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AsstrAcT. It has long been suspected that the non{€uBoltzmann operator has similar coerciv-
ity properties as a fractional Laplacian. This has led tottbpe that the homogenous Boltzmann
equation enjoys similar regularity properties as the hgation with a fractional Laplacian. In par-
ticular, the weak solution of the fully nonlinear non-cfitbomogenous Boltzmann equation with
initial datum inLi(RY) N LlogL(RY), i.e., finite mass, energy and entropy, should immediaiety
come Gevrey regular for strictly positive times. We provs ttonjecture for Maxwellian molecules.
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1. INTRODUCTION

It has long been suspected that the non4{WBoltzmann operator with a singular cross section
kernel has similar coercivity properties as a fractionaplaaian ¢A)”, for suitable 0< v < 1.
This has been made precise byeRanpre, DesviLLETTES, VILLANI, and WENNBERG [3], see also the
reviews by Aexanpre [2] and by MViLani [40] for its history, and has led to the hope that the fully
nonlinear homogenous Boltzmann equation enjoys simitarlagity properties as the heat equation
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with a fractional Laplacian given by
ou+(-A)’u =0
Uk-o =Uo € LY(RY).
Using the Fourier transform one immediately sees that
Ut &) = @0 Go(e) with G e L (R,
o)
2y
supsupe®t T, £)| < [|uoll1(gey < o,
t>0 feRd

that is, the Fourier transform of the solution is extremelst fdecaying for strictly positive times.
Introducing the Gevrey spaces as in Definitib, it is natural to expect, see, for example,
DesviLLerTES and V\eNNBERG [16]:

Conjecture (Gevrey smoothing)Any weak solution of the non-cgthomogenous Boltzmann equa-
tion with a singular cross section kernel of ordeand with initial datum in B(R%) n Llog L(RY),

i.e., finite mass, energy and entropy, belongs to the Gelasg C%(Rd) for strictly positive times.

The central results of our work is a proof of this conjectweMaxwellian molecules. In partic-
ular, we prove

Theorem. Assume that the non-cyf@oltzman cross section has a singularity2y withO < v < 1
and obeys some further technical conditions, which are tnuall physically relevant cases, for
details se€3) and (16). Then, for initial conditions f € L logL n L, with an integer

m > max(z &)
- "2(2-2)
any weak solution of the fully non-linear homogenous Batmmequation for Maxwellian mo-
lecules belongs to the Gevrey class @r strictly positive times.
In particular, for v < log(9/5)/log(2) ~ 0,847996we have m= 2 and the theorem does not
require anything except the physically reasonable assiampbf finite mass, energy, and entropy.
If 1og(9/5)/log(2) < v < 1 and we assume only thag € LlogL n L%, then we prove that the

L log2_ . L .
solution is in G™@5) , in particular, it is ultra-analytic.

(1) For a more precise formulation of our results, see Thaerk6, 1.8, and1.9for the case
m = 2 and Theorem38.1, 3.2, and3.3 below.

(2) We would like to stress that our results cover both thekvwegel strong singularity regimes,
where O< v < 1/2, respectively 12 <v < 1.

(3) The theorem above applies to all dimensiohs 1. The physical case for Maxwellian
molecules in dimensiod = 3isv = 1/4.

The main problem for establishing Gevrey regularity is tirabrder to use the coercivity results
of ALexanpre, DesviLLETTES, VILLanT and WENNBERG [3], one has to bound a non-linear and non-
local commutator of the Boltzmann kernel with certain sud€sian Fourier multipliers. The main
ingredient in our proof is a new way of estimating this noodloand nonlinear commutator.

1.1. The non-cutdf Boltzmann and Kac models. We study the regularity of weak solutions of
the Cauchy problem

{atf = Q(f, f) W

fli—o = fo

for the fully nonlinear homogeneous Boltzmann and Kac egonan d > 1 dimensions 10, 21].
Ford > 2 the bilinear operato® is given by

Qa1 = [ [, bleost) @) 1) - ) 1) drd., @
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that is, the Boltzmann collision operator for Maxwellian lexules with angular collision kernel
b depending only on the deviation angle éos o - |z:xi| for o € S91. Here we use ther-
representation of the collision process, in which

v+v*+|v—v*|0_ :v+v*_|v—v*|o_
2 2 o 2 2 ’
By symmetry properties of the Boltzmann collision opera@f, f), the functionb can be as-
sumed to be supported on angtes [0, 5], for otherwise, see/[], it can be replaced by

V = for o e §9°1,

b(coss) = (b(cos) + b(costr — 6)) Ljo<p<s)-

We will assume that the angular collision kerbeédas the non-integrable singularity

od K
sin®2 g b(cosh) ~ T A0 o (3)
for somex > 0 and O< v < 1, and satisfies
/2
f sin® 9 b(coss) do < oo. (4)
0

For inverses-power forces (in three spatial dimensions), describechbypbtentialJ (r) = rt=s,
s> 2, the collision kernel is of the more general form

s-5
B(lv — V.|, cost) = b(cost)|v - v.|*, y= 1
where the angular collision kernklis locally smooth with a non-integrable singularity
1
sindb(cosy) ~ Ko12,  y=—.
(cost) V=1

1

The case ofphysical) Maxwellian moleculesorresponds to the valugs= 0, s=5,v = 3.

Ford = 1 we set

Q) =K@ N = [ [} bu0) (Fwgw) - Fw ) . )
-2

which is the Kac operator for Maxwellian molecules, and dagcollision kernelb; > 0. The pre-
and post-collisional velocities are related by

W\ (cosf —sinb\(w -
(W;) N (sine cosd )(w*) foro e [=3.3l-
In the original Kac moddb; was chosen to be constant, whereas we will assume, agdirtiat
b, is an even function and has the non-integrable singularity

by (6) ~ for g — 0, (6)

K
|9|1+2v ’

with 0 < v < 1 and some > 0, and further satisfies

f  by(6) Sif? 9. < oo, )
-2

Making use of symmetry properties of the collision operd{¢f, f), we can assumb; to be
supported on anglese [-7, 7], for otherwise it can be replaced by its symmetrised versio

b1(6) = (b1(6) + ba(5 - 6)) 0<o<z) + (D2(6) + br(=5 — ) 15 <6c0)-

This simple observation will be very convenient for our gsi.
We will mainly work with the weighted_P spaces, defined as

LORY) = {f € LPRY) : ()7 € LP(RY)},
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p=> 1, ae€R,with norm

1/p
I1Fllpgay = ( fR d |f(v)|p<v>“pdv) . W= L+ MAY2

We will also use the weighted.{ based) Sobolev spaces
HERY) = {f e ' (RY : () e HKRY), K CeR,

whereH¥(RY) are the usual Sobolev spaces givenH{RY) = {f e S'(RY) : (Hkf e LZ(Rd)}, for
k € R. The inner product oh?(RY) is given by(f,g) = [, F(V)g(v) dv.
It will be assumed that the initial datuffg # O is a non-negative density with finite mass, energy
and entropy, which is equivalent to
fo>0, foeLli(RY N LIlogL(RY), (8)

where

LlogL(RY) = {f : RY — R measurable || fll_pgL = f 1f(v)|log (1 + |f(V)]) dv < oo},
Rd

and the negative of the entropy is giventdyf) := fRd flog f dv.
The spaca.}(RY) N Llog L(RY) is very natural, since

Lemmal.1l. Let f > 0. Then
fe LJRH)NLIogLRY o feLI(®RY and H(f) is finite

We suspect that this lemma is well-known, at least to thersaut we could not find a reference
in the literature. For the reader’'s convenience we will give proof in appendi®. Following is
the precise definition of weak solutions which we use.

Definition 1.2 (Weak Solutions of the Cauchy Probler) (8, 39, 11]). Assume that the initial
datum fg is in LI(RY) n LlogL(RY). f : R, xR — R is called a weak solution to the Cauchy
problem (), if it satisfies the following conditioris

() >0, feBR: D RY)NLYR,; L%(Rd) N LlogL(RY))

(i) £(0,))=fo

(iii) Forall t > 0, mass is conserveggKd f(t,v)dv = fRd fo(V) dv, kinetic energy is decreasing,

Ja V) VPdv < [ fo(v) v dv, and the entropy is increasing f(t,)) < H(fo).
(iv) For allp € BY(R,; 65 (RY) one has

t
(f(t,-), o(t, v)) = (fo, (0, )) - j; (f(r,)d-(z, )y dr
©)
=ft<Q(f, )(r,-),¢(r,)ydr, forallt>0,
0

where the latter expression involvirigis defined by
(Q(f, f).¢)

- % me del b( ot U) Fv)FV) (p(V) + (Vo) = ¢(V) = ¢(v.)) dodvdv.,,

|V_V*|

for test functionsp € W2 (RY) in dimensiond > 2, and in one dimension

Q1 1.0 = (K(E D = [ [ 7 ba(0) gt Jgtw) (6w) ~ o) ok
T4

1Throughout the text, whenever not explicitly mentioned widrop the dependence drof a function, i.e.f(v) :=
f(t,v) etc
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for test functionsp € W>*(R), making use of symmetry properties of the Boltzmann and
Kac collision operators and cancellatioffieets.

Collecting results from the literature, the following isdwin regarding the existence, uniqueness
and further properties of weak solutions.

Theorem 1.3(Arkeryd, Desvillettes, Mischler, Goudon, Villani, Weretgy). There exists a weak
solution of the Cauchy problefd) in the sense of Definitioh.2. For d > 2 momentum and energy
are conserved,

j];d f(t,v)vdv = Ld fo(v) vav, jﬂ;d f(t, V)V dv = jﬂ;d fo(v) V2 dv. (10)

In the one dimensional case (Kac equation), momentum is artgecved and energy can only
decrease and is conserved under the additional moment gassumt, € L%p for some p> 2.

Remark 1.4. d > 2: The existence of weak solutions of the Cauchy problé&mw(th initial
conditions satisfying&) for the homogeneous Boltzmann equation was first proved tye#yp
[7, 8] (see also the articles bydBpon [20], ViLLant [39], and Desviiertes [13, 14]). Uniqueness
in this case was shown byodcant and MiLant [36], see also the review articles byidduier and
WEennBerG [28] (for the cut-df case) and BsviLiertes [13].

d = 1: For the homogeneous non-cfit&ac equation for Maxwellian molecules existence of
weak solutions was established bysBxrertes [11].

1.2. Higher regularity of weak solutions. It has been pointed out by several authdsifs, 40]
that, for singular cross-sections, the Boltzmann operedeentially behaves like a singular integral
operator with a leading term similar to a fractional Laplaperator £A)”. In terms of compactness
properties this has been noticed for the linearised Boltumieernel as early as ir8f] and for the
nonlinear Boltzmann kernel in2f]. Since the solutions of the heat equation with a fractional
Laplacian gain a high amount of regularity for arbitrary ifies times, it is natural to believe, as
conjectured in16], that weak solutions to the non-ciit@oltzmann equation gain a certain amount
of smoothness, and even analyticity, for any 0. This is in sharp contrast to the fact that in the
Grad’s cutdf case there cannot be any smoothifige. Instead, regularity and singularities of the
initial datum get propagated in this case, see, for exampkk,

The discussion about solution of the heat equation withimal Laplacian motivates the fol-
lowing definition of Gevrey spaces, which give a convenieatfework to describe this smoothing
by interpolating between smooth and (ultra-)analytic fiorcs.

Definition 1.5. Let s> 0. A function f belongs to the Gevrey cla&S(RY), if there exists a@g > 0
such that
s 2

o ¢ 12(R%), where (D)= (1+IDy?)"".
and we use the notatioD, = —2i7Vv- Thus,GL(RY) is the space of real analytic functions, and
GS(RY) for s € (0, 1) the space of ultra-analytic functions.

Equivalently, f € GSRY) if f € €°(RY) and there exists a consta@it> 0 such that for all

k € Ng one has

ID*Fllzgrey < CHHKYS,
Where||D"f||ﬁ2 = SURpk |I3Bf||fz-

The first regularisation results in this direction were du®tsviLLertes for the spatially homo-
geneous non-cufb Kac equation 11] and the homogeneous non-cfitBoltzmann equation for
Maxwellian molecules in two dimension$d], where€> regularisation is proved. Later,eBviL-
LerTes and WENNBERG [16] proved, under rather general assumptions on the collisioss-section
(excluding Maxwellian molecules, though), regularity ioh®artz space of weak solutions to the

2see, for example, Theorem 4 i2g).
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non-cutdt homogeneous Boltzmann equation. By quitéettient methods, using Littlewood-Paley
decompositions, fexanpre and B Sarapt [4] showed that the assumptions on the cross-sec8ipn (
(4) imply that the solutions are iH* for any positive tima > 0. By moment propagation results
for Maxwellian molecules (seerUespeLL [37]) this cannot be improved to regularity in Schwartz
space.

For collision cross-sections corresponding to Debye-¥ukéype interaction potentials,

singb(cosh) ~ Ko L(logs™H)! foro — 0 (with someK > 0, £ > 0),

Mormoro, Ukar, Xu and Yanc [30] proved the saméd® regularising €ect using suitable test
functions in the weak formulation of the problem.

The question of the local existence of solutions in Gevreycep for Gevrey regular initial data
with additional strong decay at infinity was first addressetid84 by ka1 [38], both in the spatially
homogeneous and inhomogeneous setting.

