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Abstract—Whereas purest strategic games such as Go and
Chess seem timeless, the lifetime of a video game is short,
influenced by popular culture, trends, boredom and technolog-
ical innovations. Even the important budget and developments
allocated by editors cannot guarantee a timeless success. Instead,
novelties and corrections are proposed to extend an inevitably
bounded lifetime. Novelties can unexpectedly break the balance
of a game, as players can discover unbalanced strategies that
developers did not take into account. In the new context of
electronic sports, an important challenge is to be able to detect
game balance issues. In this article, we consider real time strategy
games (RTS) and present an efficient pattern mining algorithm as
a basic tool for game balance designers that enables one to search
for unbalanced strategies in historical data through a Knowledge
Discovery in Databases process (KDD). We experiment with our
algorithm on StarCraft II historical data, played professionally
as an electronic sport.

Index Terms—Mining methods and analysis, video game

I. INTRODUCTION

The recent and fast development of the video game in-
dustry has been catalyzed by technological innovations, a
democratized access to connected electronic devices, new
economic models (free games where users may pay for extra
contents), and recently with competitive gaming (esports) and
video game live streaming platforms [1]. People not only
enjoy playing, but also enjoy learning from watching others
performing, as a daily leisure activity [2], [3].

Producing a video game is an expensive process, thus, keys
to a massive, immediate and durable success are sought. Prag-
matically however, one attempts to extend the game lifetime
after the release, by correcting bugs, introducing new features
and considering user feedbacks. Whereas it could be easily
argued that bugs are not acceptable after a release, it is hard
to predict the results of human creativity in presence of rich
environments that are video games.

Hopefully, companies realized in the current big data at-
mosphere that the tremendous amounts of game behavioral
data they store are valuable to face many new challenges
such as: detecting unexpected situations and bugs [4] cheaters
[5], designing artificial agents [6], improving match making
systems and adjusting game difficulty [7]. Analyzing these
massive sets of historical data by means of visualization,
machine learning and data mining techniques is at the heart
of video game analytics for enhancing user experience and
extending game lifetime [4].

This context roots the motivation of our work: behavioral
data can help to study the balance of a game, that is, to
adjust the rules over time while still enabling novel rules
to counter boredom. This is especially important for games
played as an electronic sport, and also for game lifetime
extension in general. We will focus on the concept of balance
which is a core concept in competitive game design: it consists
of defining and tuning the basic rules that prevent extreme
situations, thus balancing fairness and competitive aspects.

In this article, we define and mine patterns in game his-
torical data for a better understanding of balance issues in
RTS games. The intuition of the balanced sequential pattern
discovery problem is the following. Consider a set of games,
each of them represented by a sequence of actions of two
players (thus entailing the player strategy). The problem is
to find patterns as sequence generalizations that frequently
occur in the historical data and whose balance is given by
proportions of their wins and losses. Our goal is twofold: (i)
we give the basic algorithmic tools that enable an efficient
pattern mining, (ii) we show that the extracted patterns reveal
interesting knowledge:

e (i) We revisit the problem of strategy elicitation from
two player RTS games by differentiating two cases: when
both players have access to (a) different game actions
and (b) the same game actions. In the first case, we
show how existing pattern mining methods enable with
slight modifications to discover frequent strategies and
compute a balance measure. In the second case, the most
general, existing approaches fail: we propose an original
algorithm, BALANCESPAN.

« (ii) We show through experiments that BALANCESPAN is
scalable and able to discover patterns of interest in a large
StarCraft II dataset that can help detecting balance issues.
For that matter, we anchor our algorithm in a Knowledge
Discovery in Databases process [8]. Pattern mining is one
of the many steps of this interactive and iterative process
guided by an expert of the data domain who selects and
interprets the patterns [9], [10].

The paper is organized as follows. Section II recalls the
basics of sequential pattern mining before the introduction of
our mining problem in Section III. Our method is developed
in sections IV and V. Algorithms are designed (Section VI)
and experimented with E-Sport data (Section VII) before over-
viewing related work and concluding.



II. PRELIMINARIES

We recall the basic definitions of frequent sequential pat-
terns [11] and emerging patterns [12] useful in the sequel. Let
T be a finite set of ifems. Any non-empty subset X C 7
is called an itemset. A sequence s = (Xi,..,X;) is an
ordered list of [ > 0 itemsets. [ is the length of the sequence,
whereas 22:1 | X;| is its size. Considering Z as a set of events
(or actions), an itemset denotes simultaneous events while
the order between two itemsets indicates a strict preceding
relation. A sequence database D is a set of |D| sequences
over Z. Sequences may have different lengths and sizes and
are uniquely identified, see Table I (omitting the third column).

Definition (subsequence). A sequence s = (X1,..., X;,) is a
subsequence of a sequence s’ = (X{,..., X/ ), denoted s C
s, if there exists 1 < j; < jo < ... < j;. < % such that
X1 C X, Xo C X}y Xy, S X,
Definition (Support and frequency) The support of a se-
quence s in a database D is sup(s,D) ={s' € D | s C s'}.
Its frequency is freq(s,D) = |sup(s, D)|/|D].

Problem (Frequent sequential pattern mining). Given a
minimal frequency threshold 0 < ¢ < 1, the problem is to
find all sequences s such as freq(s,D) > o.

In some cases, each sequence of D is associated to a class
label. Let class : D — {+,—} a mapping that associates
to each sequence a positive or negative label (hence two
classes). D is accordingly partitioned into two databases, with
the positive (resp. negative) sequences DT (resp. D~) and
D =DrUD~, DT ND~ = (). The growth-rate characterizes
the discriminating power of a pattern for one class [12], [13].

