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Abstract

This paper presents a new distributed computation model adapted
to manycore processors. In this model, the run is spread on the
available cores by fork machine instructions produced by the com-
piler, for example at function calls and loops iterations. This ap-
proach is to be opposed to the actual model of computation based
on cache and predictor. Cache efficiency relies on data locality and
predictor efficiency relies on the reproducibility of the control. Data
locality and control reproducibility are less effective when the ex-
ecution is distributed. The computation model proposed is based
on a new core hardware. Its main features are described in this pa-
per. This new core is the building block of a manycore design. The
processor automatically parallelizes an execution. It keeps the com-
putation deterministic by constructing a totally ordered trace of the
machine instructions run. References are renamed, including mem-
ory, which fixes the communications and synchronizations needs.
When a data is referenced, its producer is found in the trace and
the reader is synchronized with the writer. This paper shows how
a consumer can be located in the same core as its producer, im-
proving parallel locality and parallelization quality. Our determin-
istic and fine grain distribution of a run on a manycore processor
is compared with OS primitives and API based parallelization (e.g.
pthread, OpenMP or MPI) and to compiler automatic paralleliza-
tion of loops. The former implies (i) a high OS overhead meaning
that only coarse grain parallelization is cost-effective and (ii) a non
deterministic behaviour meaning that appropriate synchronization
to eliminate wrong results is a challenge. The latter is unable to
fully parallelize general purpose programs due to structures like
functions, complex loops and branches.

1. Introduction

To run a program in parallel on a multi-core processor today, one
must rewrite its C code to add by hand or through tools some
OS parallelizing primitives such as pthread. Even with high level
interfaces like OpenMP or MPI, parallelizing is not an easy job for
two reasons: (i) if the resulting code is not enough synchronized,
the computation is not deterministic and (ii) if it is too much
synchronized, it is not parallel enough. This is illustrated by figure 1
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showing the C implementation of a vector sum reduction and figure
2 showing its pthread implementation.

unsigned long sum(unsigned long array[],
unsigned long n){

if (n==1) return array|[0];

if (n==2) return array[0]+array[1];

return sum(array ,n/2) + sum(&array[n/2],n—n/2);

}

Figure 1: A vector sum reduction: C code

The pthread coding is known to be tricky. A first (incorrect)
version has no pthread_join synchronization, which highlights (i).
As a result, the run is not deterministic and the returned sum
may be incorrect. A second version places the first pthread_join
synchronization on line 11 which serializes the second recursive
call after the first one, which highlights (ii). As a result, the run is
not parallel enough. Only the third version which places the two
joins on lines 16 and 18 is satisfactory.

This example abstracts a first difficulty of hand-made paral-
lelization with non deterministic OS primitives: achieve the exactly
needed synchronization.

Edward Lee [8] writes "Threads (...) make programs absurdly
nondeterministic, and rely on programming style to constrain that
nondeterminism to achieve deterministic aims.”. Section 2 shows
how to run deterministically in parallel.

Instead of hand-parallelizing the code, the developer may rely
on its compiler to automatically do loop vectorization or loop paral-
lelization. A simple example as the program given on figure 1 can-
not be automatically parallelized by gcc. Irregular code structures
are a second problem. Section 3 explains how loops are parallelized
in our approach.

A third problem of parallelization is the memory organization
of the data [1]. In the sum example, the array to be summed is
declared for example as a global variable. Hence, it is centralized
when the computation is distributed. As a result, each thread brings
the array pieces it needs from DRAM, where it resides. Cache can
help but neighbour cores are slowed down by memory contention
and the cache miss rate is impacted by the array distribution. More-
over, in a program updating shared data, keeping caches coherent
requires complex hardware which slows down average memory ac-
cess time. Caches and memory hierarchy, as well as branch pre-
dictors, are hardware features that rely on the principle of locality,
which in essence is founded on the centralisation of data (caches)
and fetched code (predictors). When the code and the data are dis-
tributed, it is the parallel locality which applies to data. The parallel
locality principle is that a consumer should be as close as possible
from its producer. In this paper we propose a measure of the pro-
ducer to consumer distance, which is a way to quantify the paral-
lelization quality.
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typedef struct{ long *p; unsigned long i;} ST;
void xsum(void *st){
ST strl ,str2;
unsigned long s,sl, s2;
pthread_t tidl, tid2;
if (((ST *)st)—>i>2){
strl.p=((ST x)st)—>p;
strl.i=((ST x)st)—>i/2;
pthread_create(&tidl ,NULL,sum, (void *)&strl);
10 //(version 2)
11 //pthread_join (tidl ,(void %)&sl1);

NelECLREN B R R S N R S

12 str2.p=((ST *)st)=>p + ((ST =*)st)—>i/2;
13 str2.i=((ST =)st)—>i — ((ST =*)st)—>i/2;
14 pthread_create(&tid2 ,NULL,sum, (void *)&str2);

15 //(version 3)

16 //pthread_join (tidl ,(void *)&s1);
17 //(versions 2 and 3)

18 //pthread_join (tid2 ,(void *)&s2);

19

20 else if (((ST x)st)—>i==1){
21 s1=((ST =)st)—>p[0];

22 s2=0;

23| 3}

24 else

25 s1=((ST =)st)—>p[0];

26 s2=((ST =)st)—>p[1l];

27

28 s=sl+s2;
29 pthread_exit ((void x*)s);
30 |1}

Figure 2: A vector sum reduction: pthread code

Section 4 defines the parallel locality and the parallelization
quality and shows a programming technique to increase them. Sec-
tion 5 contains a matrix multiplication program with an improved
parallelization quality.