We are interested in the Gevregnoothing gect namely that under the (physical) assumptions
of finite mass, energy and entropy of the initial data, wedltems of the homogeneous Boltzmann
equation without cutid are Gevrey functions for any strictly positive time. Thisggtion was treated
in the case of thdinearised Boltzmann equation in the homogeneous setting lyiMoro et al.
[30], where they proved that, given®v < 1, weak solutions of the linearized Boltzmann equation
belong to the spao@%(R"‘) for any positive times. Still in a linearised setting:rlver, Mormoro,
Pravba-Starov and Xu [24] proved a Gelfand-Shilov smoothingfect, which includes Gevrey reg-
ularity, on radially symmetric solutions of the homogenemon-cutd Boltzmann equation for
Maxwellian molecules. For the non-Maxwellian Boltzmanmegior, Gevrey regularity was proved
under very strong unphysical decay assumptions on thalidigitum in P6.

For radially symmetric solutions, the homogeneous noofElBoltzmann equation for Max-
wellian molecules is related to the homogeneous nonfittac equation. The non-cufoKac
eqguation was introduced bysBviLLerTes in [11], where first regularity results were established, see
also DesviLLeTTES' review [14]. For this equation, the best available results so far aegtollekRINE
and Xu [23] and G.ancgetas and Nueme [19]: Lekrine and Xu [23] proved Gevrey regularisation
of order 5~ for mild singularities O< v < 3 and all 0< @ < v. Strong singularities; < v < 1
were treated by Gingeras and Nueme [19], where they prove that for = % the solution becomes
Gevrey regular of orde%a forany O< a < % and Gevrey regular of order 1, that is, analytic, when
% < v < 1. Thus, in the critical case = % the result of 19 misses analyticity of weak solutions
and they do not prove ultra-analyticity in the range @ < 1. Moreover, both results are obtained
under theadditional moment assumptiofy € L§+ZV(R).

Ultra-analyticity results have previously been obtaingdMormvoro and Xu [31] for the ho-
mogeneous Landau equation in the Maxwellian molecules aadeelated simplified models in
kinetic theory. The analysis of smoothing properties ofdanequation is quite fierent from the
Boltzmann and Kac equations. The Landau equation explimithtains a second order elliptic term,
which yields coercivity, and, more importantly, certaimunutators with weights in Fourier space
are identically zero, which simplifies the analysis trermmraly, see Proposition 2.2 iB]].

For the nonlinear non-cufithomogeneous Boltzmann equation some partial resultsdiegar
Gevrey regularisation were obtained byidoro and Wkar [29] including the non-Maxwellian
molecules case, but under the strong additional assunsptibiaxwellian decay and smoothness
of the solution. Still with these strong decay assumptiofis,and Zianc [42, 41] extended this
result to a larger class of kinetic cross-sections.

We stress that for the main result of our paper the initialhats only assumed to obey the
natural assumptions coming from physics, i.e., finiteness of massgg and entropy.

Giveng > 0 anda € (0, 1) we define the Gevrey multipli€d : R, x RY — R by
G(t, ) := K™
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and forA > 0 the cut-¢f Gevrey multiplierG, : R, x RY — R by

Ga(t,n) := G(t, ) La(nl),

wherell, is the characteristic function of the interval . The associated Fourier multiplication
operator is denoted B, (t, Dy),

GALDY(EY) = fR Ga it m) @ dy = F2[Ga(t ) (1)

We use the following convention regarding the Fourier tiams of a functionf in this article,

FH)m) = fn) = f f(v) & 2™ dv.
Rd
The Fourier transform of the Boltzmann operator for Maxiaelimolecules has the form (Bobylev

identity, [9])

Q@0 = [, b2 -o)la0n e -s0fw]dn =TT ay

for d > 2. There is a similar Bobylev identity for the Kac operatdi]

K@ F)(n) = f "0u(0) [607) {r) - 8O ()| &0, = noost,n” = ysine. (12)

FNE

A simple, but in a sense important, consequence of Bobyideistity is that, for alld > 1,

PAQ(g, f) = PAQ(PAQ. PAf) (13)

where, for convenience, we pBt, = 1,(D,) for the orthogonal projection onto Fourier ‘'modes’
Inl < A.
Note also that, sinc@, (t, -) has compact support mg for anyt > 0, one has

Gaf, G2 f € L*([0, To]; HY(RY))
for any finiteTo > 0 andA > 0, if f € L®([0, To]; LY(RY)). This holds, since
IGA FIfsgagy < I ey KO TBA Mz gy < I gy Y CA(To, Mgy For all s 0,
These functions, due to the cufEn Fourier space, are even analytic in a strip contaifiifig

Theorem 1.6(Gevrey smoothing I) Assume that the cross-section b satisfiessithgularity con-
dition (3) and theintegrability condition 4) for d > 2, and for d = 1, b; satisfies thesingularity
condition @) and theintegrability condition ) for some0 < v < 1. Let f be a weak solution of the
Cauchy probleng1) with initial datum satisfying condition@). Then, for all0 < @ < min{azg4, v},

f(t,-) e G%(Rd) (14)

for allt > 0, whereay 4 = —'09[(8T0‘g/2(4+d)].

Remarks 1.7. (i) In numbers,azq ~ 0.847997,a22 ~ 0.736966, andrp3 ~ 0.652077. This
means, that undesnly physically reasonable assumptions of finite mass, energyea-
tropy, weak solutions are analytic for> % and even ultra-analytic if > % It is easy to
see thatrp g is decreasing i and ford = 6, a6 ~ 0.485427, hence, fai > 6, analyticity
(respectively ultra-analyticity) does not follow from shtheorem.

(ii) For the proof of Theorenl.6 (and alsol.8 and1.9 below) it is important that the energy
of f is bounded, which enters in the technical Lemth&4 and its Corollary2.15 A
considerably simpler proof could be given using only that L}(Rd). In this caseq,q is

replaced byr 4 = W (see also Remark.10below). Howeveraj 3 < 0.4855

in three dimensions, thus we would not be able to concludeaf)dnalytic smoothing of
weak solutions for strong singulariti%ss v <1
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(iii) As our theorem above shows, weak solutions of the hoenogs Kac equation become
Gevrey regular for strictly positive times for moderatelpgular collision kernels with
singularity v € (0, %), see 6) for the precise description of the singularity, foe % they
become analytic, which improves the result afaGceras and Nueme [19] in this critical
case, and even ultra-anaytic fioe (%, 1).

(iv) Rotationally symmetric solution$ corresponding to rotationally symmetric initial condi-
tions fp are Gevrey regular for strictly positive times under the saonditions as in the
one-dimensional cagk= 1. The proof is exactly as the proof of Theor@&x with some
small changes in the proof of Lemr2a&27where the independence of the solutibon the
angular coordinates can be explicitly used withthe 1 version of Corollan?.15

As already remarked, the result of Theoré&rs deteriorate in the dimension. Under the same
assumptions, but using quite a bit more structure of thezBwhn operator, we can prove a di-
mension independent version. Its proof is considerablyeniorolved than the proof of Theorem
1.6

Theorem 1.8 (Gevrey smoothing Il) Let d > 2. Assume that the cross-section b satisfies the
conditions of Theorert.6. Let f be a weak solution of the Cauchy probl€hwith initial datum
satisfying condition$8). Then, for all0 < a < min{az2, v},

1

f(t,) € G2 (R) (15)
forallt > 0, wherea, = '0%(;/23) =~ 0.736966 In particular, in contrast to Theorerh.6, the weak
solution is real analytic ifv = % and ultra-analytic ify > % in any dimension

If the integrability conditions 4) is replaced by the slightly stronger condition thutoso) is
bounded away from = 0, that is,

for any 0< 6p < 5 there exist€y, < co such that (< b(cosp) < Cy, forallp <6 <%,  (16)
which is true in all physically relevant cases, we can prave\an stronger result.

Theorem 1.9 (Gevrey smoothing IIl) Let d > 2. Assume that the cross-section b satisfies the
conditions of Theorerth.6 and the conditior(16), that is, it is bounded away from the singularity.
Let f be a weak solution of the Cauchy probl€by with initial datum satisfying conditioné3).
Then, for all0 < o < min{az1, v},

f(t,-) e G%(Rd) 17)

forallt > 0, whereay; = % ~ 0.847997

Remark 1.10. () Since we do not rely on interpolation inequalities betwesobolev spaces,
our results also include themiting casea = v, at least ifv < az, (n = d,2,1). This
is in contrast to all previous results on smoothing propsrtf the Boltzmann and Kac
equations.
(i) If higher moments of the initial datum are bounded (andst stay bounded eternally due to
moment propagation results, see, for instanae,Ar's review [40]), the results in Theorem
1.8and Theoreni.9 can be improved in the high singularity case, wheig close to one.

Namely, letfy € LlogL n LL(RY) for some integem > 2, then the constanisg, g, @22,
respectivelya, 1 are replaced byrm, = W (n = d,2,1), which are strictly
increasing towards the limit.,, = 1 asmbecomes large. See Theorefk$, 3.2and3.3

below.

Moreover, we prove that for very strong singularitiesve can prescribe precise conditions on
the initial datum such that we havec Gz (RY).
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Theorem 1.11. Given0 < v < 1, there is nfv) such that, if me Nand m> m(v) and § €
LlogL n L}, the weak solution is in é(Rd) forallt > 0.
More precisely, under the conditions of Theorérs having m > max(z, %) yields Gevrey

smoothing of orderz—lv and under the slightly stronger conditions of Theor&r having m >

max(2, %) is enough.

Remark 1.12. The proof of this Theorem follows directly from the resulfsTdieorems3.1, 3.2,
and3.3in Section3, which extend Theoremk6, 1.8, and1.9to the case of finite momenis > 2.

The strategy of the proofs of our main results Theor&mbs1.8 and1.9is as follows: We start
with the additional assumptiofy € L? on the initial datum. We use the knowt smoothing of
the non-cutf Boltzmann and Kac equation to allow this. This yieldslZnreformulation of the
weak formulation of the Boltzmann and Kac equations whiatiudes suitable growing Fourier
multipliers.

The inclusion of sub-Gaussian Fourier multipliers leada tmnlocal and nonlinear commutator
of the Boltzmann and Kac kernels, which turns out to be a thinear expression in the weighted
solution f on the Fourier side. In order to bound this expression Wwftlmorms, one of the three
terms has to be controlled pointwisacluding a sub-Gaussian growing factor, see Proposifich
The problem is that one has to control the pointwise bound afitL?> norm, which is in general
impossible. To overcome this obstacle there are severalriianpt technical steps:

(1) When working on a ball of radius, we need this uniform control only on a a ball of radius
A/ V2, which enables an inductive procedure.

(2) Using the additional a priori information that the kiieetnergy is finite, or, depending on
the initial condition, even higher moments are finite, wasfarm weighted_2 bounds into
pointwise bounds on slightly smaller balls with an additibloss of power in the weights
in Fourier space. Here we rely on Kolmogorov-Landau typeirdities, see Lemm2.18
and appendixX.

(3) Use of strict concavity of the Fourier multipliers, seenhma2.6, in order to compensate
for this loss of power.

(4) Averaging over a codimension 2 sphere, in the proof ofofés 1.8, which allows us to
get, in any dimension, the same results as for the two diraeakBoltzmann equation.

(5) Averaging over a codimension 1 set constructed from aoaasion 2 sphere and the colli-
sion angle® away from the singularity, and using the fact that near thgudarity, one of
the three Fourier weights is not big due to Lem#n@ enables us to get, in any dimension,
the same results as for the one-dimensional Kac equatioer timel conditions of Theorems
1.9and3.3

2. GEVREY REGULARITY AND (ULTRA-)ANALYTICITY OF WEAK SOLUTIONS WITH L2 INITIAL DATA

In this section, we will prove the Gevrey smoothing of weakugons with initial datum fg
satisfying @) and,additionally; fy € L2(RY).

2.1. L?-Reformulation of the homogeneous Boltzmann equation for wak solutions and coer-
civity. The following is our starting point for the proof of the regtiking properties of the homo-
genous Boltzmann equation.

Proposition 2.1. Let f be a weak solution of the Cauchy problénwith initial datum § satisfying
(8), and let h > 0. Thenforallte (0,Tg], 8 > 0, @ € (0,1), andA > 0 we have Gf €
% ([0. Tol; LA(RY)) and

t
SIGAL DT =5 [ (), (6.G3 (5 D) () e "

= Lol + [ Qe 1 GA(r,Dy)f d
- Al + [ (QF N . G D ()
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Informally, equation 18) follows from usinge(t, ) := Glz\(t, Dy)f(t,-) in the weak formulation
of the homogenous Boltzmann equation. Recall B&f € L*([0, Tq); H>(RY)) for any finite
To > 0, so it misses the required regularity in time needed to leel @s a test function. The
proof of Propositior2.1is analogous to Mrmoro et al. [30], for the sake of completeness and the
convenience of the reader, we prove it in appenlix

The coercive properties of the non-cfiitBoltzmann bilinear operator which play the crucial role
in the smoothing of solutions are made precise in the follgwgub-elliptic estimate by kxANDRE,
DesviLLerTes, ViLLant and WennBeraG [3]. We remark that, while the proof there is given for the
Boltzmann equation, it equally applies to the Kac equation.

