The extent of mRNA editing is limited in chicken liver and adipose, but impacted by tissular context, genotype, age and feeding as exemplified with a conserved edited site in COG3

Pierre-François Roux†,‡,§,∥‡, Laure Frésard†,‡,∥‡, Margot Boutin†,§, Sophie Leroux†,‡,§,∥, Christophe Klopp‡,§,∥, Anis Djari†,‡,∥, Diane Esquerré†,‡,∥,*,‡,‡,‡, Pascal GP Martin‡,§,∥, Tatiana Zerjal***, David Gourichon‡,§,∥,*,‡,‡,‡,‡, Sandrine Lagarrigue‡,§,∥,*,§,∥

* Agrocampus Ouest, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Elevage (PEGASE), F-35000 Rennes, France
† INRA, UMR1348 PEGASE, F-35000 Rennes, France
‡ UMR INRA / § INPT ENSAT / ** INPT ENVT, Génétique, Physiologie et Systèmes d’élevage, INRA, F-31326 Castanet Tolosan, France
‡‡ INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, F-31326 Castanet-Tolosan, France,
§§ INRA, UMR1331 Research Center in Food Toxicology (ToxAlim), Toulouse, France,
*** INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France,
†† INRA, GeT-PlaGe Genotoul, F-31326 Castanet-Tolosan, France,
‡‡ INRA, UMR1331 Research Center in Food Toxicology (ToxAlim), Toulouse, France,
§§ INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France,
** INRA, PEAT Pôle d'Expérimentation Avicole de Tours, F- 37380 Nouzilly, France
RUNING TITLE

RNA editing in chicken liver and adipose tissue

KEYWORDS

mRNA editing; chicken; RNA-seq; DNA-seq; liver and adipose tissue

CORRESPONDING AUTHORS

Sandrine LAGARRIGUE

UMR1349, Laboratoire de Généétique et Génomique, 65 rue de Saint Brieuc, F-35042 Rennes, France.

E-mail: sandrine.lagarrigue@agrocampus-ouest.fr

Phone: + 33 2 23 48 59 59

Frédérique PITEL

UMR444, Laboratoire de Génétique Cellulaire, 24 chemin de Borde-Rouge, F-31326 Auzeville, France.

E-mail: frederique.pitel@toulouse.inra.fr

Phone: +33 5 61 28 54 35
ABSTRACT

RNA editing is a post-transcriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, raising contradictory conclusions regarding the extent of this phenomenon. We show by a detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale that systematic sequencing artifacts are somehow considered in most studies, whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencings, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from 8 chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, 3 events were previously described in mammals, attesting this phenomenon is conserved through evolution. Deeper investigations on 5 sites revealed the impact of tissular context, genotype, age, feeding condition and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by 4 out of these factors. By comprehensively characterizing the mRNA editing landscape in chicken, our results highlight how this phenomenon is limited, and suggest a regulation of editing levels by various genetic and environmental factors.
INTRODUCTION

RNA editing has become a generic term for a wide array of post-transcriptional processes changing the mature RNA sequence relatively to the corresponding encoding genomic DNA matrix. This phenomenon, which is almost limited to eukaryotes with some exceptions, is characterized by nucleotide insertion, deletion or substitution in various types of RNAs, including mRNAs (Knoop 2011), tRNAs (Börner et al. 1996, Gott et al. 2010, Torres et al. 2014), miRNAs (Warnefors et al. 2014) and rRNAs (Eifler et al. 2013, Valach et al. 2014) and is likely to contribute to RNA diversity. Until recently this mechanism was considered relatively rare in vertebrates, mainly restricted to brain-specific substrates and repetitive regions of the genome (Bass 2002), and limited to extensively validated ADAR-mediated adenosine to inosine (A-to-I) substitutions and APOBEC-mediated cytosine to uracile (C-to-U) changes (Knoop 2011).

Since 2009, the advents of high-throughput sequencing technologies enabled to study this phenomenon at a transcriptome-wide scale and progressively challenged this view with estimates ranging from several hundred (Ju et al. 2011, Kleinman et al. 2012) to several thousand (Clop et al. 2006, Li et al. 2011, Bahn et al. 2011, Peng et al. 2012, Ramaswami et al. 2012, Park et al. 2012, Chen 2013, Kang et al. 2015) and even million (Bazak et al. 2013) mRNA edited sites throughout mammalian genomes. According to some of these mRNA editing screening studies, mRNA recoding appears as an extremely common process greatly contributing to transcript diversity. Furthermore, most of these studies report mRNA editing events leading to transversions that cannot be explained in the light of our current knowledge regarding the molecular bases of mRNA recoding (Li et al. 2011, Ju et al. 2011, Bahn et al. 2011, Peng et al. 2012, Chen 2013, Kang et al. 2015), suggesting the existence of so far uncharacterized mRNA editing mechanisms, and novel molecular components implied...
in gene expression regulation. The conclusions raised by these studies regarding the extent
and the nature of mRNA recoding, if further supported, would deeply impact our
understandings of gene expression regulation and transcriptional modification.

Facing contradictory results regarding the extent of mRNA editing, a large number of studies
and comments pointed the requirement of comprehensive and rigorous bioinformatics
pipelines to limit technical artifacts in the editome characterizations (Schrider et al. 2011,
et al. 2013, Lagarrigue et al. 2013). Working with short-read sequencing data for the
detection of polymorphisms requires to carefully deal with technical artifacts related to
mapping on paralogous or repetitive regions (Malhis and Jones 2010, Treangen and Salzberg
2012), mapping errors at splice sites (Park et al. 2012), or systematic and random
sequencing errors (Nakamura et al. 2011, Meacham et al. 2011). This is especially the case
when screening for mRNA editing events, since all of these artifacts are likely to generate
artificial discrepancies between genomic DNA and mRNA further interpreted as edited sites.
In this context, the huge variation regarding the extent of intra-tissue and intra-species
mRNA editing revealed in literature could be in part due to the varying level of stringency of
bioinformatics filters used to control these error prone artifacts, and whether biological
replication is considered or not.