In [5], a parallelizing core hardware is proposed to distribute
an execution on a manycore processor. As the parallelization is dy-
namic, the three problems just mentioned are more easy to tackle.
The programming model presented in this paper relies on this core
hardware. The next section introduces its ISA' extension with the
fork instruction, its new way of fetching in parallel to build a to-
tally ordered trace and its parallelization of the renaming process,
extended to memory locations.

2. A Deterministic and Parallel Run of C Code
2.1 Deterministic Parallel Execution

The sequential execution of the code on figure 1 is deterministic.
The C code fixes a total order that the run follows. The core may
run machine instructions out-of-order [14] [6], i.e. in a partial order
derived from Read-After-Write (RAW) register dependences, but
the total order semantic is preserved.

If a parallel execution is based on a total order, it is determinis-
tic. A totally ordered trace can be built in parallel. For example in
the C sum function, the trace can be built top-down. Such an out-
of-order construction of a totally ordered trace is possible because
the control flow instructions are partially ordered. For example in
the sum function, the control flow path in the second recursive call
is independent from the control flow path in the first recursive call.
This means that both calls traces can be built in parallel and orderly
connected afterwards.

To avoid complications in the trace building, the hardware in
[5] computes the control instructions targets rather than predicting
them. Computing is slower than predicting but computing tens
of branches in parallel is more efficient than predicting tens of

nstruction Set Architecture

branches in sequence, parallelism being more cost-effective than
a sequential predictor, even a perfect one.

2.2 The fork Machine Instruction

The first 18 lines on figure 3 are an x86 translation of the sum C
code (AT&T syntax). The call and ret instructions are replaced by
fork and endfork. The fork instruction semantic is to keep on fetch-
ing along the continuation path, i.e. go to the fork instruction label.
Simultaneously, a new core starts fetching along the resume path,
i.e. the instruction following the fork in the text. The endfork in-
struction semantic is to stop fetching along the current path. Con-
trarily to the call and ret pair, no return address is pushed/popped.

Moreover, the given code assumes the forked path (i.e. the re-
sume code) receives a copy of the stack pointer (i.e. x86 register
rsp), meaning that both paths use the same stack area. The hard-
ware in [5] also copies rbp, rdi, rsi and rbx. These copies are
better than push/pop because a push in a function prologue and a
pop in its epilogue create RAW dependences between the epilogue
and the prologue of the next function call, serializing them.

In the code on figure 3, register rsi¢ and rdi hold arguments
n and array. The sum function code leaves the computed sum in
register rax (lines 3, 5 and 16), from where it is read by the resume
path (lines 11 and 16).

2.3 Memory Renaming

In the hardware presented in [5] the trace is run in the partial order
of its dependences. False register dependences are removed by
renaming [13]. Many true register dependences are also removed
by copying. For example, the computation of n — n/2 in line 13
(figure 3) depends on registers set in lines 7 and 8. As rbx and rsi
are copied to the resume path, line 13 can be run in parallel with
the continuation path in line 1.

False memory dependences are also removed. For example, as
the stack pointer moves back and forth (allocation in line 10 and
disallocation in line 17), different code portions use the same lo-
cation, creating Write-After-Read and Write-After-Write memory
dependences removed by renaming.

Memory renaming schemes have been proposed [10][15],
mainly to accelerate loads. The renaming relies on a predictor to
quickly decide if a load depends on a previous store. However, a
prediction based mechanism is not suited to eliminate false mem-
ory dependences. In [5], the memory hardware renaming is based
on a search along the instruction trace total order.

Renaming is parallelized. The two recursive call destinations
are simultaneously renamed. Destinations can be renamed in any
order. Sources can be renamed out-of-order at the conditions that
(1) the trace is totally ordered and (ii) all the destinations between a
source and its producer are renamed.

The totally ordered trace is built from pieces which are fetched
in parallel and later connected. When fetched, each instruction is
renamed. A renamed place is allocated to hold the destination and
for the sources, the closest producer is looked for by a backward
search through the built trace. If a piece of the trace is missing, the
search is suspended until the trace is extended. The fetch of next
instructions continues during the source renaming search.

2.4 Parallel Construction of the Totally Ordered Trace

Figure 4 shows the parallel fetch of the sum function. The fetch is
distributed on 11 cores?. It is done in 7 successive steps. At the first
step, only core 1 is fetching. It fetches the start of the sum function
code at line 1 (the instructions are the ones on figure 3). The rs¢
register holds the number n of elements to be summed, i.e. n = 10.
Instructions on lines 1 and 2 are fetched and computed, requiring