Definition (Growth-rate). Given a sequence database D =
DT UD™, the growth-rate of a sequential pattern from D? to
DY (x #y and x,y € {+,—}), is given by

_ |sup(s,D")|

. DY
growth_rate(s, D*, DY) = D]

|sup(s, DY)

Example. Let D = {s1,82,83,84} with I =
{a, b, ¢, d, e, f, g} be the sequence database given in Table
I. For brevity, we drop commas and braces for singletons. For
a given sequence s = {(abc), we have s C s1, s C 84, S £ So,

s IZ s3. With 0 = 2, (acc) is frequent, (a{bc}a) is not. We

have growth_rate({cb),D~,DF) = 2 x 2 = 2, i.e., (cb) is
twice more present in class — than in class +.
TABLE I
A SEQUENCE DATABASE D.

id s€D class(s)

s1 (af{abc}{ac}d{cf}) +

s2 ({ad}c{bc}{ae}) +

sz ({ef}{ab}{df}cb) -

S4 (eg{af}cbc) —

III. THE PROBLEM OF STRATEGY ELICITATION

A zero-sum game, or competitive interaction, can be mod-
eled as a sequence of actions performed by two players where
exactly one player wins (no ties). Such a sequential game can
be represented as a sequence of sets of actions, each action
performed by one of the two players. When both players play
in real-time, one can describe these interactions as sequences
of itemsets. An itemset is then a set of simultaneous actions,
or within an insignificant interval of time.

Definition (Interaction (sequence) database). Given a set of
players Players and a set of actions Actions, a sequence
database R is called an interaction database. Each sequence
denotes one single game, i.e., an interaction between two
players, and is defined over the set of items Z = Actions x
Players. A mapping class : R — Players gives the winner
of each interaction.

Example. In Table II, s; can be interpreted as: “Player p; did
action a, then he did b and c while player po did c, and finally
p1 did d while po did a. At the end, the player p1; wins”.

Given an interaction database, the problem is to find se-
quences of actions of both interacting players (supposing
that those actions are mutually dependent) as generalizations
that appear frequently and to be able to characterize their
discriminating ability for a win or loss through a so-called
balance measure. In the current sequential pattern mining
settings, the goal is to find frequent sub-sequences of actions
(i.e., strategies) and their balance (a growth-rate like measure).
However, the notion of class has to be revisited to be able to
handle winner and loser class labels, instead of the winning
player. Indeed, intuitively, mining emerging patterns from an
interaction database with the winning players as classes (as
given in Table II) does not fulfill our objectives: we wish to
discriminate victories and not victorious players themselves.
As such, existing emerging sequential pattern mining methods
and algorithms cannot be used to answer our problem.

We propose to differentiate two cases of interaction
databases: (i) non-mirror interaction databases where both
players have different (non-intersecting) sets of available ac-
tions; (ii) mirror interaction databases where both players can
perform the same actions. We show that in the first case,
emerging patterns as introduced in the literature (Section II)
are able to answer the problem by slightly modifying the
interaction database representation. In the second case, the
most general one, we need new settings, and we propose to
embed the class (positive or negative) in the definition of the
items of a sequence, see Table IV. This is formalized in the
two next sections, and it enables the design of efficient pattern
mining algorithms in Section VI.

TABLE I
AN INTERACTION SEQUENCE DATABASE R

id Interaction sequence Winner

st {(p1,a){(p1,b)(p1,c)(p2, ) H(p2,a)(p1,d)}) p1
s2 ((p3,a){(p3,b)(ps,c)(p3, ) H(p1,b)(p1,0)}) p3




IV. BALANCED PATTERNS IN NON-MIRROR DATABASES

In this section, we consider an interaction database, called a
non-mirror database, where the set of actions is different for
each of the players in a single interaction. It means that we
only have two types of players in each sequence and in the
whole database (e.g., Protoss and Zerg factions in the RTS
game StarCraft II), and these types are determined by the
actions they can do. As such, the type can also be used as a
winning class label. To characterize balanced patterns in such
databases, we consider a simple transformation of the original
interaction database R by dropping the player associated to
each action, and labeling each sequence by the type of the
winner. This enables to express a balance measure as a growth-
rate measure in this new data representation. The transformed
database is then formally defined as follows.

Definition (Transformed interaction database). A sequence
database 7 defined over the set of items (actions) Z; U Zo
such as 7y NZy = 0 and class : T — {Z;,Z>} is called a
transformed interaction database.

Consider an interaction s € 7 where the winner is char-
acterized by the actions Z;: we have class(s) = Z; that
gives the winner of the interaction. This brings back the
problem of finding frequent balanced interaction patterns to
well-known the emerging patterns settings. Indeed, consider
an arbitrary pattern s over Z; U Zy: its support in the whole
database sup(s,T) tells us its frequency, while sup(s,77)
and sup(s,772) enable to define a balance measure as a
growth-rate.

Problem (Mining balanced patterns from non-mirrors
interactions). Let 7 be a transformed database obtained from
a non-mirror interaction database R. 7T is defined over Z; UZ,
where 7, represents the type k of player (k € {1,2}) and
class : T — {Z1,Z>} assigns to any sequence its winner
type. o is a minimum frequency threshold. The problem is to
extract the set of so-called frequent balanced patterns JF; such
as for any s € F;, freq(s,72) > o and freq(s,72) > o
(implying freq(s,7) > o) and the balance measure is
computed and given by:

ey |Sup(877—k)|
balance(s, T") = |sup(s, T1)| + |sup(s, T2)

Remark. The balance measure is a normalized version of the
growth rate given in previous section such that balance(.) €
10, 1] and balance(s, T*) + balance(s, T?) = 1 which entails
a zero-sum game property.