Lemma 2.2(Sub-elliptic Estimate,d]). Letge L%(Rd) N LlogL(RY), g> 0(g # 0). Assume that
the collision cross-section b satisfi€3)-(4) or (6)-(7) respectively, wittD < v < 1. Then there
exists a constant £> 0 (depending only on the dimension d, the collision kernam% and

llgllLiogL) @and a constant G 0 (depending only on d and b), such that for ang H(RY) one has
~Q(@. ), f) = Cyllfllf. — Cligll.a I FIZ-

Remark 2.3. As explained for instance irf], the constanCy is an increasing function dfgl, :,
||g||[%l and||g||[}Og _- Inparticular, ifgis a weak solution of the Cauchy probleft) (ith initial datum

% € L3R N LlogL(RY), we havellgll.: = lIgoll.1, l9ll: < lIgoll 2 andligliLiogL < l0g 2goll x +
H(go) + C5ﬁd||go||i;5, for small enougld > O (see 86)). This impliesCy > Cgy, and thus
2

~Q(g, f), ) = Cyll fIify, = CllgllualIfIIF, > CollflIF — Cligoll sl I
uniformly int > 0.
Together with Propositio.1the coercivity estimate Lemnia2implies

Corollary 2.4 (A priori bound for weak solutions)Let f be a weak solution of the Cauchy problem
(1) with initial datum § satisfying(8), and let o > 0. Then there exist constan®,,Cys, > 0
(depending only on the dimension d, the collision kernd!llf&lL% and || follL1ogL) such that for all

te(0,Tg],B8>0,a€(0,1), andA > 0 we have

t
IGA flIZ, < IMA(D) follZ, + fo 2(~Cy,lIGA Iz + CylIGA IIZ;) dr
{
¢ [ 2KQ(1.GaT) - GaQUE 1).Ca ) dr (19)
0

{
+ fo 28/Gy f|[2. dr.

Proof. We want to apply the coercivity result from Lemr3& to the second integral on the right
hand side of PropositioB.1 Therefore, we write

(Q(f, 1), G4 f) = (GAQ(F, 1), G ) = (Q(f,GaT),Ga ) + (GAQ(f, ) - Q(f,GA ), G )

< ~CqlIGa fllfy + ClifoliLy 1GA FIlf, + (GaQ(, f) = Q(f. G ), Ga ).
N——

:ZCfO
Moreover,
9:G} (1, m) = 28> G (L, 7).
Inserting those two results intd§), we obtain
t t
IGA FIIZ, < 1A (D) follf, + 28 fo IGA f (7, )lfo T +2 fo (~ChlIGA Iz + ChylIGA IIZ,) dr

t
+2f<GAQ(f, £) = Q(F. G f). G fy dr. .
0
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Remark 2.5. It is natural to call the teriG Q(f, f) — Q(f, Ga f), Ga f) the commutation errar

2.2. Bound on the commutation error. Next, we prove a new bound on the commutation error.
An important ingredient is the following elementary obsdion:

Lemma 2.6 (Strict concavity bound)Let @ € (0, 1] be fixed. The map < u — e(a,U) =
(1 + u)® — u* has the following properties:

() If a € (0,1), thene(e, -) is strictly decreasing offi0, o) with lim_,« €(a, u) = 0.
In particular, for anyy > 1and0 < ys~ < s" one has

e(a, 2—f)§e(a,y)§e(a,l):2“—l<l. (20)
Moreover, for alla € (0,1) and allu> 0
e(a,u) <u L.

(ii) If u > O, thene(:, u) is strictly increasing ono, 1].
(i) Foralls—,s" >0

(1+s +s)¥< E(a/, s—sf) (1+s)%+(1+sh.
Proof. Since

0 a-1 a—1
G a((1+uw-u"t) <0 forae(0,1)

€(a, -) is strictly decreasing. Furthermore, for fixad- 0 we have
aie(a, u) =log(1+u)(1+w* —loguu* >0,
(04

which shows that(:, u) is strictly increasing.
Fora € (0,1) andu > 0 we estimate
1+u
e(u,a) = a/f reldr < outt <yl
u
In particular, lim,_« (e, u) = 0. By monotonicity, the chain of inequalitieQ) follows.
Lets,s" > 0. Then
(L+s +8) = ()" [(1+ =) - (=) ]+ (1+ 5"
<e(@. BE)A+5) +(1+5) <e(a, E)(1+5) +(1+5)
where we made use of the monotonicitye@t, -) in the last inequality. |

Remark 2.7. The proof of Lemma&.6is so simple that one might wonder whether it could be of
any use. In fact, it is crucial. It's usefulness is hiddenha fact that it enables us to gain a small
exponent in the commutator estimates, see Propositi®dand Lemma2.11below. Furthermore,
€(a,y) can be made as small as we likesi€an be chosen large enough, which will be important in
the proof of Theoren.9.

Corollary 2.8. LetG(s) := ¢®'@+9" for s> 0, @ € (0,1]. Then, forall s + s* = swith0 < s~ < s*,
_ L sty
IG(s) - G(s")| < 20t(1 + s7)*(1 - £)G(s) ") G(sY)

with (e, u) from Lemma2.6.

Proof. Sinces" < sanda € (0, 1],
S

59-G(si < [

st

In addition, sinces < 2st,

Ec’i(r)‘ dr = apt f 5(1 +0)7IG(r) dr < eBt(1 + s)* (s - sHG(9).
dr s
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Moreover, sinces = st + s7, the strict concavity Lemma.6 gives

— — ( sty —

G(9) < G(s ) S)G(s").
which completes the proof. |

Proposition 2.9(Bound on Commutation Errar)Let f be a weak solution of the Cauchy problem
(1) with initial datum § satisfying(8). Recalle(a, u) = (1+ u)®* —u?®. Then for all te (0, Tg], 8 > 0,
a € (0,1), andA > 0 we have

KQ(f,GA ) — GAQ(f, ),GA )l

n 712 el /)
sZaﬁtfRdedlb(lm )( InIZ)G( )OI ) (21)
x Ga ") GA I f ()l (77)* dordin,

ford > 2, and
KQ(F,GaT) = GAQ(f, f),GA )l

<20pt [ [ bu(@)sitPoaly ) IO 22)
RJ-3
X G F I Ga)I ()l <) oy,

in the one-dimensional case.
Remark 2.10. If the weightG was growingpolynomially the termG(;™) in the integral 21),
respectively 22), would be replaced by 1. In this case, the “bad terms" whimhtain 7~ can
simply be bounded byfllLoo [Ifll.2 = |lfoll.2 and the rest can be bounded nicely in terms of
||G,\f|||_2 and||G f|lu«, see the discussion in appendix

If the weightG is exponential, the estimate of the terms contaimin (21), respectively 22), is

an additional challenge and the methods we devised in codemtrol this term in the commutation
error is probably the most important new contribution o thork.

Proof of Propositior2.9. We start withd > 2. By Bobylev’s identity, one has
KQ(f,Gaf) = GAQ(F, f),GA Tl = (F [QUf, Gaf) = GAQ, )], F [Ga f])12]

f f (— cr)GA(n)u(n)uf(n WIFG)IGA () - Ga(n)] dor iy
Rd Sdl

f f (— cr)GA(n)lf(n)IIf(n W GH)IGE) - GG der iy,
Rd Sdl

where the latter equality follows from the fact th@j, is supported on the bally| < A} and

71 < Inl.
To estimatdG(n*) — G(n)|, we use Corollary2.8 with s := |7 and, accordinglys® = |7*[2.
Notice that

Inl? _
In*1? = 772 1‘%"7’ i = It 1% + 1%,

and, writing co® = ’f‘lr we also have

P = cos §,  In P = Insir §.

Sinceb is supported on angles in,[8/2], one sees & 7> < ijp12 and 112 < [yt < Inl2.
Therefores” < 3 <s" <sands=s"+5s".
It follows that for ally € RY with |5| < A, noting thatip*| < |7 < A,

(G - GOl < 2apt(n")* (1 1LE ) GG )i FITAIGA ), (23)

which finishes the proof in dimensiah> 2.
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For the Kac model we remark that the above proof depends anly o< |7*| < || and|p"|? +
In*1? = |n?, hencelp™|? < |n?/2, and the strict concavity Lemn®a6 and the Corollan?.8. Since,
by symmetry, we assume thiat is supported in{r/4, /4], the same bounds fer- andn™ hold
in dimension one and the above proof can be literally traed|awvith obvious changes in notation,
to the Kac equation. |

The bound on the commutation error in Propositihf is a trilinear expression in the weak
solution f. In order to close the a priori bound from Corolla2y4 in L2, one of the terms has to
be controlleduniformlyin n. Seemingly impossible with the growing weights, it is ekaet this
place where the gain of the small exponefat, [*1?/177|%) < e(e, 1) < 1 in theG(n") term in Q1)
and @2) allows us to proceed with this strategy. This gain of thelsexgponent is new and enabled
by the strict concavity bound of Lemn2a6 and its Corollary2.8and it is crucial for our inductive
approach for controlling the commutation error.

Lemma 2.11. The inequality
KQ(f,GAT) = GAQ(f, ),GA )l < laa + I,

holds, where, for ¢ 2

5 AN
on=as [ 7 sirf 0 bcose) (1) 1" 2 fr ) 1y (1) co
raJo Jsazy v

(24)
SNOUOTRUSET
Here the vector™ is expressed as a function paind o, that is,
7= 1.) = 50= ) = i SPE)L ~ i sin§) cosg) 25
ando is is a vector on the unit sphere given by
o= o6, w) = cos@)% + sin@) w (26)

with polar angleg € [0, 7/2] with respect to the north pole in thedirection,w € S92(n) := (@ €
RY: @ 1 n,l@| = 1}, the d— 2 sphere inRY orthogonal to they direction, anddw the canonical
measure org%-2.

in=2apt [ [7 [, sifobeos®) Gur) NI 4 ()
: rd Jo  Jse-2(p) V2 (27)
X GA(7") F () P07y o dew dly*
where now the vectoy™ is expressed as a functionpf ando, that is,
nto
]

1
n‘=n‘(n+,cr)=n+—|n+|( ) o =~y |tan@) (28)

where nows is is a vector on the unit sphere with north pole in tffedirection given by

+

o = (9, w) = cos@)% + sin@) w (29)

with polar angled € [0,7/4] andw € S%2(»*), the (d — 2)-sphere inRY orthogonal to the;*
direction. If d= 2 we setS® := 0 in this context.
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For d = 1 we have

4 g\ .
i =apt [ [ sitabs@ 62y (s
R -2 V2
X |G () f () y> iy,
z 8
ITa = ﬁ“ﬁ‘f f * sir? 0ba(6) G " 2) 7)1 1y (1) o 00
RJ-Z V2
X |GA () Fr™)2 (™Y di*,

where in the first casg™ = 7 (n,0) = nsind and in the second casg = = (y*,0) = n* tand and
there is no need to distinguish between drand$ parametrization.

Remark 2.12. In the n, respectivelyn*, integrals above;™ and o~ are always the same vectors
expressed in @lierent parametrizations. We therefore have the reldtiery/2, see Figurd. for the
geometry of the collision process in Fourier space.

Ficure 1. Geometry of the collision process in Fourier space.

Remark 2.13. From the bounds given in Lemn2allone might already see that, in order to bound

the commutation error by some muItipIe|m3Af||2H0(Rd), one has to control integrals of the form

s . )
S”"’f 2 f sirf e(cose) G\ 2y ) £y )1 (1) co
lni<A JO  J5%2(p) >

with the parametrisatior26) for =, and similarly for 27) and the corresponding integrals in the
one dimensional case. Due to characteristic functioyT jhis uniform control is not needed on the
full ball of radiusA, but only on a strictly smaller one, giving rise toiaduction-over-length-scales
type of argument.

Proof of Lemma&.11 Letd > 2. Using the elementary estimate

A ~ 1 A A
GA() fNIIGAGT) F () < 5 (18A(D f)I +1Ga(r) £r)P)
in the bound 21) gives
KQ(f,GAT) = GAQ(F, f),GA D < Tgn + 185



GEVREY SMOOTHING FOR THE HOMOGENEOUS NON-CUTOFF BOLTZMANEQUATION 15

with
. +12 . B R
la. = at f f b(i-a)(l— %)G(n‘)f(“"" O ()
Rrd Jga-1 \ 7] In| V2
x |G () f ()7 (" )* dodly,
and

15 = aft f f b(i - 0)(1— ﬁ)e(n‘)f(“""*'z/'""zﬂfA(n‘)nlA(m—D
’ rd Jga-1 \ [l Il v
X [GA( ) f ()P (7")** dordly
First we consideﬂ,\: Writing o~ in a parametrization where the north pole is intairection, one
has
o = cosh-L + sinfw

|71

where co® = % > 0 andw is a unit vector orthogonal tg, that is,w € S9-2(). Due to the support

condition onb one has cog > 0, that is,o is restricted to the northern hemisphére [0, 7/2]. In
this parametization one has-d= sin®2 ¢ dddw. From the definition of/* one sees

1 .
== +no) = @(L_L cos@)l + Ul sin@) w
2 2 i~ 2
SO
+ 21 in(@ u
1" = Il cos (Z)y . + b sin(§) cos@) w.
In particular,
0 In*|? 06 50
*| = |nlcos=, and 1- =1-co¥ = = sir? =.
7" = Inl >’ 2 5 5
Moreover,
_ . >0 7 .6 0 _ .0
= |n|sir® =— — |n|sin= cos= w, and = |n|sin=,
n-=1nl 20 Il 5 COS5 w 71 = Inl >
o)
+12 00§ [ 0
|77_|2 = —2 =cof .
|77 | Sll']2 3 2

After this preparation, using als@*)** < (1) and sin§ < sin6 for 6 € [0, %], the inequality
Tga < lga is immediate. The inclusion of the additional factof(|7]) = ]lsingA(m_D <1, y(n7l)
seems atrtificial for the moment, but will be convenient togk&ack of the fact that™ is always
restricted to a ball of radiu%.

