. WHEC 2014, 20th World Hydrogen Energy Conference, Jun 2014, Gwangju, South Korea. <hal-01253373>
The characteristics of Magnesium-Lanthanum alloy obtained by an electrochemical process

Mounir Sahlia, Khaled Chetehounab,*, François Faubertc, Chaimae Bariki, Nicolas Gascoinb, Nadir Belfla

a Laboratoire de Physique Energétique, Université de Constantine 1, Algeria
b INSA-CVL, Univ. Orléans, PRISME, EA 4229, F-18020, Bourges, France
c Univ. Orléans, GREMI, UMR 7343, F-18020, Bourges, France

ABSTRACT

In this work, Magnesium-Lanthanum alloy was synthesized by an electrodeposition technique using an aqueous solution, based on Magnesium chloride hexahydrate and Lanthanum(III) Nitrate at a voltage of 4 Volts. A copper cathode plate is used for the deposition of the Mg-La alloy. The as-prepared powder was characterized by scanning electron microscope (SEM) to describe the morphology, energy dispersive spectroscopy (EDS) to determine the chemical composition, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra in order to define the chemical structure. Morphological description reveals the formation of heterogeneous chemical structures of very small size on the surface of the sample. EDS analysis indicates the presence of Mg, La and O as major elements and Cl as minor element in terms of weight percentages. X-ray results showed the existence of two distinct phases, Magnesium Hydroxide (Mg(OH)2) and Lanthanum hydroxide (La(OH)3), from the obtained deposit. FTIR analysis confirms the presence of the two phases identified in XRD diffractogram and it can be exhibited by clear peaks.

Keywords: Mg-La alloy, Electrodeposition, aqueous solution, analysis techniques, coating.

1. Introduction

Magnesium is the eighth most abundant element on the earth and constitutes about 2% of Earth’s crust by weight. It is the third most copious element in seawater. It is characterized by various properties for instance a low density, a low cost, a very good malleability and ductility, a high strength/weight ratio and an environmentally friendly nature [1-5]. The high electrochemical potential of magnesium (-2.4 Volts) and a substantial reactivity toward acids and their salts are their two chemical properties [6, 7]. As the lightest structural material, magnesium alloys have been used increasingly for structural compounds for several decades, particularly in the automotive, electronics and aerospace industries and expected to become one of the most promising lightweight materials in the 21st century [8-10]. Recently, many investigations have been made in hydrogen storage materials and magnesium based alloys are considered to be the most promising [10-12]. As benefits of the application of magnesium alloys, Cortés and Cantwell [13] mention improved electromagnetic protective capability and superior corrosion resistance. The addition of rare-earth (RE) elements such as La, Y, Ce and Gd to Mg has received significant attention [14-16]. It has been also reported that Mg-RE alloys exhibit excellent mechanical properties. They are typified by higher specific strength and better creep resistance [17-19]. To fabricate the Mg alloys, three methods have been explored: physical as PVD (Physical Vapour Deposition) [20], mechanical as
milling techniques [21] and chemical as CVD (Chemical Vapour Deposition) [22]. Besides these methods, metal alloys electrodeposition in aqueous ionic liquids are receiving increased interest [23-27]. It is the most economical method of prepared Mg-RE alloys and can be easily implemented on a large scale. At the same time, this method had other advantages: the phases of alloys could be controlled by electrochemical parameters and could be employed over a large temperature range.

The aim of the work presented in this paper is to study the characteristics of the Magnesium-Lanthanum alloy elaborated by means electrodeposition technique. Section 2 describes the experimental methodology. It includes chemicals and samples preparation and characterization of Mg-La alloys. Section 3 examines the results obtained monitoring with discussions based to the ones found in literature. In the end, conclusions are drawn with some indicators to future analysis.

2. Experimental and procedures

2.1 Experimental Setup

Magnesium chloride hexahydrate \(\text{MgCl}_2 \cdot 6\text{H}_2\text{O}\) and Lanthanum nitrate \(\text{La(NO}_3)_3 \cdot 6\text{H}_2\text{O}\) from Merck Group were employed as received. The ultra-pure water obtained by means of a MEDICA S/R/D (7/15) purification system was used to prepare the different solutions. A mass of 16.2 g of \(\text{MgCl}_2 \cdot 6\text{H}_2\text{O}\) and a mass of 4.3 g of \(\text{La(NO}_3)_3 \cdot 6\text{H}_2\text{O}\) were dissolved in 34 mL of ultra-pure water at room temperature. The obtained aqueous solutions with \(\text{pH}=6\) were prepared for electrodeposition process.

The electrochemical process consists in a cylindrical electrolysis chamber of an internal volume of 36.6 mL. The plexiglass vessel has as inner dimensions 1.8 cm radius and 3.6 cm height. A copper cathode plate and a tungsten thread anode, with a 2.2 cm gap, connected to a conventional potentiometric power source, were used to ensure the deposition of Mg-La alloy. The potential value selected to study its effect on the characteristics of the Mg-La alloys was 4 Volts. The deposition experiments were performed during 8h at ambient temperature (23 °C). The obtained deposit was scraped from the copper cathode plate, dried for 1h at 110 °C, milled manually in a marble mortar and subjected to further analyzes. Fig. 1 illustrates a photograph and a schematic overview of the defined experimental setup.