Example. Table III gives a transformed interaction database
T, obtained from a non-mirror interaction database R, with
7, = {a,b} and T, = {c} being the sets of actions of each
player type. With o = 0.2, s = ({ab}{c}) is a frequent bal-
anced pattern since freq(s, T7*) = 2 and freq(s, T*2) = 3.
Moreover, balance(s, T**) = 2 and balance(s, T%) = £. It
means that s wins two times more for the type 1 of player
than for the type 2.

TABLE III
A NON MIRROR INTERACTION DATABASE

id  Interaction sequence  Winner
51 ({ab}{c}) L
52 ({ab}{a}{c}) L
53 ({abc}{c}) Iy

54 ({acH{a}{c}) L
85 ({cH{b}Hach) Z

TABLE IV
A SIGNED INTERACTION DATABASE.

id seS
s1 (at{btc™})
so (at{btc }ct)
s3  (dt{btct}d)
sa (a {btct})

V. BALANCED PATTERNS IN MIRROR DATABASES

In this section, we consider interaction sequence databases
where the players have access to the same set of actions.
Consequently, the latter cannot be partitioned in two sets
and the previous approach can not apply. We propose a
new interaction database representation, signed interaction
databases. It enables to define frequent balanced patterns from
an arbitrary interaction database (either mirror or non-mirror).

Definition (Signed interaction database). Recall that
Actions is a finite set of actions shared by both players. We
introduce Z, = Actions x {4, —} denoting actions associated
either to a positive or negative class. A signed database S is
built from an interaction database R as follows: Each action
of an interaction sequence is signed + if it is performed by the
winner and signed — if performed by the loser (both players
and class labels are dropped).

Definition (Dual of an item, itemset and sequence). Let
T, = Actions x {+, —} be the set of signed items, or actions.
For any (a,c) € T, also written a®, we define its dual as

dual(a,c) = dual(a®) = (a, {+, —}\¢) = alH7H\¢

Informally, it means that the dual of a signed action is the
same action where the class c has changed. This definition is
simply propagated for itemsets and sequences of itemsets, for
any X C 7, and any s = (X1, Xo,...) a sequence over Z :

dual(X) =
dual(s) =

{dual(x),Vx € X}
(dual(X1), dual(X2), ...)

Example. In Table IV, we have Z; = {a,b,¢,d} x {+,—},
dual(a™) = a~ and dual(s1) = {a={b"cT}).

These definitions enable now to naturally introduce a bal-
ance measure that would, for a sequential pattern s give the
proportion of its support among the support of both itself and
its dual.



Definition (Balance measure). Let s be a frequent sequential
pattern in a database S. The balance measure of s is

[sup(s, S)|
|sup(s, S)| + |sup(dual(s), S)|
This intuitive definition however does not hold. Since ac-
tions are shared by the two players, both a sub-sequence and
its dual may occur in a single sequence s € S. Consider
the following example: S = {({a*b" }H{a 01}), {a b })}
with o = 3. The sequence s = ({aTb™}) is a frequent

balance(s) =

)]

sequential pattern, and |sup(s,S)| = 1. We have also
|sup(dual(s),S)| = |sup(dual({{a~b"})),S)| = 2. Hence,
balance(s) = =5 = 3. However, since s and dual(s) both

appear in the first sequence, it should not be counted two
times. This leads us to the definition of the balance measure
in the general case in which we ignore sequences where both
a pattern and its dual appear.

Definition (Generalized balance measure). For a sequential
pattern s, the generalized balance measure is given by
[sup(s, S)\sup(dual(s),S)| )
|sup(s,S) U sup(dual(s),S)]

where LI denotes the exclusive union ALUUB = (AUB)\(ANB).
In the following, balance will always refer to the general

version. We have that balance(s) € [0,1] and balance(s) +
balance(dual(s)) = 1 which expresses a zero-sum game

property.

balancegen(s) =

Problem (Mining balanced patterns from signed interac-
tions). Let S be a signed interaction database defined over Z;
generated from an interaction database R, and ¢ a minimum
frequency threshold. The problem is to extract the set of so-
called frequent balanced patterns Fs such as for s € Fy,
freq(s,S) > o, freq(dual(s),S) > o and the balance
measure is computed and given by (2). Furthermore, the fact
that both s and dual(s) have to be frequent leads to redundant
information: it is enough to keep s along with its support,
balance measure and intersection of support common(s) =
|sup(s,S) N sup(dual(s,S))| to know the measures of its
dual. As such, the problem is also to compute a non redundant
collection of patterns F5s where, if s € F; then dual(s) & Fs.

Example. Table IV gives a signed interaction database S ob-
tained from an arbitrary R. With o = 1, s = (a*¢™) appears

_ 2
two times, its dual appears only once, hence balance(s) = 3.
Remark. Any interaction database, mirror or non-mirror, can
be represented as a signed interaction database. For the non-
mirror case, one can easily prove that for any balanced pattern

s, we have common(s) = () and thus Formula (1) holds.

VI. ALGORITHMS

We present several algorithms to extract frequent balanced
patterns from interaction databases. We introduce first a well-
known framework for mining frequent sequential patterns,
called PATTERN-GROWTH and its associated algorithm PRE-
FIXSPAN [11].