Concerningﬂ,\, we want to implement a change of variables frgro *. As a function ofy

ando, nt = %(n — Inlo). Thus
1 1 1
—(]l+l®o-)‘: —d(1+l-o-)2 >3
2 Inl 2 Inl 2

on*
an

sincen - o > 0 and the second equality is an application of Sylvestetsrdenant theorem. There-

fore, the Jacobian of the transformation frgrto n* can be bounded by

-1

an
on*

_ |9

- <29
an

In addition,

2 X . +12
2 Il 2 Inl yl
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which implies

+

. + . +12 + .
| Il Il Il 77|

Moreover, from the definition of* one sees

n=2n"—Inlo
SO

A
n‘=n+—lnlcr=n+—ln+|( ] )

Therefore, taking care of the domain of integration,

+ 2 " 2
d ntoo\" (n o + .
2 j]};d Ld—lb(z( I ) 1) [1 ( | ))H%A(W )

x G ) ) £y )G () Pl ) 272 ol
Introducing spherical coordinates with north pole in tHedirection, one has

Q.+l
IA

o =0 w)= cos@)i + sin@®) w

|77* 1
-0

where now cos = L r- From figurel one see9 = g € [0, r/4]. In this parametrization one has

In*

s Il

n=n"- o = —|y*ltan@) w

cosy
and again d = sin®? 9 d¢dw. Thus

IH<2d ! b ind e(a.cofd) ()~ £ 1 "
d= o Joee Jy (cos29) sin" 9 G I ) L cosoya ()
Rd Jgd-
X 1G(r*) f (7)) dif de oy
Sincely”| = Iy*|tand we obtainT cospa (7)) = Lsinoya () < 1, y5(71) sinced € [0,7/4].
Hencel§, <15 ,.
The proof in thed = 1 case is completely analogous. -

2.3. Extracting pointwise information from local L? bounds.

Lemma 2.14.Let m> 2 and he W™*(R) and q > n% Then there exists a constanf, L< oo

depending only on,am, [|hl| ) and||h™M|| gy such that
1
) < Lim f @ mde forallr € R,
Qr

whereQ; = [r,r + 2]ifr > 0andQ; =[r - 2,r] ifr <O.

Looking into the proof of Lemm&.14 it is clear that itsm = 1 version also holds, even with
a much simpler proof. Before actually going into the proog state an important consequence of
it, which will enable us to get pointwise decay estimates dmnation once suitablé? norms are
bounded.

Form e N define||[DMf|| «ga) := SUR,ega-1 [I(@ - V)™ || ~(ra). Notice that this norm is invariant
under rotations of the functioh.

Corollary 2.15. Let H € €™(R"). Then there exists a constanf,b < o (depending only on
ma n? ||H”L°°(Rn) and!”DmH||L°°(Rn)) SUCh that

IHO! < Lonn ( fQ IH(f)Izdf)m ,
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where Q is a cube inR" of side lengtt2, with x being one of the corners, such that it is oriented
away from x in the sense that §& — x) > Ofor all £ € Q.

Remark 2.16. The constant,p in Corollary 2.15is invariant under rotations of the functidt.
This will be convenient for its application in Sectiod$ and?2.6.

Proof. We apply Lemma.14iteratively in each coordinate direction to obtain

n n-1
|H(Xl9 X23---,Xn)|2+m < LET]'I-)f |H(§l9 X27---5Xd)|2+ m d§1
Q

X1
n-2
<LOL® f f H(EL &, % . ., xa) 2 dr ds
0y, JOy,

SLF%)---LSQ)I f H(L ... )P da - dn.
Qq Qg

The constanttﬂ?, i=1,...,n,only depend om,
||H(Xl7 LR ] Xi—la T Xi+19 LRI ] Xn)”L""(R) S ||H||L°°(Rn)

and

IOMH (XL, . .. Xie1s 5 Xiss - - - Xn)llLw®) < ID™HIlLs(gny.
SettingLmn = 1L, Lﬂ]) yields the stated inequality Wity = Qy, X --- X Qy . |

Remark 2.17. It is worth noticing that the exponent in Corolla2yl5is decreasing in the dimension
and increasing imn.

For the proof of Lemma&.14we need the following interpolation result betweef norms of
derivatives of a function.

Lemma 2.18(Kolmogorov-Landau inequality on the unit interval)et m> 2 be an integer. There
exists a constant &> 0 such that for all we W™>([0, 1]),

(W[ Le=(j0,1. _
||W(k)||L"°([0,1]) <Cm % +u™ I(IIW(m)II|_°°([o,1])), k=1...,m-1,

forallO<u< 1.

Proof. The result dates back to Eakpau and A. N. KoLmocorov who proved it orR andR*. A
proof of the inequality on a finite interval can be found in theok by R. A. xVore and G. G.
Lorentz [17] (pp.37—-39), but for the reader’s convenience we also giskat proof in Appendix
C. [

For us, the important consequence we are going to make use of i
Corollary 2.19. Let G, > 0 be the constant from Lemn2al8 Then for all we W™*([0, 1]),

K 1-k/m k/m k/m _
IMOllLso.1p < 2CmIMIL=(ig y MaX{IMI g 1, IS0 1) kK=1...,m=1 (30)

Proof. If ||W(m)|||_oo([o,1]) < IWllL=(o,17), we choosei = 1 in the bound from Lemm2.18 which gives
IW®lLe0.17) < 2CmIWIIL=(0.1)

. . . _ 1/ -1/
g\bigl_i case, and fw™M|| <1 = IWllL=(o0.17, we can choose = ||w|||_0<,”(‘[0’1])||W(m)|||_w('[8’1]) <1to
i

Moy < 2CmlL g V™I 17

Together this proves30). |

We can now turn to the
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Proof of Lemm&.14 Assume without loss of generality that> 0, so thatQ); = [r,r + 2]. By
the Sobolev embedding theordmis continuous and we lat* be a point inQ; where|h| attains

its maximum. We can assume théte [r,r + 1] and sekh) := frf” h(¢) d¢ (otherwise we use
(hy- = [1_, h() d). Then for somep > 1 we have

I(r)IP = [hPy;-

r*+1 1
< f IP(r) - hP(&)| dé = fo () — hP(r* + 2)] c.

Bt the fundamental theorem of calculus, for ahg [0, 1] the integrand can be bounded by
1
P(r) —hPE + 1< p fo Ih(r* + )P R (1 + )I¢ ds

1
< p sup N (™ + )l f h(r* + )P ¢ ds
s€[0,1] 0
We now use that

sup [N'(r* + )l = sup [N'(r* +x)| < sup (" +x)| = [I0(r" + )llLeqo.1p
s€[0,1] x€[0,¢] x€[0,1]

and apply the Kolmogorov-Landau inequality for the firstigegtive in its multiplicative form from
Corollary2.19to the function [01] > x +— h(r* + x) € W™*(]0, 1]) to obtain

7 (5 ® 1-1/m * 1/m ® 1/m
”h (r + ')”L‘X‘([O,l]) < ZCm”h(r + .)”L‘X’([O,l]) maX{Hh(r + .)”L‘X’([O,l])’ Hh(m)(r + .)”Loo([o’l])}
wy(1-1/ 1/m 1/m
< 2Cmlh(r )™ max 1Ny, NI ) -

It follows that

Ih(r*)IP = [(hP)y- | < 2pCrnln(r)*~4/™ max{ IRl gy I G

1 1
X f f Ih(r* + s)|P~1z dsdc.
0 0

The latter integral can be further estimated by

1 1 1 e
f f Ih(r* + )Pz dsdz = f f Ih(r* + )1 dxdg
0 0 0 0

1 1 1
< f f Ih(r* + X)|Ptdz dx = f Ih(r* + x)|P~* dx
0 Jo 0

r*+1
_ f Pt < f Ih@P .
r o

*

Using
r*+1
Py | < f IN@IP d < IhllL (@) fg Ih@)P de
r* r
< (YR, fg r Ih(@)IP dé
we get

P < L) [ et
with Lin = 2pCrn max{ Iy, Iy L+ NI, , and therefore

Ih(r)PHYm <Ly | IhE) Pt de.
Q
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Choosingg := p— 1+ 1/m> 1/mthen yields
O < ) < L [ I
Qr

which is the claimed inequality. [ |

2.4. Gevrey smoothing of weak solutions for_? initial data: Part |. Equipped with Corollary
2.15we can construct an inductive scheme based upon a uniformob@uG(;~)<@D|f(;7)]. As
already remarked, this result will depend on the dimensaor, will actually deteriorate quickly as
dimension increases. Nevertheless it leads to strongaetyuproperties of weak solutions in the
physically relevant cases.

Theorem 2.20. Assume that the initial daturm, &atisfies § > 0, fo € Llog L(RY) n LL(RY) for
some m> 2, and, in addition, § € LZ(Rd). Further assume that the cross-section b satisfies the
singularity condition 8) and theintegrability condition 4) for d > 2, and for d= 1, b; satisfies the
singularity condition §) and theintegrability condition {) for some0 < v < 1. Let f be a weak
solution of the Cauchy problexd) with initial datum . Setamq := log(%24) /log 2. Then, for

all 0 < @ < min{amg, v} and Tp > 0O, there exist® > 0, such that for all te [0, To]

PO £t ) e LARY), (31)

1
that is, fe G2 (RY) for all t € (0, To].
By decreasingg, if necessary, one even has a uniform bound,

Corollary 2.21. Let Tp > 0. Under the same conditions as in Theor2rA0there exit3 > 0 and
M; < oo such that
sup supe®P™ |f(t, ) < My (32)
0<t<To yeRrd

Remark 2.22. (i) For strong singularities, the restriction on the Geweiss originates in the
bound on the commutation error, with the best valué # 1 dimension. The aim of part Il
below will be to recover the two-dimensional resulainy dimension & 2. Under slightly
stronger assumptions on the angular cross-section, whilctosers all physically relevant
cases, we can get the one-dimensional result in any dimedstol, see part lIl.

(ii) In dimensionsd = 1,2,3 andm = 2, corresponding to initial data with finite energy, we

haveasq = log($9)/log 2 > log (%) /log 2 ~ 0.652077. This means that for= 3 the

weak solution gets analytic and even ultra-analytic/for %

(iii) In the case of physical Maxwellian molecules, where ‘—11, in three dimensions and with
initial datum having finite mass, energy and entropy, weiob@evreyG2(R3) regularity.

(iv) Even though the range of in Theorem2.20above deteriorates as the dimension increases,
it only fails to cover (ultra-)analyticity results in dimsionsd > 6. Theorems.30and
2.35below yield results uniformly in the dimension.

We will prove Theoren®.20 inductively over suitable length scaldgy — o asN — oo in
Fourier space. To prepare for this, we fix somMex o0, 0 < Ty < oo and introduce

Definition 2.23 (Hypothesis Hyp1(M)). LetM > 0. Thenforall0<t < Ty

supG(t, )@ f(t, ) < M. (33)
IZ1<A

Remark 2.24. Recall thatG(t, ) = €®%9" | that is, it depends oa, 8, andt, and alsof is a time
dependent function, even though we suppress this depemdeaar notation. Thus HypXM) also
depends on the parametergd(t, /) and onM andTy, which, for simplicity, we do not emphasise
in our notation. We will later fix som&g > 0 and a suitable large enoudgh. The main reason
why this is possible is that, sin¢|ef|||_oo < |IfllLe = IIfollL2 < o0, for anyA, B, To > 0 the hypothesis
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Hypl, (M) is true for large enougM and even any > || fo|| 1 is possible by choosing > 0 small
enough.

A first step into the inductive proof is the following

Lemma2.25.Leta < vand define gq := [S9?| E sin? o b(cose) doford > 3, ¢y = E sin? 6 b(coss) do,

Co1 = fz}, sin? 6 by (6) dv, which are finite by the integrability assumptiot® and (7), and let
-z
Ct
B=< (1+2d‘1)cb,2aToM+1'
HypL,(M) = [IG 3 fllizggey < 1T 5, (D) foll 2may €50 T (34)

forall 0<t <T,.

Then, for any weak solution of the homogenous Boltzmaretieguy

Remark 2.26. The main point of this lemma is that the right hand side33f) does not depend on
M. This is crucial for our analysis and might seem a bit sumpgisat first. It is achieved by making
B small enough.
Proof. Letd > 2. Since cot§ > 1 for @ € [0, %] and cot 9 > 1 for ¢ € [0, 2], we can bound
é(a, cot® §) ande(a, cot’ ¥) by €(a, 1) in the integrald 5, andl;@\ from Lemma2.11

Assume Hyp1(M) holds. Then

Gt ) @IIf(t, o)l <M forall | <A.

In particular, the terms containing™ in I, 5, and Ig can be bounded b1. Thus, these

integrals can now be further estimated by

V2A

| <aftM|s%? 2 irf ob(cost) do | |G 5. () ()2 ()2 dn
d,V2a = 0 o V2A

= aptM CollG 5, fllFe ze)

and,

It _ < 2%BtM|S9? f " sird b (cos ) d f G f ()P (Y2 dn*.
d,V2A 0 Rd
In the ¥ integral, we bound sitt < sin(29%) to obtain
d—1 2
15 on < 2BV CodllG 54 Tl oy
By Lemma2.11, the commutation error corresponding to the wei@ht, is thus bounded by

QTG 3y 1) = Gy QAU 1.5y )] < T yan + 12 50

(35)
<@+ 2% eptMengllG 5,

2
f”ch(Rd)'
With Corollary 2.4we then have

t
G yan FIZ2ggey <IL (20 (D) ollZ + fo 2C 4G o Iz e A7

t
+ fo 2(=ClIG yzn FIlZ ey + (1 + 2 @Bt Mo + B)IG 34 FllF ) T

Cfo
(1+2d_1)Cb’c| aToM+1’

t
IG 3 FIlfaggay < 1L y55 (DV) FollFome) + fo 2C4lIG yzp Fllf2(ge O
and with Gronwall’s inequality
IG 3 FIlEaggay < 1L y35 (D) Follf ey €70 (36)

Sincea < v andp < this implies
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follows.
Ford = 1, we note that, with the obvious change in notation, the alpwgof literally translates
to the Kac equation. m

The second ingredient gives a uniform bound in terms of ahtewl> norm and some a priofi
uniform bound on some higher derivative faf

Lemma 2.27. Assume that there exist finite constantsahd B, such that

I ey <Am, and  I(G 3, H)(E, ll2eey < B (37)
for some integer nx 2 and for all0 <t < Tp. Set
A=l +2‘/§A (38)
and assume furthermore that
4+vd
A=Ap = vd . (39)
V2-1
Then for alljp] < A
1f(t, ) < Ky G(t,p) #va forall 0<t<To (40)

with a constant K depending only on the dimension d, ny, And B.