As shown in Table 1, most of the 25 RNA-seq based mRNA editing screening studies
performed on vertebrates are not considering matched genomic DNA sequences to detect
mRNA recoding, but rather consider either a consensus genomic sequence for the species
studied, or EST databases to remove false positives arising from potential genomic
polymorphisms, therefore occulting unreferenced individual variations (Bahn et al. 2011,
Danecé et al. 2012, Gu et al. 2012, Ramaswami et al. 2012, Cattenoz et al. 2013, Lagarrigue et al. 2013, Chen 2013, Bazak et al. 2013, Blanc et al. 2014, Tsoung et al. 2014, Sakurai et al. 2014, Chan et al. 2014, Zhang and Xiao 2015). More strikingly, while it is fully admitted that filtering on minor allele frequency is required to select high-quality genomic polymorphisms (Consortium 2010, 1000 Genomes Project Consortium et al. 2012), some mRNA editing screening studies still consider that reproducibility across biological replicates is not a mandatory criterion for considering a difference between DNA and RNA as a reliable editing event (Picardi et al. 2012, Peng et al. 2012, Ramaswami et al. 2012, Kleinman et al. 2012, Park et al. 2012, Cattenoz et al. 2013, Chen 2013, Bazak et al. 2013, Sakurai et al. 2014, Chen et al. 2014, Chan et al. 2014, Kang et al. 2015, Zhang and Xiao 2015). However, as depicted on Figure 1, considering biological replication clearly impacts the total number of editing events detected in high-throughput-based screening studies, since the number of differences between DNA and RNA reported appears to be directly negatively correlated with the number of biological replicates considered. From a methodological point of view, this study proposes a rigorous strategy to identify mRNA editing using both mRNA and genomic DNA high-throughput sequencings, taking into account sequencing and mapping artifacts, as well as biological replicates, to control the false positive rate. The efficiency of this approach has already been validated in our previous study on chicken embryo mRNA editing (Frésard et al. 2015). To strictly control multi-mapping, we looked for mRNA sequences spanning edited sites in unmapped genomic DNA sequences, allowing to consider potential errors and gaps in the reference assembly that still represent roughly 15% of the chicken genome (Wicker et al. 2005, Schmid et al. 2015).
From a biological perspective, in addition to our recent work screening mRNA editing in chicken whole-embryo (Frésard et al. 2015), this study is an answer to the evident lack of transcriptome-wide mRNA editing screening investigations focusing on non-mammalian vertebrates such as birds, that could contribute to our understanding of RNA editing evolutionary bases. Indeed, as depicted in Table 1, except our works, all mRNA editing screening studies in vertebrates are focused on primates or mouse transcriptomes. To date, the origins of RNA editing are still rather obscure, and even if it is currently proposed that it may have arisen several times in different phyla throughout evolution, it remains unclear whether selection was involved or not (Gommans et al. 2009, Gray et al. 2010, Gray 2012).

While chicken is extensively used as a model organism in developmental biology (Davey and Tickle 2007), it also bridges the evolutionary gap between mammals and other vertebrates and therefore stands as an ideal species to explore conservation of mRNA editing events in vertebrates throughout evolution. In addition, our knowledge related to the regulation of mRNA editing level, and to factors enhancing or repressing mRNA recoding is still limited.

Hitherto, few studies has been carried out to assess whether the genetic background, the sex, the feeding condition or the age influence mRNA recoding level. Most of these studies targeted the extensively studied APOBEC-mediated C-to-U editing event occurring in mammalian APOBEC1 mRNA revealing the influence of ethanol intake (Lau et al. 1995, Van Mater et al. 1998), insulin (Wronski et al. 1998), obesity (Phung et al. 1996), and diet (Funahashi et al. 1995) on APOBEC1 mRNA editing level. Others focused on previously described ADAR-mediated editing events in primate (Li et al. 2013), mouse (Gan et al. 2006) or rat (Holmes et al. 2013) transcriptomes, highlighting an insulin-dependent activity of ADAR in mouse pancreas (Gan et al. 2006), or suggesting influence of aging on ADAR-mediated mRNA editing in human, mouse and pig (Wahlstedt et al. 2009, Shtrichman et al. 2009).
2012, Venø et al. 2012). A better characterization of environmental and genetic factors influencing the level of mRNA recoding would definitely offer new insights on the role of mRNA editing in vertebrates.

In this study, we report the results from the first genome-wide characterization of the chicken liver and adipose mRNA editomes, based on both genomic DNA and mRNA high-throughput sequencings. Our results confirm the low extent of mRNA recoding in chicken and the absence of non A-to-I editing event in this species, in agreement with what has already been shown for chicken embryos (Frésard et al. 2015). We also highlight that mRNA editing level is impacted by genetic and environmental factors such as tissular context, genotype, age, and, to a minor extent, by feeding condition and sex. As exemplified with the recoding event located on COG3 and confirmed at other positions, the mRNA editing level is tightly depending on several environmental and genetics factors.
MATERIALS AND METHODS

Ethics Statement

Chickens were bred at INRA, UE1295 Pôle d’Expérimentation Avicole de Tours, F-37380 Nouzilly in accordance with European Union Guidelines for animal care, following the Council Directives 98/58/EC and 86/609/EEC. Animals were maintained under standard breeding conditions, and subjected to minimal disturbance. The farm is registered with the French Ministry of Agriculture under license number C37–175–1 for animal experimentation. The experiment was performed under authorization 37–002 delivered to D. Gourichon.

Tissue collection, and library preparation

Two experimental meat-type chicken lines were divergently selected for seven generations using the ratio between abdominal fat weight and whole animal weight at 9 weeks as a fattening index, while maintaining live body weight constant (Leclercq et al. 1980). After selection, the two lines were maintained by carefully limiting inbreeding. Four 9 week-old males from the 35th generation in each line were slaughtered by electronarcosis and immediate bleeding. Liver and abdominal adipose tissue were then harvested and stored in nitrogen. Liver genomic DNA and total liver and adipose RNA were concurrently extracted according to the manufacturer’s instructions using the AllPrep DNA/RNA Mini Kit (Agilent, Agilent Technologies, Santa Clara, CA). RNA quality was assessed on a BioAnalyzer 1000 (Agilent Technologies, Santa Clara, CA) and RIN (RNA Integrity Number) ≥ 9 were required.

Sequencing

RNA sequencing
Libraries with a mean insert size of 200 bp were prepared according to the manufacturer’s instructions for RNA-seq library preparation, selecting polyadenylated mRNA using the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA) from each sample. Samples were tagged using a barcode sequence for subsequent identification, amplified by PCR and quantified by qPCR using the QPCR Library Quantification Kit (Agilent Technologies, Santa Clara, CA). A total of 16 libraries were sequenced in paired-ends 2 x 101 bp in triplicates on 3 different lanes on the Illumina HiSeq 2000 sequencer using the TruSeq PE Cluster Kit v3 (Illumina, San Diego, CA), the cBot SBS Kit v3 (Illumina, San Diego, CA) and the TruSeq SBS Kit v3 (Illumina, San Diego, CA). After quality checks and adapter trimming using CASAVA 1.8, matched libraries for a given sample were merged. Liver and adipose mRNA-seq raw data are available on Sequence Read Archive under accession SRP042257.

DNA sequencing

Liver DNA from the 8 animals was sequenced in paired-ends 2 x 101 bp on 4 lanes on an Illumina HiSeq 2000. Library preparation, DNA quantification and sequencing were performed according to manufacturers’ instructions using TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA), Agilent QPCR Library Quantification Kit (Agilent Technologies, Santa Clara, CA), TruSeq PE Cluster Kit v3 (Illumina, San Diego, CA) and cBot TruSeq SBS Kit v3 (Illumina, San Diego, CA). After quality checks, and adapter trimming using CASAVA 1.8, matched libraries for a given sample were merged. Liver genomic DNA-seq raw data are available on Sequence Read Archive under accession SRP042641.

Computational analyses

When not specified, analyses were performed with in-house Perl and R scripts.

Genomic sequences analyses
DNA sequences were aligned to the latest chicken genome assembly (Galgal4) using BWA v0.7.0 (Li and Durbin 2009) (Command: bwa aln). Sequences were then filtered based on mapping quality (Command: samtools view -bS -q 30). SAMtools v0.1.19 (Li et al. 2009a) rmdup (Command: samtools rmdup) was used to remove possible PCR and optical duplicates.

mRNA sequences analyses

mRNA sequences were aligned with Tophat v2.0.5 (Kim et al. 2013) on the chicken reference genome Galgal4 as described in (Frésard et al. 2014) (Command: tophat --min-intron-length 3 --max-intron-length 25000 --max-deletion-length 1 -mate-inner-dist 200 --read-realign-edit-dist 0 --microexon-search). Uniquely mapped unduplicated sequences with a mapping quality greater than 30 were selected, using SAMtools v.0.1.19 (Command: samtools view -bS -q 30) and in-house Python script.