A. The PREFIXSPAN algorithm

Given a sequence database D over items Z and a minimum
frequency threshold o, PREFIXSPAN outputs all frequent se-
quential patterns and only them [11]. Firstly, the database D is
scanned once to find all the frequent items from Z, called size-
1 sequential patterns. Secondly, each of these prefixes is used
to divide the search space: for one prefix, say (a) (and a € 7),
one retains only sequences of D containing a and only keeps
for each of these sequences the longest suffix starting by a.
The set of the prefixes sequences of the remaining sequences
is called a projected database w.r.t. to prefix (a), written Dj(,).
Thirdly, this projected database is scanned to generate the
size-2 sequential patterns having (a) as prefix. The process
is recursively applied leading to a tree structure where each
node represents a frequent sequential pattern (associated with a
projected database of a least [0 x |D|] sequences) and an edge
to an extension: the item added to a size-k sequential pattern
to generate a size-(k+ 1) sequential pattern. For a prefix s and
an item a, two kinds of extensions are considered: appending
a as a new suffix itemset of s, noted s o, a, and appending
a within the last itemset of s, written s o; a (o denotes an
extension in general). At the end, the pattern tree structure is
explored and each node outputs a pattern.

Example. We briefly illustrate  PREFIXSPAN on the toy
example of the Table I with 0 = 0.5. A larger example is
available in the original publication of PREFIXSPAN [11]. The
first step of PREFIXSPAN consists of finding frequent item
from D: (a) (|sup({a),D)| = 4), (b) (|sup({b),D)| =4),
(€ (sup((c),D)] = 4), (d) (sup({d),D)| = 3), (e)
(Isup((e),D)| = 3) and (f) (|sup({f),D)| = 3). For each
of these previous frequent sequential patterns s of size 1,
PREFIXSPAN projects D into a projected database with
prefix s. Thus, the (a)-projected database D), is composed
of 4 sequences: ({abc}{ac}td{cf}), <{ d}c{bc}{ae}>
({_b}{df}cb) and ({_f}cbc). Then, PREFIXSPAN
searches for frequent sequential patterns of size 2: (aa)
(|sup({aa), D| Dl = 2), (ab) (sup((ab), Dj(a)| = 4), ((ab))
(|sup(((ab)), Dy(a))| = 2), {ac) (|sup({ac), Dya))| = 4), (ad)
(supl{ad), Dyoy) = 2) nd (af) (sup(af}, Dyy)] = 2
Then for each of these sequential patterns of size 2
PREFIXSPAN creates the projected databases and extracts
frequent patterns of size 3, and so on.

B. Mining Balanced Patterns with EMERGSPAN

Given a sequential database over an arbitrary Z, where
each sequence is labeled by a class (among two classes) and
a minimum frequency threshold, the general problem here
is to find all frequent patterns, each one provided with its
growth-rate. In our settings, this involves mining a non-mirror
interaction database R as a transformed database 7 where
sequences are composed of actions of both players and the
class label gives the winner’s type. The balance measure is
then exactly the growth rate as defined in the general settings
and can be computed in negligible time as a post-processing
[14]. Based on PREFIXSPAN, EMERGSPAN works as follows.
For each sequence of the database 7, its class is appended



ALGORITHM: PREFIXSPAN

Require: A sequence s, the s-projected DB D), and a threshold o
Ensure: The frequent sequential pattern set F'
I: F«— {s};
2: scan D), once, find every frequent item a such that
(a) s can be extended to (s o; a), or
(b) s can be extended to (s o5 a)
: if no valid a available then
return F';
end if
: for all valid a do
(@) F <— F U PrefizSpan(s o; a, D|so,q,0) OF
(b) F «— F U PrefizSpan(s os a 1y Disogar T
end for
: return I

SVPIINE W

—_

ALGORITHM: EMERGSPAN

Require: A sequence s, the s-projected transformed DB T‘s, and a minimum
threshold o
Ensure: The frequent sequential pattern set F'
. F+—10;
2: if s ends with the class then
3:  Compute balance(s) thanks to sup(parent(s))
4. F«+— {s}
5 return F';
6: end if
7: scan T, once, find every frequent item a such that
(a) s can be extended to (s o; a), or
(b) s can be extended to (s os a)
8: if no valid a available then
9: return F';
10: end if
11: for all valid a do
12:  (a) F +— F U EmergSpan(s o; a, Ts;4,0) OF
13: (b)) F <— F U EmergSpan(s os a,T|so,a:0
14: end for
15: return F';

as a new itemset at its end. It ensures that frequent patterns
containing a class label are leaves of the pattern tree, and that
two sequential patterns that differ only by their classes have
the same direct parent, allowing a direct computation of the
balance measure.

Example. To illustrate how EMERGSPAN works, let us con-
sider the previous example on the transformed interaction
database T of Table III. Remind that this database is obtained
from a non-mirror interaction database R, with 7; = {a, b}
and Z, = {c} being the sets of actions of each player type.
Thus, we transformed each of these sequences by appending
the item Z; (resp. Z) at the end if the player with actions in
T, (resp. Zz) won. For example, so becomes ({ab}acZ;). The
exploration of EMERGSPAN works the same way as PREFIXS-
PAN excepted that it only keeps patterns that end up with either
Z, or Z. Thus, computing balance of pattern (X, ... X;Z;)
only requires to backtrack to the parent (i.e., (X7 ...X;)) to
get its support to evaluate the balance. So, when EMERGSPAN
deals with the sequential pattern s = ({ab}cZ;), since the last
item of s is Z;, it will output this pattern, and to compute
its balance measure, it uses the su Port of its parent node
s' = ({ab}c): balance(s) = Isup(s T 0.67.