Remark 2.28. The exponentsz—md in equation 40) comes from Corollary2.15 choosingn = d.
This is responsible for our definition ef 4, since there (amg, 1) = ziH—md

Remark 2.29. The assumptions of Lemnia27 are quite natural: since the Boltzmann equation
conserves mass and kinetic energy does not increase, wéhlesagriori estimate

[t ')|||_%(Rd) < ||f0|||_;(Rd) = A,
and due to the known results on moment propagafionthe homogeneous Boltzmann equation in
the Maxwellian molecules case, we have
foe LL®RY = f(t,) e LL®RY) uniformly int > 0
for anym > 2 in addition to assumptions)

The importance of Lemma.27is that it efectively converts a locdl? bound on suitable balls
into apointwise bounan slightly smaller balls.

Proof of Lemm&.27. By the Riemann-Lebesgue lemrfidas continuous and bounded derivatives
of order up tam. Since for any multi-index € Ng one hagf = (-2xi)® v f, we obtain the bound

~ ~ m ~
IDTF(t, Mw@ay = SUp [l(w- V)™ (L, )l Lo@ey < SUP supZ ( )Iwallﬁaf(fl)l

wesd-1 weSt1 neRY |y 1=m

< (2m)™ sup fRd Z

d-1
weS lal=m

(m) lw™V*| f(V)dv < (27)" sup | (w-Vv)" f(v)dv
a Rd

wesd-1
< (@n)" f%d V™ (V) dv < (22) It )l ey < (270)"Am

Of course, alst| | «(ge) < lIfll 1oy < Am.
Lety € RY such thaty| < A. By Corollary2.15applied to the functiorf, there is a constartiy,g
that depends only od, m, andA, such that

1)) < Lima [ fQ |f‘(4)|2d4]m

3see, for instance, WLanr's review [40] pp. 73t for references.
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whereQ, is the cube of side length 2 atsuch that all sides are oriented away from the origin. The
definitions of A andAo guarantee by Pythagoras’ theorem, that|fbg A, Q, always stays inside

the ball around the origin with radius2A. Since the orientation a®, is such thay is the point
closest to the origin and the weigBtis radial and increasing, we have

R R Znid
1f@)l < Limg (G(n)‘2 fQ G({ﬁf({)ﬁd{)
n
" . Zmid
< Limd G() 7a ( f G(§)2|f(§)|2d§)
{Inl< V2A}
2m 2m
< LmgB2md G(r)~ 2mid.
SettingKy := LmdBﬁmd yields the claimed inequality. ]

Proof of Theoren2.20 By Lemma2.25 2.27, and Remark.29 a suitable choice foAy,, B, and
the length scaleay is

B := || foll_2gaay€“®0 ™,
Am = SUPIIF (L, )l g ey < oo,
t>0

and

N
Ay = AN-1 + \/QAN_]_ _ 1+ \/QAN_l _ (1+ \/z) Ao

2 2 2
with Ag from (39).
Furthermore, we set
M1 := max{2An + 1, Ky}
with the constanK, from equation 40).
For the start of the induction, we need Hyp@M) to be true. Since

sup sup G(n) | f(n)| < e DTod+AD" A
0<t<Tp Inl<Ao

and from our choice oM, there existgo > 0 such that Hypl (My) is true for all 0< 8 < fo.
Now, we choose

_ Cr,
= min|po, :
F (ﬁ O 1+ 29 D)y g aToMy + 1)
With this choice, the conditions of Lemn2a25and?2.27are fulfilled and Hyp} (M) is true.
For the induction step assume that Hyp@M,) is true. Then Lemma.25gives

IG zay, fllizesy < 1T 50 (D) follLzges) €50T < B.

Note thate(a, 1) < % sincea < min{amg, v}, see RemarR.28 In addition, An;1 = An, SO

Lemma2.27shows
sup GOVl < Ki < My,
[mI<AN+1
that is, Hypl,  ,(Mj) is true. By induction, it is true for alN € N. Invoking Lemma2.25again,
we also have

IG y3n,, FliLzrey < B

for all N € N and passing to the limll — co, we sed|G f|| 2ray < B, which concludes the proof
of the theorem. [

Proof of Corollary2.21. The proof of Theoren2.20showed that giveiip > O there existdM; > 0
andg > 0 such that Hyp4, (M,) is true for allN € N. This clearly implies 82). |
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2.5. Gevrey smoothing of weak solutions for? initial data: Part Il. The results of Part | are
best in one dimension and give the correct smoothing in teririke Gevrey class for not too
close to one, more precisely< amg. In order to improve this in higher dimensiods> 2 and for
a larger range of singularities©v < 1, the commutator estimates have to be refined. We have

Theorem 2.30. Let d > 3. Assume that the initial datumy atisfies § > 0, fy € LlogL(R%) n
LL(RY) for some m> 2, and, in addition, § € L?(RY). Further assume that the cross-section b
satisfies thesingularity condition 8) and theintegrability condition 4) for some0 < v < 1. Let f

be a weak solution of the Cauchy probléthwith initial datum $, then for all0 < @ < min{am2, v}
and Tp > O, there exist® > 0, such that for all te [0, To]

PO £t ) e LARY), (41)

1
that is, fe G2 (RY) for all t € (0, To].
In particular, the weak solution is real analyticiif= % and ultra-analytic ifv > %

The beauty of this theorem is that, in contrast to Theo2ePg, its result does not deteriorate as
dimension increases. We also have a corollary similar tol@oy 2.21, however with a weaker
conclusion. Moreover, it inot uniform in the timet > 0 but only holds on finite, but arbitrary, time
intervals [Q To].

Corollary 2.31. Under the same assumptions as in Theo&#&®@, for any weak solution f of the
Cauchy problen{l) and any0 < Tg < oo there exist® > 0 and M < o such that

sup supe ™ |f(t,p) < M. (42)
0<t<To peRd

The proof of Theoren2.30is again based on an induction over length scales in Foypaeres
Having a close look at the integraig, andlj , from Lemma2.11and using thaé(a, y) is decreas-
ing iny, one sees that it should be enough to bound expressions fafrthe

f GO ) D) (1) deo
S9-2(n) 2

and

f GO YD o)L o (7)) doo
§42() V2

uniformly in 7 andé, respectivelypt and#, with the parametrization2g), respectively 28), that
is, instead of having to use the purely pointwise estimatpsessed in the hypothesis Hypfrom
the previous section, one can take advantage of averagergcodimension 2 spheres first. This
motivates

Definition 2.32 (Hypothesis Hyp2(M)). Let M > 0 be finite. Then for all & t < Ty,
sup  sup G(t 25 - pw)s(a’l) |fA(t, 25 - pw)| dw < M, (43)
LeRY\(0} (zp)eAr JSI2(0)
whereAy = {(zp) eR?:0<z<p, 2 +p? < A% andS%2() = {weRY: w L ¢, |w| = 1}.
Again, we have
Lemma 2.33. Leta < v, define gg2 = fog sind b(cosh) do (which is finite by the integrability

Cfo

assumption(4)), and letg < T2 TongsaToMiL"

Boltzmann equation,

(Hyp2,) =[G 5, flizeey < I 55 (D) foll 2ray €50 (44)
forall 0 <t < To.

Then, for any weak solution of the homogenous
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Proof. Using the monotonicity oé(a,y) in y and @4) one sees

o n < 0t [ [ [ sirfaoxeosa)( [ G 50 at o) de}
’ RA|JO 59-2()

X G 3, (1) F ()1 ()™

wheren™ =1~ (n, 0, ) is expressed via the parametrizati@3); Foro = (6, w) € [0, 7] x S92 one
hasy™ = || sin? g +Inlsing cos§ wand if [yl < V2A, thenly™| < A. Identifyingz = || sin® § and
p = Inlsin§ cos§, and the direction of with the direction ofy, hypothesis (Hypg) clearly implies

sup sup G(n—)E(a,l) |]€(77_)| La( ) do < M
Inl< V2A 0€l0,7/2] J5%-2(y)

It follows that

3 .
lgyap < @BtM f d fo sin® 9b(cosd) |G 5, () f () () dly

R
= aptM Coa2lIG 55 FlFe rey-
Similarly one has

1+ - < 2%pt f [ f * sin 9b(cos D) ( f G f ) a7 dw) dﬁ]
d, ‘/EA Rd 0 Sd—Z(n+)
X |G oA ") F (7P (o y?* dn*
wherern™ = 7 (n, 9, w) is expressed via the parametrizati®8) The vectors;” andn™ are ortho-
gonal and we have™ = —|p*|tand w for (¢, w) € [0, 7] x S4=2(p).
Settingz = 0 andp = |p*|tan?d we havep = || < A in thed andn* integrals above. Thus
(Hyp2,) again implies

sup  sup f GO ) £ La (1) doo < M
It I< V2A P€[0.1/4] JS92(p)

Hence,
A -
5 v < 290t M fo sin ob(cos6) do fR |16 PR RUBT N
< 2Bt M G a2lIG 5, 1% e
The rest of the proof is the same as in the proof of LenZni2a [ |

To close the induction process, we next show
Lemma 2.34. LetB < T—lo Assume that there exist finite constangsad B, such that
I e <Am, and  I(G 3, )X l2ey < B (45)

for some integer nx 2and for allO <t < Ty.
SetA := 132 and assume that

_ 4V2
CV2-1

Then for allz € R9\ {0} and0 < z < p with p?2 + 22 < A2 one has

A>Ag: (46)

Ld » |fA(t, zé +pa))| dw < Ko G(t, 2 + p?)~ 2wz forall 0<t < To
s

with a constant K depending only on.dn, Ay, and B. Recall tha6(t, s) = e#(1+9"
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Proof. Fix 0 <t < Tg, £ € RY\ {0}, and seF (p,2) := f(t, zé + pw), where we drop, for simplicity,

the dependence on the timé our notation forF. Then, since|f(t,-)ll.1 < Anone hasf(t,-) €
®M(RY) and thus als& € €™(R?) with ||F||L~ < An 105'FllLe < (27)™Am, and||07'F L~ < (27)"Am
and Corollary2.15applied toF yields

R 0+2  ~Z+2
|f(zé+pw)|SLm2(f f
o z

where we also dropped the dependence @i the time variablg. Furthermore, we will drop
the time dependence @& andG in the following, that is,G(£) and G(s) will stand for G(t, &),
respectivelyG(t, s).

To recover thd_2 norm of G vaa f inthe right hand side of4(7) we now need to take care of three
things:

. 2 am2
f (x% + yw)| dxdy) . (47)

() Multiply with a suitable power of the radially increagjnveightG.

(i) Integrate over the missing — 2 directions, which will be taken care of by integrating
overS9-2() and taking into account additional factors to get thdimensional Lebesgue
measure.

(iii) Ensure that the region of integratiop,fo + 2] x [z z + 2] x S9-2(¢) stays inside a ball of
radius V2A uniformly in the direction of. This we control by choosing large enough
(a simple geometric consideration shows thafrom the statement of Lemnia34works)
and restricting andz by p? + 2 < A2

Letz p > 0. In the region of integration i{), the pointow + z% is closest to the origin iiRY,
and since the weigh is radially increasing, we get

£ (25 +p0)| < LG (Z + )
(48)

_m_
M2

(fp+2 £Z+ZG(X% + yw)2 |fA(xé + ya))|2 dxdy)2
o

Assume that? + p2 < A2. Then the integration of inequalityt®) over S4-2(¢) yields with an
application of Jensen’s inequality+ tzmz is concave!)

- o o
fsdzm |‘c (Z% +.0w)| dw < Lm2|Sd_2|W22 G(22 +p2) P

0+2 Z+2 c 21 ) 5 sz
X(fst(g)fp fz G 5 (Xlﬁ +yw) |f(xm +yw)| dxdydcu) )

Now assume additionally 8 z < p andA2 < p? + 22 < A2. Since 0< z < p we haveA2 < 2 +p? <
2p? and therefore

0+2  Z+2 . o1 . )
\[Sd—Z(g)L f; SN (Xm +ya)) |f (Xm +ya))| dx dy dw

2% A2-d f f o f Z+2e (x£ +yw)2|f‘(x£ +yw)|2 y42 dx dy dw
0 Juond, s A 4

d=2 o5
< 27 AFYIG g5 FIiE2 ey,

IA

sincey?-2 dxdydw is the d-dimensional Lebesgue measure in the cylindrical cootdié, yw)
with x e R,y > 0, w € S9-2(¢) along the cylinder with axig. So with the assumptiaiG Voa Tllzggey <
B we obtain

2m

S [0+ 0] o < Lnls® 2585 (20587 5 1.2 1. 7) .



