Adaptive estimation for bifurcating markov chains

Abstract : In a first part, we prove Bernstein-type deviation inequalities for bifurcating Markov chains (BMC) under a geometric ergodicity assumption, completing former results of Guyon and Bitseki Penda, Djellout and Guillin. These preliminary results are the key ingredient to implement nonparametric wavelet thresholding estimation procedures: in a second part, we construct nonparametric estimators of the transition density of a BMC, of its mean transition density and of the corresponding invariant density, and show smoothness adaptation over various multivariate Besov classes under L p-loss error, for 1 ≤ p < ∞. We prove that our estimators are (nearly) optimal in a minimax sense. As an application, we obtain new results for the estimation of the splitting size-dependent rate of growth-fragmentation models and we extend the statistical study of bifurcating autoregressive processes.
Type de document :
Article dans une revue
Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01251594
Contributeur : Marc Hoffmann <>
Soumis le : mercredi 6 janvier 2016 - 14:23:45
Dernière modification le : vendredi 15 septembre 2017 - 10:41:36
Document(s) archivé(s) le : jeudi 7 avril 2016 - 16:02:12

Fichier

BHO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01251594, version 1

Collections

Citation

Siméon Valère Bitseki Penda, Marc Hoffmann, Adélaïde Olivier. Adaptive estimation for bifurcating markov chains. Bernoulli, Bernoulli Society for Mathematical Statistics and Probability, 2016. 〈hal-01251594〉

Partager

Métriques

Consultations de
la notice

179

Téléchargements du document

49