Identification of mRNA editing candidates

Sequences were locally realigned and recalibrated before SNP detection, with GATK v1.6.11 for DNA (Van der Auwera et al. 2013) (Commands: GATK -T RealignerTargetCreator -R; GATK -T BaseRecalibrator -R -knownSites; GATK -T PrintReads -R -BQSR), and BamUtil (Command: bam recab) for RNA.

SAMtools v0.1.19 mpileup was used to detect SNPs between DNA and RNA samples from each individual (Command: samtools mpileup -d 10000). We set a maximum coverage of 10,000 reads in pileup for each calling to take into account as many reads as possible in the calling. SNPs were detected independently on each biological replicate. VCF files generated by SAMtools mpileup were then used for subsequent analysis. For each biological replicate, only variations where DNA was homozygous either for the reference allele or for the
alternative allele (MAF=1), and where RNA was heterozygous or homozygous for the alternative allele, were kept. Finally, we removed positions covered by less than 15 reads in both DNA and RNA alignments as well as tri-allelic sites.

Impact of biases on mRNA editing detection

To explore whether each editing event was likely related to sequencing errors or alignment artifacts, we developed custom R and Perl scripts. We computed information related to: (1) Extremity bias: an editing event was considered as biased if the edited allele was mostly supported by the 10 first or last bases of reads in the RNA-seq read pileup. In accordance with previous studies (Kleinman and Majewski 2012, Frésard *et al.* 2015), we chose to consider only the distribution of the edited nucleotide position, to increase the stringency of the method; (2) Strand bias: an editing event was considered as biased if the proportion of forward and reverse reads supporting it was markedly different ($\Delta > 0.5$); (3) Splice junction bias: an editing event was considered as biased if it was located within the region of a predicted splice site, *i.e.* within 1-3 bases of the exon or 3-8 bases of the intron. To perform this analysis, we determined the annotation and localization of editing events in transcripts using *Ensembl v71 Variant Effect Predictor* (McLaren *et al.* 2010); (4) Homopolymer and low complexity bias: an editing event was considered as biased if the 4 neighboring positions harbored the same nucleotide or if it was falling in a single sequence repeat (SSR). SSR were identified using *SciRoKo* (Kofler *et al.* 2007). The SSR patterns were investigated near candidate edited sites with an offset of ±3 bases; (5) Multimapping bias: for each editing events, we generated a consensus 40 bp sequence centered on the edited allele, based on the pileup of RNA-seq reads harboring the edited alleles in a given sample. We then used *fuzznuc* (Olson 2002) to search for this sequence throughout the whole genomic DNA-seq reads including unaligned reads from the same sample. An editing event was therefore
considered as biased if we found any match between its consensus surrounding sequence and genomic DNA-seq reads.

Impact of biological replication on mRNA editing detection

For each tissue independently, we explored how reproducible each unbiased editing event was across the 8 samples using custom R scripts. At each step, we computed the overall amount of events belonging to each class of substitution from DNA to RNA. Since our sequencing libraries were not strand-aware, the complement substitution of canonical editing events (i.e. A-to-G for ADAR-mediated editing and C-to-T for APOBEC-mediated editing) were also considered as canonical (i.e. C-to-T and G-to-A respectively).

Validation assays and editing yield quantification

DNA Sanger sequencing and RNA pyro-sequencing

To assess whether the DNA genotype of candidate editing events was homozygous or not, we performed Sanger sequencing on the liver genomic DNA from the 8 animals. We then assessed the mRNA genotype at these candidate sites on a PyroMark Q24 pyro-sequencer (Qiagen, Valencia, CA). Primers were designed with PyroMark Assay Design software (Table S2). PCR products were prepared using PyroMark PCR Kit (Qiagen, Valencia, CA) following manufacturer’s instructions. Data were analyzed with PyroMark Q24 v1.0.10 using default parameters.

Experimental designs used to test the effect of age, sex, genetic background and feeding on mRNA editing level

To measure the impact of age, sex, genotype and feeding on mRNA editing level, we used different independent experimental designs with animals contrasted for these factors: (1)
Genotype: broilers (N=8) and layers (N=8) in two unrelated experimental designs (i.e. N=2 x 16 in all); (2) Age: prepuberal (N=8) and postpuberal (N=8) layers; (3) Feeding: broilers slaughtered after a 24h fasting (N=8) or broilers fed ad libitum (N=8) in two independent studies (i.e. N=2 x 16 in all); (4) Sex: female (N=8) and male (N=8) layers. Liver DNA and liver RNA and/or adipose RNA were extracted and quality checked as described before (see Tissue collection and library preparation). We then performed both liver genomic DNA and liver and/or adipose mRNA pyro-sequencing following the aforementioned procedure for 5 edited sites (i.e. 2 liver specific, 1 adipose specific, 2 common to both tissues) previously validated in our main experimental design. The pyro-sequencing signal at the edited position in mRNA was standardized according to the signal obtained on DNA to avoid amplification and sequencing biases. The editing level was computed as the ratio between signals for the mRNA edited allele and allele on genomic DNA. We finally tested the effect of each factor on RNA editing level at the 5 selected sites using two-sided unpaired homoscedastic Student t-test. Statistical analyses were performed on R 3.2.0 using t.test (two sided unpaired homoscedastic Student t-test) functions from the stats package and graphical visualizations plotted using the ggplot2 package.

In silico prediction of RNA editing impact on protein structure and function

To predict the putative effect of RNA editing on protein structure and function, we first identified genomic structures likely to be impacted using Ensembl v71 Variant Effect Predictor (McLaren et al. 2010). Focusing on missense coding editing events, we then recovered orthologous protein sequences from *Gallus gallus, Bos taurus, Rattus norvegicus, Mus musculus* and *Homo sapiens* to carry out multi-alignment. We finally used SIFT prediction tool (Kumar et al. 2009) that is based on both sequence homology and physical obligations.
properties of amino acids, to quantify the potential impact of coding editing events on protein structure and function.
RESULTS

High-throughput sequence analyses

Liver DNA and liver and white adipose tissue RNA were extracted from 8 16-week-old male chickens, and paired-end sequenced on an Illumina HiSeq2000. After alignment on the current genome assembly Galgal4, and filtering on mapping quality and multi-mapping, we conserved an average of 157M DNA-seq reads, 30M liver mRNA-seq reads and 38M adipose RNA-seq reads per sample. On average, 93.5% of the genome was covered by at least 15 DNA-seq reads, and 14.3% and 18.4% by at least 15 mRNA-seq reads from liver and white adipose tissue, respectively.

mRNA editing detection and initial filtering

For each biological replicate, a base modification A (DNA base) \(\rightarrow \) B (RNA base) was considered a candidate mRNA editing event if: (1) the genotype inferred for the genomic DNA was homozygous AA with a minor allele frequency equal to 1 (i.e. all the reads are supporting a unique allele on the genomic DNA sequence); (2) the genotype inferred for the mRNA sequence was bi-allelic heterozygous AB or homozygous BB; (3) the position was covered by at least 15 reads of both genomic DNA and mRNA sequences; and (4) the mRNA editing event did not imply an insertion or deletion event. A total of 3,229 and 2,305 positions met these criteria in white adipose tissue (WAT) and liver, respectively (Figure 2).