![Fig. 1. Illustrations of the electrodeposition experimental setup. (a) Photograph and (b) schematic overview.](image)

2.2 Characterization of Mg-La alloy

The morphology and chemical composition of the obtained alloy were investigated by a scanning electron microscope (SEM, LEO 1455 VP, acceleration voltage of 20 kV) at a working distance of 15 mm equipped with an X-ray energy dispersive spectrometer (EDS, Inca X- sight, Oxford Instrument). The phase identification of the alloy were determined by means of X-ray diffractometer (XRD, Philips X’PERT) using Cu Kα radiation source (\(\lambda=1.54\) Å, 40 kV, 30 mA) at room temperature. The scanning rate of 0.02°/s within the \(2\theta\) range going from 10° to 90° was used in order to increase counting statistics and to improve the signal/noise ratio. Thermogravimetric and differential scanning calorimetry analysis of the sample of the scraped deposit was performed by SETARAM apparatus under flowing Argon atmosphere at the heating rate of 10 °C/min in the temperature range of 25 °C to 600 °C. Fourier transform infrared (FTIR) spectroscopy of the alloys samples was carried out with a Nicolet 380 FT-IR spectrometer using the ATR technique. All spectra were collected with the resolution of 4 cm⁻¹ in the range of 4000-500 cm⁻¹.

3. Results and discussion

As mentioned in the previous section, the characteristics of Mg-La alloy will be studied to 4 Volts. This section is structured as follows: a presentation of EDS and X-ray diffraction analyzes as well as the IR absorption spectroscopy studies.

3.1 EDS analysis of the as-deposited powders

Fig. 2 shows the surface morphology (SEM) of as-prepared Mg-La alloy. The image exhibits the formation of
heterogeneous chemical structures and the different phases seem quite imbricated. Interestingly enough, the size of the aggregates found was in the order of nanometers to micrometers.

![Image](image.png)

Fig. 2. SEM image of the as-deposited powder

The compositions of Mg-La alloy was examined by EDS, as shown in Table 1. The main elements detected on the surface of the coatings were Oxygen, Magnesium, Lanthanum and a little amount of Chlorine. The existence of O, Mg, La and Cl in the as-deposited powder can be justified by the electrolyte used in electrodeposition experiment. As we can see from this Table, Mg-La alloy in 4 Volts is characterized by high contents of Oxygen (40.7 %) and Lanthanum (31.5 %). The amounts of Magnesium and Chlorine are respectively 21.1 and 6.7 %.

Table 1. Alloy element compositions in weight and atomic percentage

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight %</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>40.7</td>
<td>66.5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>21.1</td>
<td>22.5</td>
</tr>
<tr>
<td>Chlorine</td>
<td>6.7</td>
<td>5</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>31.5</td>
<td>6</td>
</tr>
</tbody>
</table>

3.2 X-ray diffraction analysis of the as-prepared powders

The different phases of the as-deposited powder are discerned clearly in Fig. 3 through XRD diffractogram. According to the standard data JCPDS, two significant characteristic peaks are detected, which indicate the existence of Magnesium hydroxide (Mg(OH)\(_2\)) as a hexagonal structure with lattice constants \(a = 6.528 \, \text{Å}\) and \(c = 3.858 \, \text{Å}\) [29, 30]. As can be seen from this Figure, peaks at diffraction angle 20 of 18.6°, 35.8°, 37.9°, 50.8°, 58.7° and 62.1° are related to Mg(OH)\(_2\); whereas those at 20 of 15.6°, 27.9°, 39.3°, 46.8°, 48.5° and 54.9° are associated to La(OH)\(_3\). The peak of Mg(OH)\(_2\) can achieve a maximum of intensity value 917 and 207 as minimum. The two others distinct intensity values of the peak La(OH)\(_3\) are respectively 895 and 185.

![Image](image.png)

Fig. 3. X-ray diffraction pattern of the sample

3.3 FTIR spectroscopy analysis of the as-deposited powders

Further to the above analyzes, the FTIR spectroscopy study is evident for the structural confirmation of the as-prepared powder. The FTIR transition spectrum of the as-deposited Mg-La alloy in the range of 4000-500 cm\(^{-1}\) for 4 Volts is revealed in Fig. 4. A sharp and strong peak at 3696 cm\(^{-1}\), which has as transmittance value 75.67, can be ascribed to vibrations and stretching of OH bonds in Mg(OH)\(_2\) [31, 32]. The band centred at 3606 cm\(^{-1}\), corresponding at 79.37, is associated for stretching mode of OH\(^-\) in Lanthanum (III) hydroxide [33, 34]. The bands at 3455 cm\(^{-1}\) and 1640 cm\(^{-1}\), relating respectively to 79.24 and 81.70, are attributed to the hydroxyl groups in water as mentioned by Aghazadeh and Khosrow-pour [35, 36]. The two other peculiar bands at about 1434 cm\(^{-1}\) and 1048 cm\(^{-1}\), characterized by the following values; 78.69 and 82.30, can be associated to asymmetric stretching vibrations of the carbonate group, which originate from the reaction of the as-prepared powders with CO\(_2\) from air during the FTIR spectroscopy analysis [33, 35, 37].

* Corresponding author. Tel.:+33-24-848-4065, E-mail address: khaled.chetehouna@insa-cvl.fr (K. Chetehouna).
4. Conclusion

(1) The synthesis of Magnesium-Lanthanum powder due to an electrodeposition process at room temperature has been successfully treated.

(2) The different results on the behavior of the as-deposited powder are in agreement with those of literature Magnesium-based coatings.

(3) As future analyzes, a wide Mg-based would be studied with the different voltages and make a comparison in order to figure out the potential material for the hydrogen storage.

REFERENCES

* Corresponding author. Tel.:+33-24-848-4065, E-mail address: khaled.chetehouna@insa-cvl.fr (K. Chetehouna).