2 They may be SMT-like logical cores.
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1 |sum: cmpq $2, %rsi /xif (n>2) x/
2 ja L2 /* goto .L2 */
3 movq (%rdi), %rax /xrax = array[0] */
4 jne L1 /xif (n==1) goto .L1 */
5 addq 8(%rdi), %rax /*rax += array[1] */
6 | .L1: endfork /*stop */
7 |.L2: movq  %rsi, %rbx /xrbx = n */
8 shrq Y%rsi /xrsi = n/2 x/
9 fork sum /*rax = sum(array ,n/2) */
10 subq $8, %rsp /+allocate long on stack */
11 movg  %rax, (%rsp) /xsave rax on top of stack */
12 leaq 0(%rdi ,%rsi ,8), %rdi /xrdi = &array[n/2] */
13 subq %rsi , %rbx /xrbx = n — n/2 x/
14 movg  Y%rbx, %rsi /*n =n—n/2 */
15 fork sum /*rax = sum(&array[n/2],n—n/2) x/
16 addq (Y%rsp), %rax /*xrax += sum(array ,n/2) x/
17 addq $8, %rsp /«xfree long from top of stack */
18 endfork /*stop */
19 | init: cmpq $2, %rsi /xif (n>2) */
20 ja .L4 /% goto .L4 */
21 movq Y%rbp, (%rdi) /*xarray[i]=i x/
22 jne .L3 /*if (n==1) goto .L3 */
23 addq $1, %rbp [ i+ x/
24 movg  Y%rbp, 8(%rdi) /xarray [i]=i */
25 | .L3: endfork /*stop */
26 | .L4: movq  %rsi, %rbx /*rbx =n */
27 shrq Y%rsi /*n =n/2 */
28 fork init /*init(array ,n/2) */
29 leaq 0(%rdi ,%rsi ,8), %rdi /«rdi = &array[n/2] */
30 subg  %rsi, %rbx /xrbx = n — n/2 x/
31 addq  %rsi, %rbp /xrbp =i + n x/
32 movq  %rbx, %rsi /*n =n—n/2 */
33 fork init /*init(&array[n/2],n—n/2) */
34 endfork /*stop */
35 | main: movq $0, %rbp /*i =0 */
36 movq $10, %rsi /*n =10 */
37 movq $array , %rdi /xrdi = array */
38 fork init /*init(array ,10) */
39 fork sum /*rax = sum(array ,10) */
40

Figure 3: A vector sum reduction (x86 code)

core 1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core 9 core 10 core 11

step 3 ‘ 1-6
(for init,
replace with

step 4 19-25)

n=1 n=1,2 ,4
step 5 [1-46 |<]10-15 ] /!
fepiaca with n=2 n=2 § n=l il
step 6 19-2225)  [1-6  |<={16-18 |(for init, replace with 34) [1-4,6 |<=]10-15 | /!
n=2 n=2 )
step 7 [1-6  |<]16-18 ]

Figure 4: Trace of sum(array, 10)
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#include <stdio.h>
#define SIZE 10
long array[SIZE];

void f(unsigned int i){array[i] = i;}
void for_recursive (unsigned int f,

unsigned int |, void (xbody)()){
int n = [—f41;

if (n = 1){(xbody)(f); return;}
if (n = 2){(xbody)(f); (xbody)(f+1); return;}

if (n 1= 0){
for_recursive(f, f+n/2—1, body);
for_recursive(f+n/2, |, body);
}

void main(){

unsigned long i; long s;

//for (i=0; i<SIZE; i++) array[i] = i;
//transformed into

//for_recursive(first , last, body_function)
for_recursive (0, SIZE-1, f);

s=sum(array, 10);

printf("%ld\n", s);

Figure 5: A parallelized for loop

no source renaming as register rs: value is known. The control is
transferred to line 7. On figure 4, the upper leftmost rectangle box
contains the fetched line numbers (i.e. 1, 2 and from 7 to 9). The
box is labelled with the successive values of n (i.e. n = 10 before
line 1 and n = 5 after line 9).

Instruction on line 9 (figure 3) is a fork. Core 6 (figure 4)
receives the resume address from core 1 (i.e. line 10). At step 2,
core 1 fetches the continuation path (line 1) and core 6 fetches the
resume path (line 10). At step 3, four cores are fetching in parallel.
Each core is able to compute its own control path and continue
fetching independently from other cores.

The path followed by a core is a section. A section starts after
a fork instruction along the resume path and ends when an endfork
instruction is reached. On figure 4, there are 11 sections, i.e. one
per core. Sections may be long (e.g. a recursive descent like the
section on core 1) or short (e.g. the transmission of the partial sum
on core 4). On the average, sections are around 10 instructions long
resulting in a fine grain parallelization.

The hardware in [5] builds the trace total order by linking the
sections. Each section is linked to its successor and predecessor
(dashed bidirectional lines on figure 4)*. Sections belonging to the
same hierarchical level are also linked (plain lines, level predeces-
sor). For example, cores 1, 6 and 11 fetch the highest level of the
sum function, i.e. lines 1, 2, 7 to 9 (core 1), 10 to 15 (core 6) and 16
to 18 (core 11). The three involved sections are linked (plain lines).
These direct links help finding stack renamings, bypassing the sub-
trees. For example, instruction 16 on core 11 finds the first half
sum on top of the stack, saved by instruction 11 on core 6, without
waiting for the construction of the cores 7 to 10 trace sub-tree.

A lot of instructions don’t even need any source renaming as
their sources have known values. In the sum example, core 1 does
not rename any source as a copy of register rs¢ (i.e. rsi = 10)
is received from the sum function caller. Only sources referencing
a production of another section need to be renamed. For example,
core 6 renames rax on line 11. This renaming is to be provided by
core 5 which is core 6 closest predecessor producing raz on line
16. The predecessor link from core 6 to core 5 is established at step
4, when core 5 has reached its endfork instruction (line 18). Core 6

3 The core numbers are choosen arbitrarily

4 Successor links serve to export retired data

sends a request to read rax to core 5 which returns the rax value
to core 6 when it is computed.

In the sum example, there are 25 renamed sources. Ten of
them concern array elements (lines 3 and 5 on figure 3). Five
are references to the stack (i.e. (rsp), line 16). The last ten are
references to register rax (lines 11 and 16).