Tsup(s”, 7]

C. Mining Balanced Patterns with PREFIXSPANNAIVE

Now we consider a signed interaction database S over Z;
and a minimal frequency threshold o. The problem is to
extract the set of frequent sequential patterns and compute
their balanced measure. We first use the original PREFIXSPAN
algorithm to build the frequent pattern tree structure. We need
for each pattern to (i) compute its balance, and (ii) to ensure
that for a pattern and its dual only one of them is outputted. We
then propose to store for each node (equivalently sequential
pattern) a pointer to its dual pattern. At the first level of the
tree, a node represents a single frequent item, and there is a
pointer towards its dual (if both are frequent). Recursively,
when an item is used to expand a sequential pattern p to
obtain a pattern ¢, we compute the pointer towards dual(g) by
searching among the children of dual(p). If dual(q) exists, the
pattern g is outputted, dual(q) is flagged as already outputted
(redundant pattern) and the process recursively continues. Oth-
erwise, the algorithm backtracks. In this way, ¢ and dual(q)
are never outputted together. Computing the balance for non
mirror databases is straightforward since for each node/pattern
we have access to its dual support. For mirror databases,
we need however to know common(q) which is stored for
each node. The proof of the completeness and correctness
of PREFIXSPANNAIVE for extracting all balanced patterns
without redundancy is direct: first, PREFIXSPAN extracts all
frequent patterns, thus any pattern s and its dual dual(s) are
nodes of the pattern tree and none can be missed; second,
as we visit in the tree traversal both a pattern s and its dual
dual(s) (if frequent), we ensure no redundant patterns.

Example. PREFIXSPANNAIVE requires a signed intereaction
database. Let us consider that of Table IV with o = 1/4
(i.e., frequent items are items that only appear once). PRE-
FIXSPANNAIVE starts with an empty sequence s = ()
(dual({)) ()) and the entire database. First, it searches
for frequent items: e.g., both a* and a~ are frequent. Thus,
PREFIXSPANNAIVE flags that (a™) is the dual of (a™), and
calls PrefizSpanNaive({(a™),S|a+y,0). Then, PREFIXS-
PANNAIVE searches for frequent items in Sj(q+): €.g., ¢~ is
frequent. So, it will search in the children of (a~) if there is
¢T, but at this step, the node of (a~) has not been explored yet.
Thus, when (a~) is explored, PREFIXSPANNAIVE extracts
frequent items in S,-): e.g, ¢t is frequent. So it will
search among the children of dual({a™)) if dual(c*) exists:
(a~c") is a frequent sequential pattern that could be outputted.
Finally, PREFIXSPANNAIVE will proceed iteratively until none
sequential patterns could be extended.

D. Mining Balanced Patterns with BALANCESPAN

The problem of PREFIXSPANNAIVE is that it generates
both a pattern and its dual as different nodes in the pattern
tree. Furthermore, it also generates nodes for patterns that are
frequent but whose dual is not frequent. Consequently, and
this is shown in the experiments (Section VII), an important
amount of nodes are useless. To solve that problem, and to
be sure only nodes corresponding to balanced patterns are
generated (and only them, i.e. correct and complete), we



ALGORITHM: PREFIXSPANNAIVE

ALGORITHM: BALANCESPAN

Require: A sequence s, the s-projected signed DB S, and a minimum
threshold o
Ensure: The frequent sequential pattern set F'
1: Compute balance(s) thanks to dual(s)
2: F«+— {s};
3: scan S| once, find every frequent item a such that
(a) s can be extended to (s o; a), or
(b) s can be extended to (s o5 a)
4: if no valid a available then
5: return F';
6: end if
7: for all valid a do
8:  (a) Search for dual(s o; a) among children of dual(s)
9:  if dual(s o; a) exists then

10: Link dual(so; a) to so; a
11: F <— F'U PrefizSpanNaive(s 0; a,S|s0,a:7)
12: end if

or,
13:  (b) Search for dual(s os a) among children of dual(s)
14:  if dual(s os a) exists then
15: Link dual(sos a) to sos a
16: F <— F U PrefizSpanNaive(s 0; a,S|s0,q4;9)
17:  end if
18: end for
19: return F';

propose the BALANCESPAN approach. The general idea is
the following: instead of considering each item a € Z; as an
extension on sequence s leading to a new projected database
S|s o « and consequently a new node in the pattern tree,
we consider simultaneously an item and its dual, hence two
projected databases S5 o ¢ and Sjguai(s) o dual(a) are related
to a single node (this is done for both kinds of extensions
o; and o). Thus, it ensures that no redundant patterns are
generated, since both a sequence s and dual(s) are generated
at the same node, and it allows to compute balance(s) (or
balance(dual(s)) directly if and only if both s and dual(s)
are frequent. It follows that BALANCESPAN produces a correct
and complete collection of frequent balanced patterns.

Example. BALANCESPAN also requires a signed interaction
database, but contrary to PREFIXSPANNAIVE, it proceeds
to a double projection at a time. Let us still consider the
toy dataset of Table IV with 0 = 1/4. Starting with the
empty sequence and the entire dataset, the first step consists
of finding frequent items: e.g., a™ is frequent. Contrary to
PREFIXSPANNAIVE, BALANCESPAN directly generates the
dual of (a%) to proceed to the double projection. Thus, it
checks if a~ is frequent and then projects on both {(a™) and
(a™) at a time: i.e., it creates a new node in the pattern tree
that is related to the couple ({a™), (a™)). The next step calls
BalanceSpan on this new node. So it searches for frequent
items in the projected database Sj(q+): €.., ¢~ . Thus it checks
if dual(c™) is frequent in Sj,-y: the node containing the
couple ((atc™),{a~cT)) is created and explored in the next
step.