Impact of sequencing and mapping artifacts on false editing discovery rate

In order to increase accuracy in the detection of editing events and to reduce the amount of false positives, a standard procedure consists to apply different ad hoc filters to remove suspicious candidates presenting error-prone splice junction bias, strand bias, extremity bias, splice bias, or repetitive region bias. We conducted a first analysis aimed at assessing
the amount of candidate mRNA editing events that were spurious with respect to each of
these biases. This revealed that splice junction bias concerned about 15% of candidates in
both WAT and liver (Figure 2). While the amount of repetitive region biased mRNA editing
sites exceeded 30% of the candidate positions, this value increased to more than 45%
considering strand or extremity biased positions (Figure 2) in both tissues. Considering
altogether these sequencing and mapping artifacts, we showed that more than 85%
candidates were subject to at least one source of bias. Thus, using these classical filters (i.e.
usually applied in editing screening studies), the amount of candidate mRNA editing events
dropped from 3,229 and 2,305 to 448 and 342 in WAT and liver respectively

Correction for multi-mapping based on DNA-seq raw sequences

Even if somehow taken into account during or after mRNA-seq read mapping procedure
with splice-aware aligners such as TopHat or STAR, the reads multi-mapping may still have a
great impact on mRNA editing false discovery rate because of gaps and miss-assemblies in
the reference genome. To carefully control this artifact, we used the approach we first
introduced in our previous study (Frésard *et al.* 2015), consisting in aligning back mRNA-seq
reads harboring a candidate mRNA editing sites on corresponding individual DNA-seq reads,
independently if they were aligned or not onto the genome. We revealed that among the
448 and 342 remaining candidates, 4.2% and 7.8% were multimapping-related false
positives in WAT and liver respectively (Figure 2). Finally, considering both previously
described filters and this last filter dealing with multi-mapping, we ended up with 429 and
315 unbiased mRNA editing sites in WAT and liver, respectively.
Impact of biological replication on canonical mRNA editing event identification

As previously mentioned in the introduction, the number of biological replicates (N) taken into account in mRNA editing screening studies based on RNA-seq data is highly variable, with N ranging from 1 to 6 for the study conducted by Hu and collaborators (Hu et al. 2015).

As depicted on Figure 1, when the number of biological replicates is lower than 2, the total number of editing events is extremely variable, ranging from 15 (Picardi et al. 2012) to 1,586,270 (Bazak et al. 2013). This number decreases drastically between 40 (Frésard et al. 2015) and 253 (Gu et al. 2012) when N≥3, suggesting that considering biological replicates partly counteracts the lack of filters dealing with sequencing and mapping artifacts.

Nevertheless, a substantial variability remains between studies, likely related to the differences in artifacts considered and stringency of bioinformatics filters and to the biological context (e.g. tissue, species) of each study.

With this observation in mind, we characterized the 429 and 315 mRNA editing events previously detected according to the number of biological replicates they were detected in, and the class of base substitutions they belong to. We differentiated canonical mRNA editing events (A-to-I and C-to-U interpreted as A-to-G and C-to-T by genome analyzers, and corresponding to editing events catalyzed by ADARs and APOBECs) from non-canonical events that are not explained by any of the two known editing mechanisms. As the RNA-seq libraries used in this study were not strand-specific, we considered complement bases of canonical changes as canonical editing events too (i.e. T-to-C and G-to-A). As can be seen in Figure 3, in the sets of 429 and 315 unbiased mRNA editing events detected in at least one individual described above, the amount of transversions (i.e. pyrimidine-to-purine, and purine-to-pyrimidine, 54.1% in WAT and 58.0% in liver) was greater than the amount of transitions (i.e. pyrimidine-to-pyrimidine, and purine-to-purine). Adding restriction based on
the number of biological replicates these events must be detected in, the amount of
transversions progressively decreased from more than 50% considering no replication (N=1),
to 25% (N=2) and finally to 10% (N=3) requiring editing events to be detected in at least 3
replicates. Considering that mRNA editing events were reproducible across at least 3
biological replicates, we finally conserved 19 and 11 positions in WAT and liver respectively,
comprising 1 non-canonical transversion event in each tissue (Table 2), distributed across 13
chromosomes (Figure 4). Among these 27 unique events, 3 were common to both tissues.
While most of these events were spatially isolated from each other, some of them were
clustered in short genomic regions spanning a few bp (Figure 4), especially on chromosome
1 (3 mRNA editing events in a window of 1.391 bp downstream NOX4 in WAT, and 2 in a
window of 26 bp downstream MPZL1 and BRP44 in liver) and chromosome 12 (2 mRNA
editing events in a window of 951 bp in FLNB).

Validations of candidate mRNA editing events

To assess the validity of some of the edited positions detected using the high-throughput
screening approach, we performed Sanger sequencing on DNA to confirm their homozygous
genotype and pyrosequencing on RNA to validate the mRNA base recoding at the
corresponding position on the transcriptome. The validation revealed that non-canonical
mRNA editing events were false positives either related to genomic SNPs undetected using
genomic DNA-seq data for the one in WAT, or to unbalanced allelic expression not detected
through mRNA-seq data for the one in liver (Table 2). Following the same approach, we
selected 5 canonical events for validation: 2 out of the 3 candidates detected in both
tissues, 2 specific to WAT, and 1 liver-specific. We first confirmed their homozygous status
on genomic DNA and the mRNA recoding at these positions was then confirmed by mRNA
pyrosequencing (Table 2) using samples from the tissue they were detected in.
Functional characterization of liver and white adipose editomes

Functional annotation of the 25 unique canonical mRNA editing events using Variant Effect Predictor revealed that most of them were located in non-coding regions, since 81% and 70% were situated in either 5kb gene flanking regions, intronic regions or intergenic regions in WAT and liver, respectively (Figure 5). Only 5 unique mRNA editing events were annotated as coding. Among these, 4 were likely to impact the mature protein: 1 common to both tissues on COG3, 2 WAT-specific on CES1 and FLNB, and 1 liver-specific on KCMA1 (Table 2). Focusing on these 4 missense mRNA editing events, we conducted a fine functional annotation analysis using the SIFT software to assess the impact of the amino acid substitution on these proteins. This revealed that none of these mRNA editing events was likely to be deleterious. Nevertheless, after carrying out multiple species protein alignments considering Gallus gallus, Bos taurus, Rattus norvegicus, Mus musculus and Homo sapiens, we showed that except for CES1, these missense mRNA editing events were impacting highly conserved amino acid residues (Figure 6).