The renamings of the array elements references deserve a par-
ticular treatment to avoid a long distance search of their producer
in the trace. This is explained in section 4. The renamings of rax
references need a round-trip communication between the renaming
section and its predecessor (one way sends a request to read rax
and the return way sends rax value). The renamings of the stack
references 0(rsp) need a round-trip communication between the
renaming section and its predecessor at the same hierarchical level
(level predecessor). For example, line 16 in core 11 renames 0(rsp)
from producing line 11 in core 6.

2.5 Full Renaming and Memory Management

As all destinations are renamed, the trace has a Dynamic Single
Assignment form [16]. As described in [5], each core keeps its
renamings in locally allocated storing resources. The cores have no
data caches. The intermediate computations are kept in renaming
storage until they are freed. Renaming storage is allocated up to the
core capacity. When the core is full, its fetch is suspended”.

Only the final computations are saved to physical memory,
when retired. As a result, the processor memory is naturally co-
herent as there is a single writer.

Such parallelizing cores are simpler than actual speculative
cores as they need no branch predictor, no data cache and no vector
computing unit. Hence, they are better suited to be the building
block of future manycore processors.

3. Parallelizing Loops
3.1 Single for Loops

A single for loop is transformed into a divide-and-conquer tree of
parallel iterations. For example, figure 5 is the transformation of
the array initialization loop. Figure 6 shows the x86 code produced
by the compiler for the for_recursive function translating the for
loop. Figure 7 shows the distributed run of the loop (only the 5 first
iterations are fully shown; the 5 last ones -b5 to b9- are folded; the
full tree has 9 steps distributed on 20 cores®).

The body calls can communicate (i.e. body(j) can import a value
from body(i) for all ¢ < 7). Each body section has its own control
flow. A parallelizable loop has independent iterations. In this case,
there is no communication between the body sections and they all
have independent control flows.

3.2 Nested Loops

Nested for loops are transformed into two nested divide-and-
conquer trees of parallel iterations. For example, figures 8, 9 and
10 show the translation of two nested loops initializing a matrix.
The x86 code is not shown but is easy to build. The run is fully
parallelized with 100 sections organized as a binary tree. It is still
easy for iterations of the inner loop to communicate. It is less easy
for iterations of the outer loop as sections of intermediate inner
loops may form a large separation of a consumer from its producer.
In this case, the stack may help (the producer pushes and the con-
sumer pops). Moreover, section 4 presents a general programming
technique to optimize inter-sections communications.

5 As in actual out-of-order cores when no more renaming register is free.

© Among which 10 do nothing more than fetching an endfork instruction.
The compiler can eliminate such empty sections by reversing the continua-
tion and resume paths.

2015/11/19



1 | for_recursive:
2 movq  %rsi, %rcx /xrex = | Y
3 subq Y%rdi , %rcx /xrcx = |—f */
4 addq $1, %rcx /xrex = I—f+1 x/
5 cmpq $1, %rcx /*xif (nl=1) x/
6 jne L1 /+ goto .L1 ®/
7 fork *%rbx /*(xbody ) (f) */
8 endfork /*stop */
9 |.L1: cmpq $2, %rcx /*xif (nl=2) x/
10 jne L2 /% goto .L2 */
11 fork *%rbx /% (*body)(f) Y
12 addq $1, %rdi /xrdi++ ®/
13 fork *%orbx /* (*xbody)(f+1) */
14 endfork /*stop */
15 | .L2: cmpq $0, %rcx /*xif (n==0) */
16 je .L3 /% goto .L3 ®/
17 movq %rsi , %rbp /xrbp = | */
18 shrq Y%rcx /*rcx = n/2 */
19 addq  %rdi, %rcx /*xrcx = f+n/2 x/
20 subq $1, %rcx /*xrcx = f+n/2—1 */
21 movq  %rcx, %rsi /*rsi = f+n/2-1 Y
22 fork for_recursive /*for_recursive (f, f+n/2—1, body) =/
23 addq $1, %rsi /*xrsi = f+n/2 x/
24 movq  %rsi, %rdi /xrdi = f+n/2 x/
25 movq Y%rbp , %rsi /xrsi = | */
26 fork for_recursive /*for_recursive (f+n/2, |, body) ®/
27 | .L3: endfork /*stop */
Figure 6: A for loop (x86 code)
core 1 core 2 core 3 core 4 core 5 core 6 core 7 core 8 core 9 core 10 core 11 core 20
n=10,5
step 1 |2-6,9,10,15-22
n=5,2 n=5,5
step 2 23-26 ]
,ﬂ n=5,2
step 3 ! [2-6,9,10,15-22 | [27 |
n=2 )2
step 4
step 5
step 6
h
|
step 7 1|67
step 8 ‘llb8
|
step 9 b9

Figure 7: Trace of for_recursive(0, 9, body)

3.3 While loops

Figure 11 shows a while loop. Figure 12 shows the transformation
of the while loop into a for loop. The for loop is then transformed
in a recursive function with a continuation condition (function
cont_cond). The run deploys a binary tree of [ — f + 1 calls to
the for_break_recursive function. The calls are run in parallel.

In [2], the authors give many solutions to automatically trans-
form loops that are difficult to parallelize at compile time.