VII. EXPERIMENTS

A. StarCraft 1l in a nutshell

We study one of the most competitive real-time strategy
games (RTS), StarCraft II (Blizzard Entertainment, 2010),

Require: A sequence s, its dual sequence s’ = dual(s), the s-projected
signed DB S|, the s’-projected signed DB S |s’> and a minimum
threshold o

Ensure: The frequent balanced pattern set F'

1: Compute balance(s)

2: F+—{(s,s")};

3: scan S| once, find every frequent item a such that
(a) s can be extended to (s o; a), or
(b) s can be extended to (s o5 a)

4: scan Sy once, find every frequent item b such that
(a) s’ can be extended to (s’ o; b), or
(b) s’ can be extended to (s’ os b)

5: if no valid a or b available then

6: return F’;

7: end if

8: for all valid a and b such that a = dual(b) do

9: (a) F +— F U BalanceSpan(s o; a, s’ o; b,S|50,asS|s70b>T)

10:  (b) F <— F U BalanceSpan(s os a,s’ 05 b,S|50,a:S|s/0,6>7)

11: end for

12: return F;

successor of StarCraft: Brood War, test bed for many research
in Al [6]. A game involves two players each choosing a
faction among Zerg (Z), Protoss (P) and Terran (T): there
are 6 different possible match-ups with different strategies of
game. During a game, two players are battling on a map (aerial
view), controlling buildings and units to gather supply, build
an army with the final goal of winning by destroying the
opponent’s forces. Such actions (training, building, moving,
attacking) are done in real-time. Each faction (Z, P, T) allows
different units and buildings with distinctive weaknesses and
strengths following a rock-paper-scissors principle. As such,
there are mirror match-ups (TvsT, PvsP, ZvsZ) and non-mirror
match-ups (TvsP, TvsZ, PvsZ). A strategy is hidden in large
sequences of actions generated by players and called replays.
Played as an electronic sport, StarCraft II is regularly
patched: basic rules of the games are adjusted (properties of
units, building times, ...), new rules are introduced through
expansion sets (heart of the swarm and legacy of the void).
The balance design team of StarCraft II, often needs to study
historical data, care about player feedback on Web forums, and
finally to justify their choices. After quantitative experiments
of our algorithms, we will discuss the usefulness of our
approach to help studying balance issues in RTS games.

B. Datasets

StarCraft II replays are files that store any action performed
by all players during a game, and are easily accessible on the
Web !. We retained 91,503 games with a total of 3.19 years of
game time. The average length of a game is about 20 minutes.
A game is selected if it involves a high level players (in the
highest leagues and playing at least 200 actions per minute),
since casual (by opposition to professional) players are not
able to follow specific strategies. We divided the 91,503
replays into six different sequence datasets, one for every
match up. Buildings are one of the key elements of a strategy,
since they enable different kinds of units production: from

Uhttp://wiki.teamliquid.net/starcraft2/Replay_Websites
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Fig. 2. Percentage of used nodes in the PvZ dataset.

each replay, we derive a sequence where the items represent
the buildings the players chose to produce in real time, and
itemsets denote time windows of 30 seconds. We consider
only the 10 first minutes of each game (the strategical impact
of a building is less important after 10 minutes). Table V
summarizes all characteristics of the datasets.

C. Run-time analysis and memory usage

We implemented our algorithms over the original C++
version of PREFIXSPAN [11], and experimented on a 1.8 GHz
Intel Core i5 with 8 GB machine. Note that we released
both the source-code and the datasets used in the following
experiments [15]>. We discuss running times of the proposed
algorithms. Firstly, we consider the non-mirror databases given
by transformed interaction databases 7 and signed databases S

2Datasets, source-code and scripts are available on https://github.com/
guillaume-bosc/BalanceSpan

DATASETS: SEQUENCE AND ITEM COUNTS; MAX. AND AVG. SEQUENCE
SIZES (Smaxzs Savg); MAX. AND AVG. ITEMSETS SIZES (imaz, tavg)-

Dataset | D] |Z| Smaw Savg imaz lavg
S - PvP 6,823 26 42 21.7 6 1.8
S - PvT 19,270 62 42 259 8 1.8
S -PvZ 23,491 52 41 23.1 7 1.7
S -TvT 7,598 36 38 23.8 7 1.8
S -TvZ 24,459 62 37 21.2 8 1.6
S -ZvZ 9,922 26 28 10.4 7 14
T -PvT 19,270 34 43 26.9 8 1.8
T -PvZ 23,491 29 42 24.1 7 1.7
T -TvZ 24,459 34 38 222 8 1.6

(since signed databases correspond to the general case whereas
transformed databases are specific to non-mirror databases).
For different minimum frequency thresholds o, we present the
runtime of PREFIXSPAN on S as a rough baseline (since it
does not compute the balance of a pattern), and the runtimes
of the three other algorithms on their respective data represen-
tation. It follows that our general algorithm BALANCESPAN is
the only one able to be executed with lowest o (Figure 1 (d),
(e) and (f)). We report the same results for the general case
with mirror datasets (i.e., S only for PvP, TvT and ZvZ) in
Figure 1 (a), (b) and (c). BALANCESPAN clearly outperforms
PREFIXSPANNAIVE, its only competitor (remembering that
PREFIXSPAN is given as baseline since it does not compute
the balances, and EMERGSPAN does not apply for mirror
databases). Indeed, even if sometimes PREFIXSPANNAIVE
seems to have the same run time as BALANCESPAN with high
value of o, it cannot reach lowest frequency thresholds o. Note
that on the figures, missing points correspond to unterminated
runs when available memory is insufficient. Figure 3 shows
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Fig. 3. Cumulative distribution of the length of the patterns (number of
itemsets) for the PvT (left) and the ZvZ (right) datasets.

the distribution of the length of the extracted patterns for the
PvT and ZvZ datasets.

