Nonparametric Laguerre estimation in the multiplicative censoring model

Abstract : We study the model $Y_i=X_iU_i, \; i=1, \ldots, n$ where the $U_i$'s are {\em i.i.d.} with $\beta(1,k)$ density, $k\ge 1$, the $X_i$'s are {\em i.i.d.}, nonnegative with unknown density $f$. The sequences $(X_i), (U_i),$ are independent. We aim at estimating $f$ on ${\mathbb R}^+$ from the observations $(Y_1, \dots, Y_n)$. We propose projection estimators using a Laguerre basis. A data-driven procedure is described in order to select the dimension of the projection space, which performs automatically the bias variance compromise. Then, we give upper bounds on the ${\mathbb L}^2$-risk on specific Sobolev-Laguerre spaces. Lower bounds matching with the upper bounds within a logarithmic factor are proved. The method is illustrated on simulated data.
Type de document :
Article dans une revue
Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2016, 10 (2), pp.3114-3152. <http://projecteuclid.org/euclid.ejs/1478747031>. <10.1214/16-EJS1203>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01252143
Contributeur : Fabienne Comte <>
Soumis le : mardi 24 mai 2016 - 22:27:34
Dernière modification le : mardi 15 novembre 2016 - 16:18:50

Fichier

LaguerreMult24_05_16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Denis Belomestny, Fabienne Comte, Valentine Genon-Catalot. Nonparametric Laguerre estimation in the multiplicative censoring model. Electronic journal of statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2016, 10 (2), pp.3114-3152. <http://projecteuclid.org/euclid.ejs/1478747031>. <10.1214/16-EJS1203>. <hal-01252143v3>

Partager

Métriques

Consultations de
la notice

106

Téléchargements du document

33