4. A Programming Technique to Increase the
Quality of Parallelization
4.1 The Quality of Parallelization

A well parallelized execution should be composed of many parallel
sections (fine grain is better than coarse grain), i.e. the average size
sq of the sections should be low. This allows a simultaneous fetch
on all the cores, i.e. fixing the Instruction Per Cycle (IPC) peak
value to the number of cores. The communications between the
sections should be rare and short distance. In other words, the av-
erage number of communications per section ¢, should be low and
the average distance d, from the producer to the consumer should
be short, i.e. the number of visited sections should be low. Eventu-
ally, the number of instructions run n; should be low. Among these
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#include <stdio.h>

#define SIZE 10

int matrix [SIZE][SIZE];

void for_inner_recursive(int fo, int f, int I,
void (xinner_body)()){

int n=l—-f41;
if (n==1){(xinner_body)(fo,f); return;}
if (n==2){

(xinner_body)(fo,f);
(xinner_body)(fo,f+1);

return;

}

if (n1=0){
for_inner_recursive(fo,f, f4+n/2—1,inner_body);
for_inner_recursive(fo,f+n/2,1 ,inner_body);

}

}

Figure 8: Inner for loop

void for_outer_recursive(int fo, int lo,
void (xouter_before)(), void (xouter_after)(),
int fi, int |i, void (xinner_body)()){
int n=lo—fo+1;
if (n>0){
(xouter_before)(fo, lo);
if (n==1) for_inner_recursive(fo,fi,li ,inner_body);
else if (n==2){
for_inner_recursive(fo,fi,li ,inner_body);
for,inner,recursive(fo+l,fi i ,inner,body);
else{
for_outer_recursive (fo,fo+n/2—1,
outer_before ,outer_after ,fi ,li ,inner_body);
for_outer_recursive(fo+n/2,lo,
outer_before ,outer_after ,fi ,li ,inner_body);
}
(xouter_after)(fo, lo);

Figure 9: Outer for loop

static inline void init(int i, int j){
matrix [i][j]=i%10+];

static inline void empty(int f, int 1){}
main (){

unsigned long i,j;
/%

for (i=0;i<10;i++)

for (j=0;j<10;j++)

matrix[i ][ j]=i%10+j;
*/
//nested loops translated as
//for_outer_recursive(first_outer ,last_outer,
// outer_before ,outer_after,
// first_inner ,last_inner ,inner_body
for_outer_recursive (0,9,empty,empty,0,9,init);

Figure 10: Two nested for loops

void quicksort(int f, int 1){

i1=f ..
while (i1 < | && ((x1 = array[il]) <= p)) il++;

}

Figure 11: A while loop

static inline int cont_cond(int e, int p){

return (e <= p);

}

static inline void increment(int *i){(*xi)++;}

int for_break_recursive(int (xcc)(), int f, int |,
int p, int *xx, void (xbody)()){

int n=l—-f+1, i=f, il, i2, x1, x2;

if (!(*xcc)((*x=array[f]),p)) return f;

if (n==1){
(xbody)(&i); *x=array[i]; return i;
if (n==2){

(*xbody)(&i);
if (!(*xcc)((xx=array[i]),p)) return i;
(xbody)(&i); *x=array[i]; return i;

if (n!=0){

il = for_break_.recursive(cc,f,f+n/2—1,p,&x1,body);
i2 = for_break_recursive(cc,f+n/2,1,p,&x2,body);
if (il<f4+n/2){xx=x1; return il;}

else {#x=x2; return i2;}

}

}

void quicksort(int f, int 1){

//for (il = f;

// i1 < | && ((x1 = array[il]) <=p);
// i1++);

//transformed into

il = for_break_recursive(cont_cond, f, |—1,

p, &x1, increment);

Figure 12: The while loop is transformed into a for loop with a
continuation condition

four factors, d, is the most important one as communications are
expensive.

To increase the parallelization quality, we can decrease s, (i.e.
either by increasing the number of sections or by decreasing n;).
We can also decrease ¢, and d,, (increasing the number of sections
should not increase the average communication distance). One way
to keep d, low is to recompute a value each time it is used. This
should not increase n; too much (the recomputation should not be
complex).

4.2 An Example: the sum Function

Figure 13 shows a main function calling sum. Figure 3 is its x86
translation. The for loop is translated into a parallelized function
init. The init function fetched trace has the same sections decom-
position as the sum function. Figure 4 can be adapted to the init
function fetch. For example, the upper leftmost box corresponds to
the fetch of lines 19, 20 and then from 26 to 28.

Figure 14 shows the section decomposition of the main function
run. A starting section (upper left rectangle) is continued by the
figure 4 upper leftmost rectangle (hence, lines 35 to 38 are followed
by the init function tree on figure 4 and all belong to the first
section). This section forks a new section to start the execution
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#include <stdio.h>
#define SIZE 10

long array[SIZE];

void main(){

unsigned long i;

long s;

for (i=0;i<SIZE;i++) array[i]=i;
s=sum(array ,10);
printf("%ld\n" ,s);

Figure 13: A main function calling the sum function

core core core

init fetch tree  j< - - - -

(see figure 3)

(see figure 3)

Figure 14: Trace of the main function

#include <stdio.h>
#define SIZE 10
long array[SIZE];
long sum(long array[],
unsigned long n,
long (xget)(),
unsigned long i){
if (n==1) return (xget)(array, i);
if (n==2) return (xget)(array, i)
+ (xget)(array, i+
return sum(array ,n/2,get,i)
+ sum(&array[n/2],n—n/2, get,i4+n/2);

1);

static inline long set_array_elem(long array][],
unsigned long i){
array [i]=i;

static inline long get_array_elem(long array[],
unsigned long i){

set_array_elem (array ,i);

return i;

void main(){
long s=sum(array ,SIZE,f get_array_elem ,0);
printf("s=%ld\n" ,s);

Figure 15: Modified main and sum functions with short producer to
consumer distance

of the sum function (hence, the sum is computed in parallel with
the array initialization). The forked section starts at line 39 and
continues as the sum function tree on figure 4. Hence, lines 39, 1,
2,from71t09, 1,2, from 7 to 9 and from 1 to 6 belong to the same
section computing array[O]+array[1].