The quantity of memory used is a very important aspect of
our algorithms. Indeed, since the number of outputted patterns
grows exponentially, see Figure 1, the memory usage becomes
more and more important. Thus, the quantity of memory
needed by our algorithms should be the as low as possible. In
fact, the percentage of used nodes which are created in the tree
structure are sensibly different for the algorithms. Each of the
proposed algorithms builds a pattern tree in which each node
represents a frequent sequential pattern, but not necessarily a
frequent balanced pattern from F; (or F;). BALANCESPAN
is the only algorithm that creates a node, and only one, for
each pattern to be outputted, see Figure 2: in the best cases
PREFIXSPANNAIVE have only the half of useful nodes (by
definition). This number drops to 10% of useful nodes for very
low supports on some datasets. For EMERGSPAN, it is worst,
as only the direct predecessors of the leaves of the prefix tree
are balanced patterns by definition.

D. Exploration of the extracted patterns

It is interesting to visualize the distribution of both the
support and the balance of the patterns. Figure 4 gives such
distribution for dataset ZvZ that enables very fast computations
with low o (less than 5 seconds for ¢ = 0.001). There, both a
pattern and its dual are presented, which allows interestingly
to observe that the equation y = 0.5 (where y is the vertical
axis) gives almost a symmetry axis. Indeed, both a pattern and
its dual do not necessarily have the same support. One can
notice that empirically, there are high chances for a pattern
with high frequency to have a fair balance around 0.5. This
behavior applies for the other dataset and is what we could
expect given the definition of the balance measure.

It is possible to query the set of extracted patterns in
various ways. Indeed, the pattern mining task is related to the
Knowledge Discovery in Databases (KDD) process that aims
at extracting knowledge from data [8]. Data mining approaches
and more precisely pattern mining approaches are a step of
the KDD process that results in patterns from transformed
data [9]. Our work is a pattern mining approach to study
strategy balance that is applied to RTS games. Thus, one gets
a set of patterns that are a generalization of the local strategies
within the data. BALANCESPAN still requires an analysis once
the patterns are outputted.

Balance
1
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Fig. 4. Patterns support and balance for the dataset ZvZ

Exploring a large collection of patterns can be done in
many ways. First, as illustrated hereafter, the expert can filter
the collection with specific constraints such as a minimum
number of itemsets, or specific items using regular expressions,
etc. Second, the expert can introduce preferences as measures
on the patterns (size, length, support, balance, etc.) that he
wishes to minimize or maximize given his goals (the so-
called skypatterns [16]). Indeed, one expert may favor highly
balanced patterns with high support (probably the standard
strategies), while another could be interested in maximizing
the support while favoring patterns whose balance is closest
to 0.5 (giving hints to possible game design problems). Finally,
the discovery can be done interactively, through an interactive
algorithm (not only the full KDD process [17]). The basic
assumption is that the expert does not really know what he
is looking for in the data, and guides the pattern discovery at
each step of the algorithm (such as sequence expansion in our
case). In all cases, the pattern language must be clearly defined
and efficient algorithms proposed to compute the measure of
interest, our main contribution.

We now provide a basic example of exploration by querying
the pattern set. Out of the 43,610 patterns for ZvZ with
o = 0.001, we can keep the patterns involving two players
(containing both + and —), which returns 40,674 patterns.
Then we restricted the set of patterns to those involving
two specific items (RoachWarren and Spire) to get only
290 patterns. (SpawPool™, SpawnPool™, SpiCrawler™,
RoachW arren™, Spire™) denotes for example games where
one of the players go to air units and the second to ground
units, two known openings, with balance 0.47 and support 68.

The pattern mining task can be adapted in various ways,

Balaﬁt;f: ‘

0 P P - P - |
10 100 1000 10000
|Support|

Fig. 5. Game openings support and balance for the dataset ZvZ



depending on which and how the basic actions are encoded in
the sequence. Let us now sketch different scenarios.

1) Discovering strategy openings: Openings are the most
well-known strategies and executed during the first five to
ten minutes of a StarCraft II game. It is expected that
openings are balanced to make the game enjoyable for
the casual player, competitive for the professional, but also
interesting to watch for the spectators [2]. We build our
sequence databases with a set of items composed of tu-
ples (building, sign,i'"window), with fixed windows of
30 seconds by default, i.e., the ith window contains the
items performed between the ((i — 1) x 30)*" second and the
((i x 30) — 1)*" second. We expect that openings are found
as the more frequent patterns and being also balanced: Figure
5 shows the complete set of patterns for the ZvZ dataset
which differs with Figure 4 by its skewness. We explored
the resulting patterns with a game expert. When considering
another dataset (PvZ), we obtain only 591 patterns with o =
0.05. Top frequent patterns represent all well-known strategies:
s = ({(Nezus,+, 5)} {(Gateway, +, 6 ) (Photon Cannon, + 6
)}) represents a popular Protoss strategy, no matter the strategy
of the opponent is. It is balanced (balance(s) = 0.52).