26 JEAN-MARIE BARBAROUX, DIRK HUNDERTMARK, TOBIAS RIED, AND SEMJON VUGALTER

~ —_ __2m_ 2m M« B ~
f (t, Zl% +pw)| dw < G(t, Z +p2) mi2 oomyaPtL+AG) S92 1 ()l ey

In the case? + p? < A2 we haveG(t, 2 + p2) 1 +A0)" > 1 and we can simply bound
2m

ﬁdz(()

< Anjs® NG (t, 2 + p?) 2

sinceB < 1/Tp, by assumption. So choosing
Ko = max(Lm,2|Sd—2|%zz (2¥A§—°'|32)Wm+2 ,Am|sd—2|e1+A5)
finishes the proof of the lemma. |
Now we have all the ingredients for the inductive

Proof of Theoren2.30 By Lemmata2.33and2.34a suitable choice foA, andB is

B := I foll 2ze) €,

Am 1= fgopllf(t, Wiy ey < oo

Note that the finiteness @, is guaranteed sinck € L1 (RY), see Remark.29. We further choose
the length scaleay to be

ANt V2AN-1 1+ V2
B 2 B 2
with Ag now from @6), and we set

Mz := max{2is*?|An + 1, Ko}

with the constanK, from Lemma2.34
For the start of the induction, we need Hyp@M) to be true. Since

AN :

AN-1 = (

1
sup sup sup G(t,zé—pw)f(d)

0<t<To zeR9\(0} (Zp)eAr, V5U2(0)
< |Sd—2|egT0(l+l\g)Am

and from our choice oM; there existgo > 0 such that Hypg (M) is true for all 0< 8 < fo.
Now, we choose

fA(t, Zé —pw)| dw

B =min(Bo, Tgt o
B 70 (1 20 ) cogoaToMa + 1)

With this choice, the conditions of Lemn2a33and2.34are fulfilled and HypZz (M) is true.
For the induction step assume that Hyp@M,) is true. Then Lemma.33gives

”G V2AN f”LZ(Rd) <1 \/EA(DV) fO”LZ(Rd) eCfOTO =B

and then, since(a,1) < 2%”32 by our choice ofa, and Any1 = An, Lemma2.34 shows that
Hyp2,,,,,(My) is true, so by induction, itis true for aN € N. Invoking Lemma2.33again, we also

have

G VBAN f|||_2(Rd) <B
forall N € N and lettingN — oo, we sed|G f|| 2rq) < B, which concludes the proof of Theorem
2.30 "

Proof of Corollary2.31 Theorem2.30 shows thalGf € L?(RY) for all 0 < t < To. applying
Corollary2.15with n = d to f yields

2m

~ m ~ Wnld _— m
()| < LmaG(n)” 2 [ fQ G(gﬂf(g)ﬁdg] < LindllG 1372, G(n) e,
n
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where we also used that the Fourier multiplier is radiallyré@sing. This proves the uniform bound

(42) with § = 520, n
2.6. Gevrey smoothing of weak solutions fot? initial data: Partlll.  Under the slightly stronger

assumption on the angular collision cross-sectipnamely thab is bounded away from the singu-
larity, we can state out theorem about Gevrey regularisatigts strongest form.

Theorem 2.35. Assume that the initial datunp $atisfies § > 0, fp € L log L(R%) N L% (RY) for some
m > 2, and, in addition, {§ € LZ(Rd). Further assume that the cross-section b in dimensiogs2d
satisfies theingularity condition 8) for some0 < v < 1 and theboundedness conditiod®). Let f
be aweak solution of the Cauchy probl¢twith initial datum f, then for all0 < o < min{a™, v}
and all Tp > 0, there exist® > 0, such that for all te [0, Tg]

PO £t ) e LARY), (49)

1
that is, fe G2 (RY) for all t € (0, To].
In particular, the weak solution is real analyticiif= % and ultra-analytic ify > %

Remark 2.36. Thus, under slightly stronger assumptionidhan in Theoren2.20, which we stress
are nevertheless fulfilled in any physically reasonablegase can prove the same regularity in
any dimensioras can be obtained for radially symmetric solutions of thedgenous Boltzmann
eqguation.

Corollary 2.37. Under the same assumptions as in Theo&8&b, for any weak solution f of the
Cauchy problen{l) and any0 < Tg < oo there exist® > 0 and M < o such that

sup sup€ ™ [f(t, )| < M. (50)
0<t<To UERd

Proof. Given Theorem2.35, the proof of Corollary2.37 is the same as the proof of Corollary
2.31 [

The proof of Theoren2.35shows the delicate interplay between the angular singulafithe
collision kernel, the strict concavity of the Gevrey wemghand the use of averages of the weak
solution in Fourier space, together with our inductive pahare, which has proved to be successful
in Theorems2.20and2.3Q Again, the main work is to bound the expressidgs and I&A from
Lemma2.11 Before we start the proof of Theoretn35 we start with some preparations. It is
clear that we only have to prove Theorén35in dimensiond > 2 and for singularities’ > a2,
since otherwise the result is already contained in Theo2g®and2.30

Looking at the integraly o from Lemma2.11, one has

7_2r . d _ e(a,cot2 Q) ~o _
lga = a,Btf f f sin” gb(cosh) G(r7) 2HEm )L A (In7]) dwdd
RI\JO  Jsd9-2(y)

V2
X 1GA () ) (my** dn.
where we use the parametrizatid®b) for n~ = 7 (n, 6, ). Splitting thed integral above at a point
6o € (0, 5) and using the monotonicity of the cotangent oyZand ofe(a, y) in y one sees
laa < ldaa+lda2
whith

—_ €l a, tz @ o _ —_
lga1:=afBTo sup sup G~ (. H,w))( CO 2)If(n (17,0, )1 A (In” (0,6, w)|) dw
0<6<% O<lrl<A $9-2(n) V2

(51)

)
x f sirf!61b(c0s6) 0B G 112 e
0
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and

5 .
lanz = CoraBTo SUP f f GOr (1, 6, ) D [y (n, 6. )| 1 a (7 (. 6, ) o 46
O<lnl<A Joo  JS9-2(n) V2

X [|Ga (52)

Pl ey

whereCy, is an upper bound fds(cosé) on [fo, 5]. Now we choosép > 0 so small that
2m

2m+ 2

and note that from Corollarg.31, sincev > aym, there exists a finitél, such that

7/
e(a, cot? EO) < €elazgm, 1) =

sup sup G717, 6, ) @2m D) [f (77 (1, 6, w))| 1 A (7 (1,6, w)]) dw < M2 < co.
0<6<% O<lni<A $9-2(n) N

So from 61) we get the bound
la.a1 < @BToM2Coa2lIGn I, e, (53)

where the finiteness @, 42 follows from the singularity condition and the boundednefsis(cos6)
away fromé = 0.
For the integral j , from Lemma2.11, a completely analogous reasoning as above shows for

small enoughy such thak(a cot’) < e(azm, 1) we also have

+ + +
laa < lga1+ldaz
with

i < 27 aBToMaCo a2lIGa (54)

2
f”H‘Y(Rd)
and

i .
1502 = 2°CyoafTo sup f f G (", 9, W)Y (. 9, )| 1 A (1~ (7", 9, w)]) dw A9
O<pt|<A Jo JSI-2(5pt) 2

X [|Ga (55)

2
f”Hn(Rd)
where we use the parametrizatidB) for n~ = = (5", ¥, w) and whereCy, is an upper bound for
b(cos(2%)) on [Jo, 71

Recall that we always assume< a1 m, SO€(e, 1) < e(@1m, 1) = % Thus we see that in order

to set up our inductive procedure for controllihg, andlj , itis natural to introduce

Definition 2.38 (HypothesisHyp3, (M)). Let M > 0 be finite, 0< 6p, %o < %, To > 0, andm > 2
an integer. Then for all @ t < Tp one has

3 .
sup f f G (t.7 (7. 6, )P
Inl< V2A Y00 JS%2(n)

where we use the parametrization given2s)(for =, and

f o1 (.0, )| 1A~ (7.6, w))) dw d < M, (56)

i om A
sup [ Gn 0. o) P | 0| 1alr (0 D) dwd <M (57)
1< V2A Yo JS420r)

where we use the parametrization given2s)(for n~.
(58)

For the induction proof of Theore® 35 we again start with
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Cod2 = fog sin® gb(cosh) do (which is finite by the singularity assumpti()@ and the boundedness
Cfo

Lemma 2.39. Let M > 0, Tp > O, m > 2 an integer,am2 < v < 1, 0 < o < v and recall

assumptior(16)). Let M, be from Corollary2.31andp < o2 opaz Mo+ Cog 7 EC, M1 Then
for any weak solution of the homogenous Boltzmann equation,
HYP3,(M) = 1IG 34 fllLzesy < 11T 55 (Dv) foll 2(gay €770 (59)

forall 0 <t < To.

Proof. Given Lemma2.11and the above discussion with the bounds58)( (54) and using the
hypotheses (Hypd for the terms in$2) and 65), one sees that the commutation error on the level
V2A is bounded by

Q.G 30 )~ G 5, QUF. 1.6y, F)] < 1y 30 + 1
< (1+ 2% 1)aBToM2Coa2lIGA FIif oy + (Céo + 2'C,)aBToMIGA FIZ, oy-

Given this bound on the commutation error, the rest of thefpi®the same as in the proof of
Lemma2.25 ]

To close the induction step we also need a suitable versitemima2.34 but before we prove
this we need a preparatory Lemma.

Lemma 2.40. Let H:RY — R, be a locally integrable function and letn, € RY with |5], [*| >
Ao >0,0<6p < 7,and0 < g < §. Then with the parametrizationr = (1, 6, w) given in(25)
one has

Inl Inl
,0,w) +zL4) dzdd < — f f w) dydx
jO‘o f n (n ) ||) AOCOSHO A()SII’\2 AoSIﬂOo || y ) y

for any unit vectorw orthogonal ton. Moreover, with the parametrizatiopr = n~(n*, 6, w) given
in (28) one has, for anyk > 1324,

L
j;:fo H(”_(”+”9"")+Z| il % (I~ (7", 9, w)|) dzd®

< —— w) dydx
f j/;()tanﬂo |77| - )dy

Remark 2.41. The restrictiondy < § is only for convenience, to ensure thegtando <

Proof. Fix n as required and orthogonal to it. We want to have a mdp : (9,2 — 1(9, 2 =
(%,y) such that

n (n,0,w) + ZIZI = XIZI yo.

From the parametrizatior2$) we read &

.50 |7l
=n|sif = +z andy= - sing
[l >+ y=5

and we can compute the Jacobian going from #hg) (variables to , y) as
a(x.y) Inl Inl
detD® — C0Ssf > — c0Sshp.
36, 2) = |detb| = 2
Sincelyl > Ao, 6 € [6o, 3], and 0< z < 2, we have/\osin2 b <x<ysinfZ =% and4?singp <
y < 2. So doing a change of variablet §) = d);l(x, y) in the integral we can bound

nl Inl

2 (2 2 2+2 |
H(n (n, 6, w) + zL dzd@s—f f x + Yo dydx
jO‘o »l; (n (n ) |77|) AOCOSHO A()SII’]2 AoSIﬂOo y ) y
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since the ma®; is a nice difeomorphism.

For the second bound the calculation is, in fact, a bit easi@ just has to take care that|
cannot be too large, which is taken into account by the fatigf;~|). We now want a magd, :
(6,2 — D2(0,2) = (X,y) such that

n (", 9, w) + Z% = X% - Y.
From the parametrizatior2) we read &
x=z andy=|p7| = |p"|tan?

and the Jacobian going from th&, ¢) variables to X, y) is simply

I(x.y)
= |detDd,| = 2p*| = 2A0.
5] = 1detDe = 20771 20
We certainly have (X x < 2 and alsdAgtandy < y. Sincey = ||, we also have the restriction
y < A. So the proof of the second inequality follows similar to gneof of first one. |

Finally, we can state and prove the second step in our indegirocedure.
Lemma 2.42. LetB < Tio Asssume that there exist finite constantsafdd B, such that
I Mz <Am, and  [I(G 3, I)( )llzgey < B (60)

for some integer i 2and forall0 <t < To.
SetA := 22 and assume that

A>Ag:=3. (61)
Then there exist a finiteg{depending only on,an, A, and B such thaHyp3;(K3) is true.
Proof. Fix 0 < t < Tp, a directiony € RY\ {0}, and define the function
2o F@ = flt,n +7)

of the single real variable, where we think of;~ as given in the;-parametrizationZ5) for some
6 andw € $%2(;)), and where we drop, for simplicity, the dependence on the tiin our notation
for F and f. Then, sincelf(t, )l 1 < Amone hasf(t,-) € €™(RY) and thus alsé € €™(R) with
IF]lL> < Am [10TF||L~ < (27)™Am, and Corollary2.15applied toF now gives

m

A 2 2mi2
fm)l < Lm,l(fo If(n~ +ZW’7|)|2 dz) .
We multiply this with the radially increasing weig@ito get
S\ 2 . , . \F72
SO )R < Lo [ 1607 + 2y + 2]

Integrating this with respect @ andg, where we think of; = n7(», 6, w) in the parametrization
(25), and using Jensen’s inequality for concave functions,gmis

f ? f GO ) f )] 06 o
fo JS%2(n)

(A [ A s
< Lml(g)mll|8d_2|W+11 [f f f IG(n~ + Z%)f(n_ + Z%)|2 dzdo dw} . (62)
6o Js92(n) JO
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Now assume thdt| > Ag. Because of the first part of Lemn2a40, we can further bound

m1 m+1 2 2m+1
62) <L Y ome 1 d-2 2l | —m ——
( ) = m,l(z) |S | ( ° 0C0890)