Impact of genetic background, age, sex, feeding and tissular context on editing level

To test the impact of genetic background, age, feeding condition and sex on the mRNA editing level, we considered the aforementioned subset of 5 validated canonical mRNA editing events. We tested the effect of (1) the genotype, comparing mRNA editing level in liver and WAT between broilers and layers in two independent experimental designs (Figure 7A); (2) the age, comparing mRNA editing level in liver between prepuberal and postpuberal chickens (Figure 7B); (3) the feeding condition comparing mRNA editing level in both tissues between chickens slaughtered after a 24h fasting and feeding ad libitum, in two independent experimental designs (Figure 7C); (4) the sex, comparing mRNA editing level in liver between roosters and hens (Figure 7D). To test each effect, we performed both
genomic DNA Sanger sequencing and mRNA-derived cDNA pyro-sequencing on 8 independent biological replicates in each group. Our analysis on liver revealed a significant effect of genotype on mRNA editing level in the first design for 3 different positions among the 4 tested (p-values: 1.26×10^{-5}, 1.52×10^{-3} and 1.33×10^{-6}, Figure 7A and Table S1). In WAT, we highlighted 1 out of the 3 tested positions for which the editing level was significantly different between broilers and layers (p-value: 9.44×10^{-3}, Figure 7A and Table S1). Interestingly, while the general tendency is a greater editing level in broilers in comparison to layers in the liver (COG3, PLA1A and MYO1B), this trend is reversed for the highlighted site in WAT (NDUFS6). Regarding the age, we observed a significant effect on editing levels for two sites in liver (Figure 7B and Table S1). Concerning the effect of sex, one mRNA editing event showed a significant increase of mRNA editing level between males and females in liver (p-value: 1.90×10^{-3}, Figure 7D and Table S1). Finally, by analyzing the effect of the feeding condition, we highlighted a significant increase of the mRNA editing level after a 24h fasting for one site in liver in two independent experimental designs (Figure 7C and Table S1). Noticeably, for the edited position located on COG3, the mRNA recoding level was significantly impacted by genetic background, age and feeding.
DISCUSSION

To achieve whole-transcriptome screening for mRNA editing events in chicken liver and adipose tissue, we detected discrepancies between genomic DNA and mRNA sequences using matched genomic DNA-seq and mRNA-seq data in several biological replicates. Since 2009 (Li et al. 2009b), similar approaches based on mRNA-seq have been extensively used to characterize mouse, human and chimpanzee editomes in different tissues. According to the literature, the extent of mRNA editing is highly variable with estimates ranging from dozens to millions, even when comparing studies focusing on the same tissue in the same species. After an in-depth reading of mRNA editing screening studies, we highlighted that, despite recommendations for the use of rigorous bioinformatics pipelines to characterize editomes (Kleinman and Majewski 2012, Lin et al. 2012, Pickrell et al. 2012), many recent studies neglected the most reviewed sequencing and mapping artifacts related to mRNA-seq, such as strand bias, read extremity bias, splice junction bias and low complexity region bias (Table 1). In our study, these random or systematic biases were each impacting between 13% and 50% of the initial set of differences between DNA and RNA we detected. Overall, we showed that almost 90% of the candidate mRNA editing events initially detected were likely to be false positives arising from one of these artifacts, revealing how huge their impact is on false discovery rate as previously reported (Pickrell et al. 2012, Lagarrigue et al. 2013). Interestingly, the false positive rate we report is in agreement with the observations of Pickrell and collaborators (Pickrell et al. 2012), suggesting that among the 28,766 editing events detected in the study of Li and collaborators (Li et al. 2011), roughly 90% were likely false positives emerging from sequencing errors and mapping artifacts. Even if taken into account during mRNA-seq read mapping procedures with splice-aware aligners, multi-mapping artifact could still be of a great impact on mRNA editing false
discovery rate. Indeed, current genome assemblies used to map short reads from high-throughput sequencing experiments, even of high quality for human, mouse or chicken, are still presenting missing sequences as well as misassembled regions (Groenen et al. 2011, Genovese et al. 2013a, 2013b). Since these regions might harbor sequences that are paralogous to properly assembled parts of genomes, this ultimately leads to shallow identification of multimapped short reads when only considering the reference sequence. To by-pass this error-prone issue for the identification of mRNA edited sites, we used in this study the approach first introduced in our previous study (Frésard et al. 2015) consisting in looking for mRNA sequences spanning edited sites in raw genomic DNA sequences, and confirmed its efficiency. In our study, up to 8% of the initial candidate differences between RNA and DNA were false positives related to errors and assemblies issues in the chicken genome. This result suggests that thousands of edited sites reported in primates and mice mRNA editing screening studies could be partly attributed to false positives resulting from a spurious handling of multimapped mRNA-seq short reads. More strikingly, a huge proportion of mRNA editing screening studies are based on mRNA-seq data solely, and do not consider individual matched genomic DNA-seq data for the samples analyzed. In these studies, candidate edited sites are filtered using the positions of known SNPs referenced in databases such as dbSNP, rather than considering individual polymorphisms, thereby fully occulting inevitable individual specific genomic variations. Even in the case of clonal mice strains, considering a consensus strain-specific genomic sequence as exposed by Danecek and collaborators (Danecek et al. 2012) indubitably leads to edited events false calls that arise from somatic mutations, as we previously shown in our study on mice, invalidating 25% of mRNA editing candidates arising because of unreferenced genomic SNP (Lagarrigue et al. 2013).
To further limit the amount of false positives among mRNA edited sites and to focus on biologically meaningful mRNA editing events, an obvious approach consists in considering biological replication. Surprisingly, a lot of mRNA editing screening studies report events without considering reproducibility across samples (Table 1, Figure 1). Although it is likely that mRNA editing is a partly individual-specific phenomenon (Gommans et al. 2009), short read sequencing technologies are error-prone when it comes to focus on slight variations and are not mature enough to allow investigation of private editing events. Therefore, biological reproducibility is uncontestably required in this scope. In our study, even after filtering to properly account for systematic and random sequencing artifacts as well as multimapping, we were still detecting more than 50% of non canonical mRNA editing events. Hitherto, the attempts by other group to validate such type of mRNA recoding using targeted Sanger sequencing were unsuccessful (Piskol et al. 2013), clearly ascertaining that they arise from unconsidered artifacts. When focusing only on editing events detected in at least 3 biological replicates, the proportion of canonical events raised 90% in the present work. If non-canonical recoding events were not related to artifacts, we would have not expected such an enrichment, which further ascertains they are false positives. With respect to this hypothesis, we invalidated the 2 non-canonical events we were still detecting after considering biological replication. Overall, our results suggest that filtering to consider false positives arising from mapping artifacts and sequencing errors, even if mandatory, is not sufficient to remove all spurious editing events. While allowing focusing on the most biologically meaningful recoding events that are shared between individuals, considering biological replications is decisive to contain the amount of false positives in RNA editing screening studies based on current high-throughput sequencing technologies.
Altogether, considering filters dealing with systematic and random sequencing errors, multimapping, mapping artifacts and biological replication, the number of edited sites dramatically felt from 3.229 and 2.305 candidates to 19 and 11 robust events in WAT and liver respectively. And even using highly drastic filters, two non-canonical false positives were still detected, once again suggesting that hard filtering and biological replication are still mandatory when working with current short-sequencing technologies. Even if a greater sequencing depth would have allowed to detect a slightly higher number of edited sites, our work reveals that the extent of mRNA editing is, at least in chicken, far below what has been previously shown in most screening studies on human, mouse and chimpanzee. Interestingly, most of the studies reporting an amount of mRNA editing events close to what we record have been conducted on healthy tissues rather than immortalized cell lines or tumors, and considered only sites edited in at least 2 biological replicates (Gu et al. 2012, Lagarrigue et al. 2013, Frésard et al. 2015). The huge variation in mRNA editing extent between our study and other screening studies in literature could be explained in different ways. First of all, it is likely related to the differences in the stringency of filters applied and in the false positive rate. Second, most of the mRNA editing screening studies were carried out using transformed cell lines or cancer tissues (Table 1) and the extensive mRNA editing reported may reflect real biological changes. Indeed, ADARs and APOBECs may become more active during tumorigenesis, and may consequently increase mRNA editing, as it has been highlighted in some cancer cell lines (Galeano et al. 2012). Third, it could also be explained by the huge structural differences between mammalian and sauropsidan genomes. Actually, ADAR-mediated A-to-I mRNA editing occurs in regions of double stranded RNA (dsRNA). Yet, approximately half of typical mammalian genome contains highly repetitive sequences (de Koning et al. 2011) such as retrotransposons, short
interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs).