There are 105 instructions run for the sum computation and 93
for the array initialization, hence n; = 198 (neglecting the printf
run). There are 23 sections, i.e. s, = 198/23 = 8.61 (less than 9
instructions per section on the average).

There are 90 register and memory sources in the init run 7, all
of them having a distance of 1 (i.e. requiring no communication).

There are 122 sources in the sum run, 15 of them having a dis-
tance of 2, 10 having a distance® of 12 and the remaining 97 having
a distance of 1. Hence the average distance is d, = 337/212 =
1.59. The average number of communications per section is ¢, =
25/23 = 1.09 (only 25 sources among 337 need an import from
another section, i.e. have a distance greater than 1).

4.3 Modifying the sum Function to Enhance the Quality of
the Parallelization

To get the array values, function sum sections send renaming re-
quests which travel along the trace, visiting one core per section in
the trip, i.e. requiring 12 core-to-core communications. If these dis-
tances can be shortened, i.e. if the sum function section consumer
can be closer to its inif function section producer, the execution time
will be reduced. Reducing d, enhances the parallelization quality.

Figure 15 shows modified main and sum functions. A value is
recomputed each time it is referenced rather than being transmitted.
In manycore processors, local computation is cheaper than distant
communication.

The array initialization is fused in the sum function. The sum
function gets each array element. The ger function calls a ser func-
tion which sets the array element. Hence, each time an array ele-
ment is read, it is also written. This ensures that a consumer and a
producer belong to the same section.

As a general rule, a function has new arguments: a pointer on a
get function to read variables used in the computation, a structure
to encapsulate the arguments of the ger function, a pointer on a
put function to use computed variables and another structure to
encapsulate the arguments of the put function.

Figure 16 shows the x86 code translation of the program de-
picted on figure 15.

Figure 17 shows the run trace of the modified sum program.

The number of instructions run is n; = 122 (38% less work).
There are 11 sections, i.e. sa = 122/11 = 11.09. The number
of sections is reduced and the average size of sections is increased
(i.e. the run is artificially less parallel because the reduction of the
work has reduced the number of sections). There are 146 sources,
among which 15 have a distance 2 and the others have all a distance
1. The average communication distance is d, = 161/146 =1.1.
The number of communications per section is ¢, = 15/11 = 1.36.

The key factor is dq, 31% reduced. All sections get their sources
locally or from the preceding section, requiring a round-trip core-
to-core communication.

Instead of having two separate computations, one to initialize
the array and one to compute the sum of its elements, we have
a single one, fusing the initialization into the computation. The
programming technique which favours parallelization mimics a
dataflow style: variables are not initialized and later used but their
initialization is delayed until they are used.

When a variable is to be used multiple times, it can either be
stored or recomputed. It is the compiler’s job to estimate if the
recomputation is better (i.e. reduces d, enough without increasing
n; too much). To be accessed fastly, a scalar variable can be stored
in the stack. To look for it, a renaming request travels along the
level predecessor links, bypassing sub-trees.

7 Including implicit sources like register eflags.

8 Line 3 reads array[i] in the sum function from the value written by line 21
in the init function. The reading section is in the sum tree and the writing
section is in the init tree. There are 12 sections from the writing one to the
reading one.
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sum: cmpq $2, %rsi

/xif (n>2) */
/* goto .L2 */
/*inline set_array_elem */
/*inline get_array_elem */
/xif (n==1) goto .L1 */
/*inline set_array_elem */
/*inline get_array_elem */
/*stop */
/xrbx = n */
/*n =n/2 */
/*rax = sum(array ,n/2) */
/+allocate long on stack */
/xsave rax on top of stack */
/xrdi = &array[n/2] x/
/*rbx = n — n/2 x/
/*n =n—n/2 */
/*rax = sum(&array[n/2],n—n/2) x/
/xrax += sum(array ,n/2) */
/«xfree long from top of stack */
/*stop */
/i =0 */
/*n = 10 */
/xrdi = array */

Figure 16: The x86 translation of the modified sum program

1
2 ja .L2
3 movg  Y%rsi, (%rdi)
4 movq (%rdi), %rax
5 jne .L1
6 addq $1, %rsi
7 movg  Y%rsi, 8(%rdi)
8 addq 8(%rdi), %rax
9 | .L1: endfork
10 |.L2: movg  %rsi, %rbx
11 shrq Y%rsi
12 fork sum
13 subq $8, %rsp
14 movqg  %rax, (%rsp)
15 leaq 0(%rdi ,%rsi ,8), %rdi
16 subq %rsi , %rbx
17 movq %rbx , %rsi
18 fork sum
19 addq (Y%rsp), %rax
20 addq $8, %rsp
21 endfork
22 | main: movq $0, %rbp
23 movq $10, %rsi
24 movq $array , %rdi
25 fork sum
26
core 1 core 2 core 3 core 4 core 5
n=10,5
step 1
n=5,2
step 2
n=2 n=2,3
step3 [1-9  |<={13-18 ]

1
n=3,1 n=3 J/

core 6 core 7 core 8 core 9 core 10 core 11

step 4 [19-21 |

n=1 n=1,2 /

step 5 [1-59 |<]13-18 ] /!
n=2 n=2

step 6 [1-9 l<{19-21 |

step 7

n=1 n=1,2 /
[1=59 J<]13-18 ] /!