_m

|727| 2 nl 2m+l
[ f f f |G(x| i ycu)f(xm| yw)|? dydxdw]
$9-2(57) JAg sm2 Ao Sinfg

m+1

) e
<L e | S92 2w | ——— AgSingg)? ¢
a5 25 (2 )™ (osina)

'Z'+2 '—Z' oS
Lo 2 [7 1 -y ok - oy 2dydxcs
s9-2(7) Aosin27° Ao sindg

Again, the integration measuy@2dy dx dw is d-dimensional Lebesgue measure in the cylindrical
coordinates X, yw) with respect to the cylinder in the direction. One checks that the condition
A > Ag > 3 ensures that

(A2 + 20 + (A/2) < (V2A)?

so sincen| < A, we can extend the integration above to a ball of radiis to get

mel o mil 2 2m+1
(62) < Lma(§)a1[s* 2|2 (m) (Aosindo)* G \/—Af||ir2"(+£d)

2

el g2, Ll
< Lma(3) 7S ot (m

m m
) (Ao Sindg)> 9Bz, (63)

If |n| < Ao we simply bound

f f G(y) 21| f(7) o dw < | fllLe = |sd 2|fTo(1+AS /2><Am S9-2e*A2. (64)
6o J59-2(n)

Concerning the bound in the second half of Hya completely analogous calculation as the one
above, using the second halft of Lem&d0gives forig < |n*| < A,

5 m
[, etrw.sw
do J84-2(n*)

ml m+1 1 ZnT"l
< Lma(%)2mi|S92)ami [ — Ao tandp)? @
< Lma(3)>I[S™ (2.0) (Ao tandy)

fo . 9. 0)| 1A (7 (. 9, w)]) do dd
V3

_m_
2m+1

{Ld 20) f f IG(Xlnl yw) f(x|,7| yw)I2 y*-2dy dx dw (65)
-

By our choice ofA andAg, we always have2+ (A/2)? < (V2A)?, so we can extend the integration
above to the whole ball*| < V2A to see

i o ma [ 1\
9 = a2 (51| (hotani™ 16 g, 11

m

m+ m+- 1 m m
< Lma(%) e (S22 (K) (Ao tando)> IBzw (66)
0

If n*| < Ao we simply bound as above

f ’ f G )4 f )] A9 do < A % [SS-2ebS, (67)
9o Sd_z(n+) 4
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Now we setK3 equal to the maximum of the constants @3), (64), (66), (67). with this choice K3
depends only od, m, A, andB and Hyp3 (Ka) is true. |

Proof of Theoren2.35 By Lemmata2.33and2.34a suitable choice foA,, andBis
B := [[foll o(rey €0 ™
Am = SUPIIT (L, )llt ey < co.
=0

Note that the finiteness @, is guaranteed sinck e L} (RY), see RemarR.29 Again choose the
length scaleg\y to be

Ay = AN-1 + \/QAN_]_ _ 1+ \/QAN_l _ (

2 2 2

N
1 2
+ \/_) Ao
with Ag = 3, see 1), and we set
M3 := max{2is*?|An + 1, K}

with the constanKz from Lemma2.42
For the start of the induction, we need Hyp@Ms) to be true. Since

sup sup sup G(t.z5 —pw) ¢ F(t 25 —pw)| dw

0<t<To (erI\(0) (20)eAry JSH20)  © )
< |Sd_2|egT0(l+Ag)Am

and from our choice oM; there existgo > 0 such that Hypg (M) is true for all 0< 8 < fo.
Now, we choose

B= min(,Bo,Tgl, o )

ZdCb,d,z aTo |V|2 +1
With this choice, the conditions of Lemn2a33and2.34are fulfilled and HypZ (M) is true.
For the induction step assume that Hyp@M,) is true. Then Lemma.33gives

G V2An f||L2(Rd) <1 \/—A(DV) fO”LZ(Rd) eCfoTo =B

and then, since(a,1) < 2m+2 by our choice ofa, and Any1 = An, Lemma2.34 shows that
Hyp2,,,,,(My) is true, so by induction, itis true for aN € N. Invoking Lemma2.33again, we also
have

IG y3a,, fllLzey < B
forall N € N and lettingN — oo, we sed|G f|| 2rd) < B, which concludes the proof of Theorem
2.30 ]

3. REMOVING THE L2 CONSTRAINT. GEVREY REGULARITY AND (ULTRA-)ANALYTICITY OF WEAK SOLUTIONS

In this section we will give the proofs of Theorein, 1.8, and1.9in a slightly more general
form. More precisely, we will prove

Theorem 3.1(Gevrey smoothing I) Assume that the cross-section b satisfiessthgularity con-
dition (3) and theintegrability condition 4) for d > 2, and for d = 1, b; satisfies thesingularity
condition @) and theintegrability condition 7) for some0 < v < 1. Let f be a weak solution of
the Cauchy problen(l) with initial datum § > 0 and % € L (RY) n Llog L(RY) for some integer
m > 2. Then, for all0 < @ < min{a@mg, v},

f(t,") e G%(Rd) (68)

Iog[(4m+d)/(2m+d)]

forall t > 0, wherean, 1092
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Theorem 3.2 (Gevrey smoothing Il) Let d > 2. Assume that the cross-section b satisfies the
conditions of Theorert.6. Let f be a weak solution of the Cauchy problépwith initial datum
fo > 0and § € LL(RY) N Llog L(RY) for some integer nx 2. Then, for all0 < o < min{am2, v},

1

f(t.)) € G2« (RY) (69)
forallt > 0, whereanm2 = W. In particular, the weak solution is real analyticiif= %
and ultra-analytic ifv > % in any dimension

If the integrability conditions4) is replaced by the slightly stronger conditidg), which is true
in all physically relevant cases, we can prove the strongmult

Theorem 3.3(Gevrey smoothing IIl) Let d > 2. Assume that the cross-section b satisfies the
conditions of Theorem.6 and the condition(16), that is, they are bounded away from the sin-
gularity. Let f be a weak solution of the Cauchy probl€th with initial datum § > 0 and

fo € LE(RY) N Llog L(RY) for some integer nx 2. Then, for all0 < o < min{am1, v},

f(t,-) e G%(Rd) (70)

for all t > 0, whereamy = W_

Remark 3.4.
We even have the uniform bound

Corollary 3.5. Under the same assumptions as in TheoBin(or 3.2, respectively3.3), for any
weak solution f of the Cauchy problef) initial datum § > 0and § € LL(RY) N Llog L(RY) for

some integer nx 2 and for any0 < a < min{fagm, v} (or any0 < @ < min{am2, v}, respectively
0 < a < minfam1, v}) there exist constant® < K, C < oo such that

sup supelMNED®* £t ) < C. (71)

O<t<co peRd

Proof of Theorem8.1through3.3. In the case where the initial conditiofy obeysfy > 0 and

fo € LL(RY) N LlogL(RY) for some integem > 2, but is not necessarily ib?(RY%), we use the
knownH* smoothing of the Boltzmanrip, 4, 30] and Kac equatich[23] in a mild way (see also
AppendixB): for r > 0 one had(r, -) € L4(RY) and using this as a new initial condition in Theorems
1.6throughl.9, and noting thaly in those theorems is arbitrary, this implies thét, -) € G%(Rd)

fort > 0. ]

Proof of Corollary3.5. Using known results about propagation of Gevrey regulasityDesviL-
LETTES, FurioLl, and Terraneo [15] for the non-cut@f homogeneous Boltzmann and Kac equation
for Maxwellian molecules, the bounds from Coroll&y1through2.37extend to all times. =

APPENDIX A. L2 TYPE REFORMULATION OF THE BOLTZMANN AND K AC EQUATIONS

A reformulation of the weak form9) of the Boltzmann and Kac equations is derived. We want
to choose a suitable test functigrin terms of the weak solutiofi itself in the weak formulation of
the Cauchy problemlj. We usep(t,-) := Gi(t, D,)f(t,-) and since this involves a hard cufFin
Fourier space, we automatically have high regularity@fv) in the velocity variable, the question
is to have®! regularity in the time variable. For this we follow the stgy by Mormoro et al.
[30.

A H smoothing éect for the homogeneous non-cfitac equation was first proved by L eBviLLertes [11], but
under the stronger assumption that all polynomial momefiteednitial datumf, are bounded, i.efy € L (R)NLlogL(R)
forall k e N.
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Proposition A.1. Let f be a weak solution of the Cauchy probléwith initial datum $ satisfying
(8), and let h > 0. Thenforallte (0,Tg], 8 > 0, @ € (0,1), andA > 0 we have Gf €
% ([0. Tol; LA(RY)) and

1 > 1! )
SIGA® Dt Moy — 5 fo (f(r.),(3GR (5. DY) f(z, ) dr )

1 2 ! 2
= 1A ol + [ (U1 )G D7)

To ensure that we can u@f-\f as a test function in the weak formulation of the Boltzmann
eqguation, we need the following bilinear estimate @fy, f), which is a special case of a larger
class of functional inequalities byiAxanpre [1, 2, 5].

Lemma A.2 (Functional Estimate on Collision OperatoAssume that the angular collision cross-
section b satisfies assumptiof®-(4) or (6)-(7), respectively. Then for anyk &= there exists a
constant C> 0 such that

1Q@ Fll-szey < Clgll syl Fllyo)- (73)

Proof. This is a direct consequertcef Theorem 7.4 in AexaNDRE’S review [2]: under the assump-
tions onb, for anym € R there exists a consta@t> 0 such that

1Q(G, F)llH-m(ray < 6||9“L%V(Rd)”f”Hz‘Vm"ZV(Rd)'
SinceL(RY) c H™S(RY) for anys > 4, we obtain fork > ¢4 andv € (0, 1),
il zey = 10 Fllpeagy < CIO? fllLagay < ) Fllge = ol fllLee)-
i.e. LI(RY) c H;*2(RY) for anyk > % andy € (0, 1). Therefore,
19, DllH-+@ay < 6||g||L%V(Rd)HfHHz‘Vk*z"(Rd) < Cligll 1 eyl gay-
|

LemmaA.2 implies that forf, g eAL%(Rd), (Q(g, f), hy is well-defined for alh € H¥(RY), k > 94,
and one hasQ(g, ), h) = (Q(g, T).h)y2.

Proof of PropositionA.1. Choosing a constant in time test functioft,:) = ¢ € c65’"(1&") in the
weak formulation 9) yields

f f(t,v)w(v)dv—f f(s,v)z,z/(v)dv:ft<Q(f, f)(r,),y)dr, for 0<s<t<Ty
Rd Rd s

forally e c6(‘;"(Rd) (this was already remarked byi¥ant [39] as an equivalent formulation o8)).

By means of 73) this equality can be extended to test functigns HK for k > d%“, in particular
one can choosg = Glz\f(t, Jandy = Glz\f(s -) which, taking the sum of both resulting equations,
yields

IGA F(t, )2y = 1GA F(S MEzgey = (F(t). GRE(t ) - (F(s).GRf(s)

t (74)
= (f(t.).(GX(t. D) - Gi(s DY) f(s.)) + f (QUF. )(x. ). GX f(t.) + GR f(s.)) o

SThis result is proved inZ] for d = 3, but the proof depends only on assumpti@h gnd general properties of
Littlewood-Paley decompositions and holds in any dimemslie: 1.
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Using Plancherel, the first term on the right hand siderdj ¢an be estimated by
(76, (G2t Dv) - GE(s D) (s )| =|(f(&. ). (G3(t.) - Gis ) (s )|
< [ fennsien -G lifsnis

<lt-+ fR L 2Bm* G () A It Mageey 1 (S Ny < Cazolt = Sl follFs oy,

and, using that the terms involving the collision operatam,dor anyk > d%“ (compare 13)), be

bounded by
|<Q(f7 f)(Tv ')’ G/Z\ f(t’ )>| < ||Q(f’ f)(T’ ')HH’k(Rd)”G/Z\ f(t’ ')”Hk(Rd)

1/2
e P ( fR Gt mP dn)
1/2
< ClIFIEy o F (& liageey ( fR (G} (To.1) dn)

< C;\,TO” fO||E%(Rd)|| fOHLl(Rd)

for anyt € [0, Ty], yields

t
f (Q(F. £)(r, ), G2 F(t.) + G2 f(s.)) dr

< 2C] 1olt = S folffy ey follLageey-

Plugging the latter two bounds intd4) shows thaiG, f € €6([0, To]; LZ(RY)), in fact, the map
[0, To] > t = [|GA (L, -)ll 2rey is €ven Lipschitz continuous.

For any test functiorp € C61(R+;C60"°(Rd)) the term involving the partial derivativ@y in the
weak formulation 9) can be rewritten as

fot (f(z,-), 0r9(7,-)) dr = rLiTo j:<f(7-, Y+ f(r+h,), o(r + h,é)h— (T, .)> or.

since f € VR*;2'(RY). The integral on the right hand side is well-defined evendoe
L*([0, To]; W2*(R%)), in particular fory = G2 f, yielding

! et +h,-) —o(t,)
f0<f(r,-)+f(r+h,-), o >dT

2 (s ) G2 f(r. .
:ft<f(T,.)+f(T+h,-),GAf( +h’2)h GAf(’)>dT
0

1 t
- fo (IGA F( + b, I, = 1GA T (z, IZ) di

. ft<f(T’ N G2(r +h,Dy) - Gi(r,Dy) .
0

h (r+h, )> dr.