While these sequences are often repeated in reverse tandems, they may generate dsRNA structures that could be subsequently edited by ADARs (Nishikura 2010). In chicken, since the amount of repetitive sequences across the genome falls below 15% (Wicker et al. 2005, Schmid et al. 2015), it is expected that less A-to-I editing events occur.

At the end, among the 25 unique canonical mRNA editing events we report, only 3 (i.e. 13%) located downstream MPZL1 and BRP44, in COG3 and upstream NDUSF6, are common to both tissues. Comparisons with our previous study highlighted that only 4 mRNA edited sites detected in chicken whole-embryo were also found in mature WAT or liver. Surprisingly, only the edited sites located in COG3 and upstream NDUSF6 were common to WAT, liver and whole embryo. These results are comparable to those reported by Danecek et al. and Lagarrigue et al., revealing a significant amount of tissue-specific edited sites (Danecek et al. 2012, Lagarrigue et al. 2013). Interestingly, while no homologue of APOBEC1 has been characterized in the chicken genome (Conticello et al. 2005), all the APOBEC-mediated C-to-U mRNA editing candidate sites we initially detected were discarded along the filtering pipeline, confirming that this specific mRNA editing mechanism is missing in chicken. We also found that some of the mRNA editing events we detected were localized on mRNA editing clusters, spanning regions of a few kilobases. This observation is supported by our current knowledge regarding the mechanistic basis of ADAR-mediated A-to-I mRNA editing, which occurs unspecifically in dsRNA, and doesn’t involve specific mooring sequence as it is the case for APOBEC-mediated C-to-U mRNA editing (Nishikura 2010).

Overall, most of the mRNA editing events we detected are falling in non-coding regions (i.e. 10 kb upstream or downstream genes, in introns, or in intergenic regions). Since these
regions are expressed, they are either corresponding to poorly annotated genomic regions, non-mature mRNAs, or unannotated non-coding RNAs in which RNA editing is known to occur (Picardi et al. 2014). Out of these 25 unique mRNA editing events, 5 are located in coding sequences and only 4 are non-synonymous, impacting the sequence of COG3, CES1, FLNB and KCNMA1. Interestingly, the edited sites falling in COG3 and FLNB were already described in mammalian species (Levanon et al. 2005, Shah et al. 2009, Danecek et al. 2012, Holmes et al. 2013, Stulic and Jantsch 2013), revealing that some edited positions are conserved throughout evolution between birds and mammals. Except for CES1, our analyses show that each of these coding mRNA editing events are impacting highly conserved regions in the protein sequence, as well as highly conserved amino-acid residues.

Our analysis finally shows that mRNA editing level is impacted by various genetic and environmental factors such as the genetic background, the age, the feeding and the sex. While the genetic background and the age influence the editing level at almost all the mRNA editing sites we tested, the feeding and the gender tend to have effect on less positions. The impact of aging on mRNA editing has already been reported in a few studies on mammals (Wahlstedt et al. 2009, Shtrichman et al. 2012, Venø et al. 2012), as well as in our previous study on chicken embryo (Frésard et al. 2015). In agreement with most of these studies, we confirm that the level of edited transcripts increases with age, whatever the recoded site considered. Nevertheless, an in-depth unbiased whole-transcriptome exploration of spatio-temporal regulation bases of mRNA editing in vertebrates is still needed. We also observed a significant effect of genotype on the liver mRNA editing level indicating another level of regulation. Indeed, in one of the designs we used to assess the effect of genetic background, 3 out of 4 edited isoforms (in COG3, PLA1A and MYO1B) are 1.5- up to 2-fold more frequent
in broilers’ liver compared to layers’ liver. PLA1A encodes for the phosphatidylserine-specific phospholipase A1, mostly synthetized in liver, and implied in the release of free fatty acids and lysophosphatidic acid that acts as a lipid mediator in cell signaling. While it is established that this lipase does not catabolize triglycerides, its implication in global cellular process is still poorly understood (Aoki et al. 2002). MYO1B encodes for the widely expressed myosin 1B motors that functions in endocytosis, membrane trafficking, membrane retraction, and mechano-signal transduction. Even if the physiological landscape of myosin 1B is not fully depicted yet, some authors hypothesized its potential role on myogenesis (Wells et al. 1997, Redowicz 2007). While muscle mass stands as one of the most divergent phenotypic traits between layers and broilers, the mRNA editing in MYO1B could be part of the transcriptional bases leading to differences in muscle development between these strains, but it remains to test if this site is also differentially edited in muscular tissues between broilers and layers. Finally, COG3 has a general cellular function related to the structure and function of the Golgi as further described below. Since the editing level at these sites located in COG3, PLA1A and MYO1B are differential between broilers’ and layers’ liver and because liver is a multi-function organ involved in many physiological processes, we hypothesized they might be implied in cellular and developmental processes leading to physiological differences between these two chicken strains. The genetic regulation of mRNA editing level at these sites could be linked to mechanisms acting in trans, involving ADARs, and further analyses comparing ADARs expression and activity between these two chicken genetic backgrounds are mandatory to investigate this hypothesis. But it could also be regulated by cis-acting mutations impacting surrounding mRNA sequence and secondary structure, as it has been recently suggested regarding mRNA recoding in drosophila (Sapiro et al. 2015).
Whereas the extent of mRNA editing appears limited at the transcriptome scale in chicken liver and white adipose, our results suggest that this phenomenon could be tightly regulated. Indeed, the I/V non-synonymous recoding event impacting COG3 is not only conserved in mammals but is also under the influence of the genetic background, the age and the feeding condition. For this last factor, this edited site was the only one impacted, in two independent designs, which suggests that this observation is highly reliable. It is also noticeable that COG3 mRNA is almost exclusively edited in white adipose tissue with an average 95% (in the “genotype” design) or 100% (in the “feeding” design) of the edited isoform, in contrast with what we observed in the liver transcriptome. This further suggests that these different isoforms are likely harboring different physiological functions and that ADAR-mediated mRNA editing could act in a highly tissue-specific manner as previously shown (Song et al. 2004), in a way that is similar to APOBEC1-mediated APOB mRNA editing, which ultimately leads to the synthesis of two APOB isoforms – APOB100 in the liver, and APOB48 in the small intestine – with distinct physiological functions. Since the edited site in COG3 is conserved through the evolution of vertebrates, and since it is tightly regulated by multiple genetic and environmental factors, it is likely to have a functional role on the encoded protein. COG3 is one of the eight proteins of the oligomeric Golgi (COG) complex. The COG complex is involved in intra-Golgi retrograde trafficking and in membrane trafficking in eukaryotic cells (Loh and Hong 2004, Zolov and Lupashin 2005). Mutations affecting COG subunits disturb both structure and function of the Golgi (Ungar et al. 2002) and have been reported in congenital disorders of glycosylation (Kodera et al. 2015). These different studies show an important role of the COG complex in eukaryotic cells. It is known to be an evolutionarily conserved multi-subunit protein complex, but its exact cellular function remains elusive. While this edited site in COG3 is conserved across stages (embryos...
and adult stages in chicken) and species (human, mouse, rat and chicken), it would require additional work to decipher its potential role on COG3 functions and potentially on membrane trafficking pathways.