2) Discovering possible balance issues (hypotheses elicita-
tion): The rules of the game are set by the editors and devel-
opers. However, such rules are not always fair and balanced,
and such weaknesses can only be discovered after weeks. We
asked an expert to highlight a well known imbalanced strategy.
The so called bunker rush was used a lot by Terran players
against their Zerg opponents. It consists of building in the
early stage of the game a bunker near the opponent’s base to
put his economy and development in difficulty. After several
complaints from the StarCraft II community, the rules changed
on 10*" May 2012: a Zerg counter unit (the queen) has been
slightly improved. Since then, this strategy stopped to be used
for some time. Our approach should be able to reflect/discover
that fact: we proceed as follows. We split dataset TvZ into
two parts: the first one, called Sperore, contains replays that
happened strictly before 10*"* May 2012 (17, 171 replays), and
the second one, called S, e, contains the replays that hap-
pened strictly after this change (6, 698 replays). The mining of
the dataset Spefore (respectively S, yier) With a low o = 0.05
returns 8, 138 patterns (resp. 7, 735). According to the experts,
the bunker should be built during the sixth window of time
(between 2°30” and 3’ of the game). There are 20 (resp. 12)
patterns that involve the item (Bunker, ¢, 6) with ¢ € {+, —}.
With Spefore (resp. Safier), the average value of the balance
is 0.58 (resp. 0.51) with a standard deviation equals to 0.5
(resp. 1.6). This is clear that since the patch was released, this
strategy has become balanced. Moreover, we can remark that
this strategy is no longer used by players: in fact the number
of extracted patterns related to this strategy decreases by 40%
whereas the number of extracted patterns only decreases by
5% from Spefore t0 Sqfier. Thus, BALANCESPAN enables to
see the impact of the release of patch, by analyzing the period
before and after this key date.

3) On the diversity in mirror match-ups: It is more delicate
to speak about balance when both players belong to the same
faction (mirror match-ups): both players have access to the
same strategies (same building, hence a symmetrical game).
Let us observe for example the dataset PvP with a new vocab-
ulary: items are tuples (building, sign, it window, j*#14ing)
where the last element records how many of this building
were already made at the moment of the action (cumulative).
Setting a minimal support o = 0.05, we obtain 3418 patterns.
We can find here the so-called 4 Gates strategy through
the pattern s = ({(Gateway, +, 3, 1) (Assimilator,+, 3, 1)}
{(Cyb.Core,+, 4, 1)} {(Gateway, +, 7, 2) (Gateway, +, 7, 3)
(Gateway, +, 7, 4)}) with balance(s) = 0.59. Such a high
value may be surprising, but it reflects the effectiveness of this
strategy, and consequently the poor diversity of the strategies
used in the PvP match-up. It is an easy and non-risky strategy
to apply: according to the expert, a player has better chances
to win with this strategy against riskier strategies. After several
recurrent complaints, nothing changed in the game until a new
major update of the games (with new units and buildings).
Since then strategies used in the PvP match up are more
diversified and the 4 gates strategy is rarely used.

VIII. RELATED WORK

Discovering patterns that highly distinguish a dataset from
others (e.g., win labeled objects versus lose labeled objects) is
an important task in machine learning and data mining [13].
One of the main reason is that such patterns enable the
building of comprehensible classifiers [18]. In the general
settings, we are given a set of objects of different classes
that take descriptions, generally from a partially ordered set
(itemsets, graphs, intervals, etc.) [19]. The goal is to find
good description generalizations that mostly appear in one
class of objects and not in the others. In different fields of
Al and applied mathematics, such descriptions have different
names [13] like version spaces [20], contrast sets [21] and
subgroups discovery [22] in machine learning, emerging pat-
terns [12] in data-mining; or no counter-example hypothesis
in formal concept analysis [19]. Our contribution in this field
is to consider and compute efficiently a balance measure that
existing methods can partially or non efficiently compute.

StarCraft II and other real time strategy games (RTS) in
general, face several research challenges in artificial intelli-
gence as deeply discussed in a recent survey [6]. Our work is
related to the challenge that the authors of the survey qualify as
prior learning, that is, techniques that can “exploit available
data such as existing replays [...] for learning appropriate
strategies beforehand”. Strategies in RTS game are complex
and divided in several tasks, each bringing difficult problems.
Several case-based reasoning approaches have been proposed,
mainly to retrieve and adapt strategies (especially build orders)
to be used then by an automated agent [23], [24]. Other
kinds of approaches are also used for several prediction tasks.
Predicting the opponent’s production was studied with answer
set programming [25], while learning transition probabilities
within build orders was achieved with hidden Markov models
[26]. Weber et al. described any past game by a vector of



building and upgrade timings: such features allow an accurate
strategy prediction [27]. This comes with a limit: game logs are
a priori labeled with a strategy using rules based on “manual”
expert analysis. The same applies for opening prediction [28].

To discover strategies in large volumes of replays, avoiding
to manually label game logs, knowledge discovery in database
(KDD) methods are required, and especially pattern mining
techniques. This was highlighted in the open problems cate-
gory Domain knowledge of the recent survey mentioned before
[6]: “Is it possible to devise techniques that can automatically
mine existing collections [...] and incorporate it into the bot?”.
We did not study in this article the second step (incorporation),
but presented a way to extract efficiently such patterns and
focused onbalance issues for helping game designers. A long
road remains to be able to select the right patterns to be used
by artificial agents as discussed recently in [6], [29].

IX. CONCLUSION

We tackled the problem of mining frequent sequential
patterns in real time strategy games whose balance measures
provide meaningful insights on the strategies played and
their ability of being in equilibrium or not. For that matter,
we revisited the well known notions of discriminant pattern
mining to provide efficient algorithms for the elicitation of
balance hypotheses from the data.

From that, we presented several algorithms that enable
(partially or not) dealing with interaction databases, and we
showed that only BALANCESPAN enables to deal with all
datasets efficiently.

We empirically validated that the balance measure is able
to distinguish balanced and imbalanced strategies. We believe
that our approach can become a basic tool for balance design-
ers when analyzing a subset of historical data of a game in beta
phase, or even after its release, through an exploratory process
(KDD and interactive mining). A major difficulty remains to
select and construct features of interest from the game logs.
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