UsingGy f € B([0, To]; L2(RY)) it follows that

1 t
o j; (IGAf(z +h, -)Ilﬁz(Rd)—||GAf(T,.)||f2(Rd)) dr

t+h 5 1 h 5
“ 5 [ 1My b= 5 [ 1B Ty
B EHGI\ f(t7 ')HLZ(Rd) - E”G/\ f(O, ')”LZ(RU)‘
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where||Ga (0, )l 2y = MA(Dy) foll 2re). For the second integral, an application of dominated

convergence gives
t G2(r + h,Dy) — G2 (7, Dy)
. A > V A\l V

fim j; <f(T, ) " f(r+h, )> dr

1t )
=5 [ {f).(0.63) . D 1(r. )
Putting everything together, we thus have proved equaiia) ie.

1 1 1
S1GA FIZ2z0) = SILADD follZze) + 5 fo (f(r.),(9:G%) (= DY F(x. ) dr

t
+fo (Q(f, f),G3 ) dr.

APPENDIX B. H® SMOOTHING OF THE BoLTZMANN AN KAC EQUATIONS

We follow the strategy as in our proof of Gevrey regularitythnseveral simplifications. Of
course, walo notassume thafy is square integrable! We have

Theorem B.1(H* smoothing for the homogeneous Boltzmann and Kac equatiéasgume that
the cross-section b satisfi€3)-(4) for d > 2, respectively(6)-(7) for d = 1, withO < v < 1. Let f
be a weak solution of the Cauchy probléi) with initial datum satisfying condition&). Then

f(t,-) € H*(RY) (75)
forallt > 0.

The proof is known, at least for the three dimensional Boitamequation sees()], we give
a proof for the convenience of the reader. Again, one hasduiable time-dependent Fourier
multipliers. Note that forfy € L1(RY) one has

I foll(ray < CayllfollL1(ra
with Cq, = (fRdm)‘V dn)l/2 which is finite for ally > d/2. We choose = d, for convenience, and
Ma(t,77) == ()~ 9191 (1))
as a multiplier. Then
iU(EJIIMA(O, Dy) folli2(rey = [IMeo(O. ) folli2(rey = Ilfolly-ageay < Call foll2ra)
>
The proof of Propositiom\.1 carries over and we have
1 ) 1t )
SIMA® D F(t Ezqeey — 5 fo (f(x.),(0:MZ(x, D)) f(.)) dr -
1 t

= SIMA. Dol + [ (QUE D MAE D (7 ) i,

and as in the proof of Corollarg.4, we have
(Q(F, £), MZ ) = (Q(F, MA ), MA f) + (MAQ(F, ) — Q(f, Ma f), M )
< —CtIMA I3, + CrolIMA FIIZ, + (MAQ(F, f) = Q(f, Ma T), Ma )

The replacement of Propositié9is

(77)

Proposition B.2. The commutation error is bounded by
_ d pt
KMAQ(f, f) = Q(F, MA F), Mp )] < (L + 2% )cngll s (5 + %Zﬂ“z) IMATIE,  (78)

with the constanty from Lemmé2.25
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Remark B.3. Of course, for any weak solutioh of the Boltzmann and Kac equations|| 1 =

I1f(t, )z = |Ifoll.2. The fact that the commutator is bounded in terms of ltheorm of M,

makes the proof oH* smoothing for the Boltzmann and Kac equations much simpien the
proof of Gevrey regularity.

Proof. As in the proof of Propositio2.9, Bobylev’s formula shows
KMAQ(f, f) — Q(f, MAT), MA )| <

< [ [, b5+ o) marante niaomnen - g s o

<t [, [ B{ o | MAGITITGr IMA 1) - Mt Y r

where, as before* = 3(n = [glo’). To bound|Ma(7) — Ma(*)], we lets := [y and st = 7*[%.

Recall thaty*|? = @(1 + o) and
st +12 1
1-—:1-"”2 - (1—1-0)
S = 2 In|
Again, because of the support condition on the collisiom&E(coss), we haveS < s* < s. Set
M(S) := (1 + 9927 1°9(+9 Then, forly| < A,

M/\(n) _ M/\(n+) — M(S) _ M(S+) — (1 + S)—d/ZG% log(1+s) _ (1 + S+)—d/2€% log(1+s*)

— (1 + S)—d/2 (e% log(1+s) _ e% Iog(l+s+)) + ((1 + S)—d/2 _ (1 + S+)—d/2) e% Iog(l+s+)‘

(80)

Sinces < 2s*, we have (& )™ < 2(1+ 9)™1. Hence

S
(1+ 92— (1+s")9? = g f 1+r) 9> dr < g(l +s") 2 (s s")
s

_ st
<d(1+sh) (1 ;)

In addition, log(1+ s) < log(2(1+ s*)) = log2+ log(1+ s*). So

gt 1 =& log(1+r) Bt S Bogrs s’
52L1+re2 <o s (t-3)
A2 Bog(1+sh) st
< - ).
<pt27ez (1 S)
Also log(1+ s) < log(2(1+ s")) = log 2+ log(1+ s*). These bounds together witBQd) show
. f It .
[MA) = Ma(r")] < (d + 422 ){ 1=~ | Ma (")
for all |71 < A. Since the integration in7Q) is only over|n| < A, plugging this together with
IIflLe < |||l 2 into (79) yields

|<MAQ(f7 f) - Q(f9 MAf)v MAf>|

a n |77+|2 3 V| F (ot
<ttt (d+p2?) [ [ p(L-0) (1= ) Maooifoni oy oy

e% log(1+s) _ e% log(1+s")

Noting again

MA@ f ) MA G ()] < % ((MA@IF@D? + Ma I ))?)

and performing the same change of variables for the integrathining;* as in the proof of Lemma
2.11finishes the proof of equatio’§). |

Now we can finish the
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Proof of TheorenB.1 Using (76), (77), PropositionB.2, and

9:Ma (7, )% = 28log(n) Ma(r,7)?
one sees

t
IMA(t, DY F(t.)IIZ, < lIfollZ-4 + 2Cy, fo IMA (7. D) f (7. Il dr

t —
+ j; (Ma(z, D)) f(r. ), (Blog(Dy) — 2C1,(DyY?*)Ma(r, D) f (7, -)) dr

_ T
+(1+ 2 1)Cb’d||f()|||_1 L (2 + '8—2 z ) [IMA (7, Dy) f (7, )”Ez

Setting

A(B, 7) = sup(plogin) - 2Ci,(n)™) + 2Cr, + (1+ 2 ool foll ( +3 %)
neRrd

AP
|
5 ola )

the above can be bounded by

1 +2Cq, + (1 + 29 Yop gl foll 1 (g + %Tz‘%)

t
IMA(t. DY) F(t. )IIZ2 < IIfollZ- + fo A, DM (T, D) f (1, )12, dr

and from Gronwall’'s lemma we get

t
IMAa(t, DY) F(t, I, < IIfoll? exp( fo AB,7) dr).

Letting A — oo one sees
t
()P s = IMao(t, DY F(E I < 1ol exp( fo A, ) dr).

that is, f(t, ) € HP"94(RY). Now lets — oo to see thaff (t, -) € H®(RY) for anyt > 0. m

Remark B.4. SettingB = 7+d , one sees thaf (t, -)llyyray St e , S0 theH?” norms, in particular
the L2 norm, of f(t, -) blow up at most polynomially as— 0.

ApPPENDIX C. THE KOLMOGOROV-L ANDAU INEQUALITY
In this section we give a short proof of

Lemma C.1(Kolmogorov-Landau inequality on the unit intervallet m> 2 be an integer. There
exists a constant &> 0 such that for all we W™>([0, 1]),

[IWllL>([0,1))
K

IW®lLw 017 < Cm + um‘k||w<m)||w[o,11>), k=1,....,m-1,

forallO<u< 1.

For the convenience of the reader, we give a short proof. ©hewfing argument is in part
borrowed from R. A. BVore and G. G. lorentz's book [L7] (pp.37-39).

Proof. Sincew € W™*([0, 1]), it has absolutely continuous derivatives of order upnte 1 and
essentially boundeah” derivative.
Letx € [0, 3] andh € [0, 3]. Then, by Taylor’s theorem,

m—l
WX+ h) = w(X) + Z 0 W(J)(x) + Rm(x, h)

j=1
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h (h_t)m—l
0 (m-1)!

with remaindeRy(x, h) = wM(x + t) dt, which can be bounded by

W(m) h (h _ t)m—l hm W(m)
[Rm(X, h)[ <] ||L°°([O,1])£ m dt = ﬁ” llL(0,1))-

Choosingm— 1 real numbers & A; < Ap < -+ < Ap_1 < 1 we obtain forh € [0, %] the system
of equations

m-1 i
-hl .
Z AJS%W(J)(X) = W(X+ Ash) = W(X) = Rm(X, 4sh) fors=1,--- ,m-1. (81)
=1 v
Setting
Ay 2 ... i hw'(X)
% %—1 hzw//
vo| 2 b wx=| 2 ¥
Amey Agg o AR AWy

W(X + A1h) — w(X) — Rn(X, 21h)
b(x W(X + A2h) — w(X) — Rn(X, A2h)
X) = .

’

W(X + Am-1h) = W(X) = Rm(X, Am-1h)

we haveVw(x) = b(x). Since the Vandermonde determinant
m-1

detv=[]a [] @-a)=0
i=1 I<j<l<m-1

V is invertible and we obtaiw(x) = V~1b(x) and therefore

k
%w(k)(x) < WOl < IV IIB(X)II. (82)

where|| - || is any norm orR™ !, respectively the induced operator norm on the spaceef {) x
(m- 1) real matrices. Choosing for concretenessttheorm onR™*, we have

m-1
hm
IDOYI = D M(x + Ash) = W(X) ~ Rn(x. Ash)] < (M~ 1) (2||w||Lm([o,1D + HIIW(m)IILW([o,l])) :
s=1 )

While for our application the size ¢/ ~1|| is of no importance, one can even explicitly calculate it:
The inverse of the Vandermonde mat¥ixs explicitly known (see for instancé.§)),

Poad

V1) = (-1t mle __ opB=1...m-1,
( )"B A5 [Ty2p(4 = Ap)

j

whereoy, i,j = 1,....m-21s thei™ elementary symmetric function in then(- 2) variables

Ay Ajo1, Ajeds -5 Ame1s

By means of the identity (Lemma 1 id§])

m2  ml1
dol=T]a+a)
i=0 y=1

VE#]
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which holds since thd, are all positive, we get

m-1

1
VY= max | = max o
|| ” 1<B<m-1 Z a,B 1<B<m-1 /113 Hv#ﬁ |/lv _ /lﬁl ; m-1-a
L "ﬁ 1+2,
T 1<p<m-1 /lﬂ |4, — /lﬁl'
V¢,B
Going back to inequality82), we have so far proved that

hk h™
M) < (m—1Iv (2||w||Loo([o,1]> + H||\/V(m)||L°°([o,1])),

which yields

.2k k!
W) < (m-1)IvH| (Wuwnm[o,m + hWkﬁHW(m)lle([o,l]))
ol ' (83)
< (m-=1)VY (h—k'IIWIILw([o,l]) + h'TFkIIW(m)IILw([o,l]))

Forx e [%, 1] the same calculations withreplaced by-h prove inequality 83) also in this case, so
M9l o.a7) < (M= D)IV- ||( —IWil=o.p + ™ W™l o, 1])) (84)
for all h € [0, $]. Taking an arbitrary € [0, 1], inequality 84) implies withh = 4 € [0, 3],
Wl o,27) < 2™mi(m— DIV ($||W||L°°([o,1]) + u”Fk||w<m>||L«»([o,11>),

which is the claimed inequality with

1+24,
1A, — gl

(85)

Crm=2"mi(m-= 1)V} = 2™"m(m-1) ma
B\ (m-1), max, Aﬂ]_[
v#ﬁ

Remark C.2. The constanCy, in equality 85) is far from optimal, but can be made small by
minimising in the choice of the points @ 1; < --- < An.1 < 1, suggesting that the optimal
constant might be obtained by methods from approximatieorth

Indeed, by a more refined argument making use of numerifarentiation formulas, the min-
imisers of the associated multiplicative Kolmogorov-Landnequality, i.e., extremisers of

Mk(e) = supliw®llL= oy : W € W™([0, 1]), IWll=oap < L, IW L= o1y < o7}

are explicitly known (at least for a wide range of parametars N ando > 0). The optimal

Kolmogorov-Landau constants in these cases are given anth@oint values of certain Chebyshev
type perfect splines. We refer to the papers by AxBs [34] and S. Ksruin [22], as well as the
recent article by A. Sapriv [35] and references therein.

AppENDIX D. ProoF oF LEmmA 1.1

Proof. Let f € L}(RY) n Llog L(RY) Then

|H(f)|:f rog+fdv+f flog_ f dv.
Rd Rd
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The positive part is bounded g&f log(1+ f)dv = |IfllLiogL. The negative part can be controlled
by

)
f flog_ fdv= flogldvscéf f1—5dvgc5(f 1+ M) dv) (il
Rd {f<1} f {f<1} Rd 2

which is finite for 0< § < ﬁ having used that for any > 0 there exists a consta@}; such that
logt < Cst® for all t > 1.
Conversely, leff € L%(Rd) with finite entropyH(f). Then

fflog(1+f)dv:f flog(1+f)dv+f flog(1+ f)dv
Rd {f<1)

{f>1)
On wheref < 1, we replacef by 1 and wherd > 1, we bound & f by 2f leading to

fflog(1+f)dvslong fdv+ flogfdv+f flog_ fdv
Rd Rd Rd Rd

As above, we conclude
flog(1+ f)dv < log 2|| || 1 ey + H(F) + Csall fII322 4. (86)
rd (&) L3(RY)

with a finite constan€; 4 for 0 < § < 3%. n
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