This study, which is complementary to our previous study conducted on chicken embryos, is the first describing the mRNA editing landscape in adult chicken. From a methodological point of view, we show how huge can be the impact of sequencing biases and mapping artifacts on the discovery of mRNA editing events if not properly considered. Moreover, we show the importance to consider biological replication with high-throughput sequencing data to filter spurious candidates, allowing focusing on the most biologically meaningful mRNA editing events. From a biological point of view, even if we cannot claim we are exhaustive, our results support the evidence that the extent of mRNA editing is limited in chicken, restricted to ADAR-mediated events. We also ascertain that some of editing sites are conserved throughout the evolution of vertebrates. Our study finally shows that mRNA editing level is strongly affected by the genetic background and age and - to a minor extent - by the feeding condition and the sex, which provides new insights into the comprehension of mRNA editing functions in vertebrates in relation to genetics and environmental components.
ACKNOWLEDGMENTS

We thank the members of the INRA experimental poultry unit (UE1295 PEAT, Nouzilly, France) for producing and rearing the chickens. This work was funded by INRA (programs SOSrNASeq – 2010, F1rnaSEQ – 2012, ELASETIC – 2013) and the French National Research Agency (ANR, program Fatinteger 2012 – 2015). Pierre-François Roux’s graduate work was co-funded by INRA (www.inra.fr/en) and Région Bretagne (www.bretagne.fr). Laure Frésard’s graduate work was co-funded by Animal Genetics Division at INRA (www.inra.fr/en) and Région Midi-Pyrénées (www.midipyrenees.fr).
LITERATURE CITED

Van Mater, D., M. P. Sowden, J. Cianci, J. D. Sparks, C. E. Sparks, et al. 1998 Ethanol increases apolipoprotein B mRNA editing in rat primary hepatocytes and McArdle cells.

strategy to identify A-to-I RNA editing sites by RNA-Seq data: de novo detection in human spinal cord tissue. PloS One 7:e44184.

TABLES

Table 1. Whole transcriptome mRNA editing screening studies in vertebrates.

<table>
<thead>
<tr>
<th>Study</th>
<th>Species</th>
<th>Cells</th>
<th>Edited sites (N)</th>
<th>Matched DNA¹</th>
<th>Replicates²</th>
<th>Potential biases</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ju et al. 2011)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>1,809</td>
<td>Yes</td>
<td>2/17</td>
<td>Splice, homopolymer, strand, extremity</td>
</tr>
<tr>
<td>(Li et al. 2011)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>28,766</td>
<td>Yes</td>
<td>2/27</td>
<td>Splice, homopolymer, multimapping, strand, extremity</td>
</tr>
<tr>
<td>(Bahn et al. 2011)</td>
<td>H. sapiens</td>
<td>Glioblastoma cells</td>
<td>10,000</td>
<td>No</td>
<td>2/2</td>
<td>Splice, homopolymer, multimapping, strand, extremity</td>
</tr>
<tr>
<td>(Peng et al. 2012)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>22,688</td>
<td>Yes</td>
<td>1/1</td>
<td>Splice, homopolymer, extremity</td>
</tr>
<tr>
<td>(Park et al. 2012)</td>
<td>H. sapiens</td>
<td>14 ENCODE cell lines</td>
<td>5,695</td>
<td>No</td>
<td>1/1</td>
<td>Homopolymer, extremity, multimapping</td>
</tr>
<tr>
<td>(Kleinman et al. 2012)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>1,503</td>
<td>Yes</td>
<td>1/2</td>
<td>Homopolymer</td>
</tr>
<tr>
<td>(Ramaswami et al. 2012)</td>
<td>H. sapiens</td>
<td>ENCODE cell lines</td>
<td>150,865</td>
<td>No</td>
<td>1/2</td>
<td>Strand, multimapping</td>
</tr>
<tr>
<td>(Picardi et al. 2012)</td>
<td>H. sapiens</td>
<td>Spinal cord cells</td>
<td>15</td>
<td>Yes (Exome)</td>
<td>1/1</td>
<td>Homopolymer, multimapping, strand</td>
</tr>
<tr>
<td>(Bazak et al. 2013)</td>
<td>H. sapiens</td>
<td>16 tissues</td>
<td>1,586,270</td>
<td>No</td>
<td>1/1</td>
<td>Homopolymer, multimapping, strand</td>
</tr>
<tr>
<td>(Chen 2013)</td>
<td>H. sapiens</td>
<td>7 ENCODE cell lines</td>
<td>259,385</td>
<td>No</td>
<td>1/2</td>
<td>Multimapping</td>
</tr>
<tr>
<td>(Chan et al. 2014)</td>
<td>H. sapiens</td>
<td>Liver cells</td>
<td>20,007</td>
<td>No</td>
<td>1/3</td>
<td>Splice, homopolymer, multimapping, strand, extremity</td>
</tr>
<tr>
<td>(Mo et al. 2014)</td>
<td>H. sapiens</td>
<td>Prostate cancer cells</td>
<td>16,194</td>
<td>Yes</td>
<td>2/10</td>
<td>Homopolymer, multimapping, strand</td>
</tr>
<tr>
<td>(Sakurai et al. 2014)</td>
<td>H. sapiens</td>
<td>Brain cells</td>
<td>19,791</td>
<td>No</td>
<td>1/1</td>
<td>Splice, homopolymer, multimapping, strand, extremity</td>
</tr>
<tr>
<td>(Tsong et al. 2014)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>5,997</td>
<td>No</td>
<td>2/2</td>
<td>Multimapping, strand</td>
</tr>
<tr>
<td>(Zhang and Xiao 2015)</td>
<td>H. sapiens</td>
<td>Immortalized B cells</td>
<td>22,715</td>
<td>No</td>
<td>1/1</td>
<td>Multimapping, extremity</td>
</tr>
<tr>
<td>(Hu et al. 2015)</td>
<td>H. sapiens</td>
<td>Hepatocellular carcinoma cells</td>
<td>900</td>
<td>Yes</td>
<td>6/6</td>
<td>Splice, multimapping, strand</td>
</tr>
<tr>
<td>(Kang et al. 2015)</td>
<td>H. sapiens</td>
<td>Liver cells</td>
<td>485,684</td>
<td>Yes</td>
<td>1/9</td>
<td>Splice, multimapping, strand</td>
</tr>
<tr>
<td>(Danecek et al. 2012)</td>
<td>M. musculus</td>
<td>Brain cells</td>
<td>7,389</td>
<td>No</td>
<td>2/2</td>
<td>Homopolymer, multimapping</td>
</tr>
<tr>
<td>(Gu et al. 2012)</td>
<td>M. musculus</td>
<td>Liver, adipose and bone cells</td>
<td>253</td>
<td>No</td>
<td>3/3</td>
<td>Homopolymer, multimapping, extremity</td>
</tr>
<tr>
<td>(Lagarrigue et al. 2013)</td>
<td>M. musculus</td>
<td>Liver and adipose cells</td>
<td>63 and 188</td>
<td>No</td>
<td>4/6</td>
<td>Multimapping</td>
</tr>
<tr>
<td>(Cattenoz et al. 2013)</td>
<td>M. musculus</td>
<td>Brain cells</td>
<td>665</td>
<td>No</td>
<td>1/1</td>
<td>Splice, homopolymer, multimapping, strand, extremity</td>
</tr>
<tr>
<td>(Blanc et al. 2014)</td>
<td>M. musculus</td>
<td>Intestine and liver cells</td>
<td>500</td>
<td>No</td>
<td>1/1</td>
<td>Homopolymer, multimapping, extremity</td>
</tr>
<tr>
<td>(Chen et al. 2014)</td>
<td>R. macaque</td>
<td>Prefrontal cortex, cerebellum, muscle, kidney, heart, testis and lung cells</td>
<td>31,250</td>
<td>Yes</td>
<td>1/1</td>
<td>Homopolymer, multimapping, extremity</td>
</tr>
<tr>
<td>Frésard et al. 2015</td>
<td>G. gallus</td>
<td>Whole embryo</td>
<td>40</td>
<td>Yes</td>
<td>2/8</td>
<td>-</td>
</tr>
<tr>
<td>Roux et al. (The present study)</td>
<td>G. gallus</td>
<td>Liver and adipose cells</td>
<td>11 and 17</td>
<td>Yes</td>
<td>3/8</td>
<td>-</td>
</tr>
</tbody>
</table>