Figure 17: Trace of sum(array, 10) (modified sum program)

5. Improving a Matrix Multiplication Program

Figure 18 presents a non optimized C code to compute matrix
multiplication. Optimized versions take advantage of cache locality
to reduce the average access time to the input matrix elements. In
a parallel environment, very distant elements are simultaneously
requested (or with a short time gap) and in this case, the cache does
not help. Instead, it is a better policy to keep each producer close to
its consumer.

When c[m][n] = a[m][p]*b[p][n] is parallelized, the run creates
m*n % p sections, each computing a a[i][k] = b[k][j] product. Each
product computation reads two elements which are looked for in the
trace. Each element is set in the OS process start code which copies
the values of the input matrices from the executable file to memory
(it is the linker translation of lines 23 and 24 to initialize matrices

a and b). To set matrix a in parallel, there are m * p sections. To set
matrix b in parallel, there are p * n sections.

To compute a[i][k]*b[k][4], we need to find a[i][k] and b[K][j] in
the sections where they are set. The search for b[k][5] visits at least
(p—k—1)xn+(n—j—1)+1 = (p—k)*n— j sections. To find
element a[é][k], it is even worse because the sections initializing
b must be visited before reaching those initializing a, i.e. at least
pxn+(m—i—1)*xp+(p—k—-1)+1=Mnm+m—1i)xp—k
sections. In the example, an element is found after an average of
10.6 visited sections. As it is by far the dominant factor in the
number of imported resources, d,, is around 10 (there are 2xm*n*p
reads to compute m * n * p products).

Figures 19 and 20 are the modified implementation to reduce
da, the distance from producer to consumer.

The first part of the code defines two types to encapsulate
the needed values for the ger and put functions. It also contains
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#include <stdio.h>

1

2 | void imatmul(int =xa, int xb, int =xc,

3 unsigned int m, unsigned int n, unsigned int p){
4| //clmlin] = almi[p] = blp]in]

5 unsigned int i, j, k;

6 for (i=0; i<m; i++)

7 for (j=0; j<n; j++){

8 *(ct+i*xntj) = 0;

9 for (k=0; k<p; k++)

10 s(ctixntj) += =(at+ixp+k) * x(bt+kxn+j);
11

12 |3}

13 | void

14 | print_mat(int *a, unsigned int m, unsigned int n){
15 unsigned int i,j'
16 for (i=0;i<m;i++){

17 for (j=0;j<n;j++)

18 printf ("%d." ,*(at+ixn+j));

19 printf(”"\n");

20 }

21 |}

22 | main(){

23 int a[2][3]={{1.,2,3},{0,1,2}},

24 b[3][4]={{2.3.4.5}.{3.2,1,0},{0,1,2,3}},
25 cl[2][4];

26 print_-mat(&(a[0][0]).2,3);

27 print_-mat(&(b[0][0]) .3 ,4);

28 imatmul(&(a[0][0]) ,&(b[0][0]),&(c[0][0]).2,4,3)
29 print_mat(&(c[0][0]),2,4);

30 |}

Figure 18: A C program to multiply matrices

the initializing functions set_mat_a_element and set_mat_b_element.
Instead of an initialization in the matrix declarations, the code
provides special functions. From these, it is possible to produce
in a few instructions any input matrix element in any place of the
code (the set_mat_a_elem function fixes an element of matrix a in
4 instructions, using a table of branches issued from the switch
control structures). The get_mat_elem function includes a call to
the set_mat_a_elem or set_mat_b_elem function according to the
referenced matrix.

The first part also contains the sum function, used to compute
the sum part of the vector product of a line from matrix a with a
column of matrix b. It is the same divide-and-conquer sum func-
tion as the one presented above, adapted to get the elements to be
summed. The transmitted ger function is get_vec_elem which reads
ali][k] and b[k][j] and return their products. Each section com-
puting a product gets one element of matrix a and one element
of matrix b from the same section running the set_mat_a_elem or
set_mat_b_elem function. Hence, the distance d,, is no more a func-
tion of m, n and p but constant 1 for all these elements reads.

The modified example has an average distance which is ten
times better than the basic one. However, each read requires 4
instructions instead of a single load in the basic trace. Hence, the
number of instructions run n; is roughly 4 times bigger.

The second part of the program is the matrix multiplication
function which sets each element of the result matrix ¢ with the
vector product computed by the sum function. The element set is
transmitted to the put function, i.e. the print_mat_elem function
which prints it in a formatted manner (n elements per line).

6. Related Works, Discussion and Conclusion

Automatic parallelization parallelizes as regular as possible loops
with techniques based on the polyhedral model [3].

Parallelization based on OS threads suffer from the rather high
overhead of OS primitives. Using gdb, we have measured the cost

#include <stdio.h>

typedef struct{int xa; unsigned int i;
unsigned int j; unsigned int n;} S_MAT_ELEM;

typedef struct{int xv; int xa; unsigned int i;
unsigned int k; unsigned int p; int xb;
unsigned int j; unsigned int n;} S_VECELEM;

int a[2][3], b[3][4]., c[2][4]:
static inline void
set_mat_a_elem (unsigned int i, unsigned int j){
switch (i){
case (0): switch(j){
case (0): a[0][0]=1; break;
case(1): a[0][1]=2; break;
default: a[0][2]=3; break;
default: switch(j){
case(0): a[l][0]=0; break;
case(1): a[l][1l]=1; break;
default: a[l1][2]=2; break;
}
}

static inline void
set_mat_b_elem (unsigned int
switch (i){

case (0): SWItCh(J)

, unsigned int j){

-~

case (0): b[0][0]=2; break;
case(1): b[0][1]=3; break;
case (2): b[0][2]=4; break;
default: b[0][3]=5; break;
case (1): switch(j){
case (0): b[1][0]=3; break;
case(1): b[1][1]=2; break;
case(2): b[1][2]=1; break;
default: b[1][3]=0; break;
default: switch(j){
case (0): b[2][0]=0; break;
case(1): b[2][1]=1; break;
case (2): b[2][2]=2; break;
default: b[2][3]=3; break;
}
}
}

static inline int get_mat_elem (S_MAT_ELEM xs){
if (s—>a=—&a[0][0]) set_mat_a_elem(s—>i , s—>j);
if (s—>a=—=&b[0][0]) set_mat_b_elem(s—>i, s—>j);
return x(s—>a + s—>i*s—>n + s—>j);

}

static inline int get_vec_elem (S.-VEC_LELEM xs){
S_MAT_ELEM st; int |,r;

st.a=s—>a; st.i=s—>i; st.j=s—>k; st.n=s—>p;
I=get_mat_elem(&st);
st.a=s—>b; st.i=s—>k;
r=get_mat_elem(&st);
x(s—>v)=Ix*r; return x(s—>v);

t.j=s—>j; st.n=s—>n;

int sum(int array([],unsigned int n,
int (xget)(), S-VEC.ELEM xst,
unsigned int i){

if (n==1){

st—>v=&(array [0]); st—>k=i;
return (xget)(st);

}

i (n==2){

int |,r;

st—>v=&(array [0]); st—>k=i;
I=(xget)(st);
st—>v=&(array [1]); st—>k=i+1;
r=(xget)(st); return I+r;

return sum(array ,n/2,get,st,0)
+ sum(&array[n/2],n—n/2,get, st ,n/2);

Figure 19: A C program to multiply matrices: initialization of the
input matrices and vector sum
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void imatmul(int xa, int xb, int xc, unsigned int m,
unsigned int n, unsigned int p, void (xput)()){
//clm][n] = a[m][p] + b[p][n]
unsigned int i, j; int s[p];

S_VEC_ELEM st_v; S_.MAT_ELEM st_c;
st_v.a=a; st_v.b=b; st_v.p=p; st_v.n=n;
st_c.a=c; st_c.n=n;
for (i=0; i<m; i++){
st_c.i=i; st_v.i=i;
for (j=0; j<n; j++){

st_c.j=j; st_v.j=j;

#(ct+i*ntj) = sum(s,p,get_vec_elem &st_v ,0);
(*put)(&st-c);

}
}

static inline void print_mat_elem (S.MAT_ELEM xs){
printf("%d." ,x(s—>a + s—>iks—>n + s—>j));
if (s—=>j=s—>n—-1) printf("\n");

void
print_.mat(int xa, unsigned int m, unsigned int n){
unsigned int i,j; int e; S.MAT_ELEM st;
st.a=a; st.n=n;
for (i=0;i<m;i++){
st.i=i;
for (j=0;j<n;j++){
st.j=j; e=get_mat_elem(&st); printf("%d." e);

printf(”"\n");

}
main(){

print_mat(&(a[0][0]).,2,3); print_mat(&(b[0][0]).3.4);

imatmul (&(a[0][0]) & (b[0][0]) & (< [0][0]),
}

2,4,3,print_mat_elem);

Figure 20: A C program to multiply matrices: matrices multiplica-
tion and main functions

of pthread_create and pthread_join in terms of instructions run.
On an x86 processor (ubuntu 14.04), we obtained respectively 726
and 565 instructions, leading for the sum program example to an
overhead of 1291 * logn instructions for an array of n elements.
The threaded version needs to sum at least 2000 terms to be cost-
effective against the sequential code. On the other hand, today’s
hardware make it possible to send a few bytes core-to-core in a few
cycles (e.g. 3 cycles -send + route + receive- for two neighbour
cores on a grid with a NoC).

The existing contributions [7][9][11][12] on a hardware ap-
proach to automatize parallelization suffer from the low basic In-
struction Level Parallelism (ILP). The hardware based paralleliza-
tion in [5] overcomes this limitation in 3 ways: (i) very distant ILP
is caught because fetch is parallelized, (ii) all false dependences are
removed through full renaming and (iii) many true dependences
are removed by copying values. The remaining dependences in
a run are true ones related to the sequentialities of the algorithm
which the program implements. In such conditions, the authors in
[4] have reached a high ILP (thousands), increasing with the data
size, on benchmarks issued from the PBBS suite (parallel applica-
tions; available at URL http://www.cs.cmu.edu/ pbbs/index.html).

The number of transistors on a chip allows the integration of
thousands of simple cores. It is urgently needed that any program,
including the OS itself, be parallelized. Parallelization should be
done fastly and reliably, with reproducible computations, which is
ensured if the run is deterministic.
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