¹If “yes”: individual genomic DNA information is used to account for potential private individual genomic polymorphisms. If “no”: potential private genomic polymorphisms are defined considering either genomic

Comment citer ce document :
variants databases such as dbSNPs, or strain-specific consensus genomic sequence in the case of studies based on clonal mouse strains.

2 Ratio between the number of biological replicates considered for reporting a candidate difference between DNA and mRNA as a true mRNA editing event and the total number of biological replicates available in the study for a given cell type.
Table 2. mRNA editing screening in adult chicken liver and adipose tissue.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Position</th>
<th>DNA allele</th>
<th>RNA allele</th>
<th>Canonical</th>
<th>Validation in Sanger</th>
<th>Validation in PyroMark</th>
<th>Replicates</th>
<th>Gene names</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAT</td>
<td>1</td>
<td>79605543</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>PLA1A, POPDC2</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90873162</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>MPZL1, BRP44</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1035111385</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>6</td>
<td>GRIK1</td>
<td>Intron</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>167109833</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td>yes</td>
<td>3</td>
<td>COG3</td>
<td>Exon (missense)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>169769193</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>THSD1</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>187056174</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>NOX4</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>187056183</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>NOX4</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>187057565</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>-</td>
<td>Intergenic</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>86000926</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td>yes</td>
<td>5</td>
<td>NDUF56</td>
<td>Upstream</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>17996546</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>4</td>
<td>-</td>
<td>Intergenic</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>22958596</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>DGKZ</td>
<td>Intron</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>10634278</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>5</td>
<td>CES1</td>
<td>Exon (missense)</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>19169664</td>
<td>A</td>
<td>C</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>DHODH, IST1</td>
<td>Upstream, Intron</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8909946</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td>yes</td>
<td>6</td>
<td>FLNB</td>
<td>Exon (missense)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>8910897</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>5</td>
<td>FLNB</td>
<td>Intron</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>4705</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>-</td>
<td>Intergenic</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>94999</td>
<td>C</td>
<td>T</td>
<td>yes</td>
<td></td>
<td>6</td>
<td>-</td>
<td>Intergenic</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>28378</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>6</td>
<td>ZNF302</td>
<td>Upstream</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>4812610</td>
<td>C</td>
<td>T</td>
<td>yes</td>
<td></td>
<td>4</td>
<td>CCLI8</td>
<td>Intron</td>
</tr>
<tr>
<td>Liver</td>
<td>1</td>
<td>79608260</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td>yes</td>
<td>7</td>
<td>POPDC2, PLA1A</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90873162</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>MPZL1, BRP44</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90873188</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td>yes</td>
<td>4</td>
<td>MPZL1, BRP44</td>
<td>Downstream gene</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>167109833</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td>yes</td>
<td>5</td>
<td>COG3</td>
<td>Exon (missense)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>193343226</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>6</td>
<td>MADPRT, ART7B</td>
<td>Upstream</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>86000926</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td>yes</td>
<td>5</td>
<td>NDUF56</td>
<td>Upstream</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>13236424</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>KCNMA1</td>
<td>Exon (missense)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>7564791</td>
<td>A</td>
<td>G</td>
<td>yes</td>
<td>yes</td>
<td>5</td>
<td>MOY1B</td>
<td>Intron</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>25588113</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>3</td>
<td>-</td>
<td>Exon (synonymous)</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>518606</td>
<td>A</td>
<td>C</td>
<td>no</td>
<td>no</td>
<td>3</td>
<td>HNRNPM</td>
<td>Missense</td>
</tr>
<tr>
<td></td>
<td>LGE64</td>
<td>615592</td>
<td>T</td>
<td>C</td>
<td>yes</td>
<td></td>
<td>4</td>
<td>-</td>
<td>Intergenic</td>
</tr>
</tbody>
</table>

1 Number of samples in which the mRNA editing event is detected.

2 Name of the gene impacted by the mRNA editing event or name of the closest genes (<10kb) if the mRNA editing event is falling in an intergenic region.

3 Localization of the mRNA editing event inside genomic features, as predicted by Variant Effect Predictor (McLaren et al. 2010). If the mRNA editing event is falling inside a coding region, its impact on gene product is given in brackets.

In bold: mRNA editing candidate events subjected to Sanger genomic DNA sequencing and cDNA pyrosequencing; Underlined: mRNA editing events annotated as “coding - missense” and located in 4 different genes. In italics: mRNA editing events common to both tissues.
FIGURE LEGENDS

Figure 1. mRNA editing screening studies based on high throughput sequencing in the literature.

This graph describes the numbers of mRNA editing events detected (log_{10}) across RNA-seq-based screening studies as a function of the numbers of biological replicates considered to declare an event as a true positive.

Figure 2. Impact of sequencing and mapping biases on mRNA editing discovery.

Contribution of random or systematic sequencing biases and mapping artifacts to the false discovery of mRNA editing events using combined mRNA and DNA sequencings.

Figure 3. Impact of biological replication on mRNA editing discovery.

Distribution (in %) of unbiased mRNA editing events across the 12 classes of substitution according to the number of replicates they are detected in, ranging from N=1 to N=3, in white adipose tissue (WAT) and liver. The first two classes (AtoG and TtoC) are associated to ADAR-mediated RNA editing, and the next two ones (CtoT and GtoA) to APOBEC-mediated RNA editing. At the top-right of each graph, the total number of RNA editing events detected for a given number of replicates is shown.

Figure 4. Position of mRNA editing events across the chicken genome.

Figure 5. Distribution of mRNA editing events across genomic features.

Annotations were assessed using Ensembl v71 Variant Effect Predictor (McLaren et al. 2010).

Figure 6. Multispecies protein sequence alignments for coding mRNA editing events.
The red stars indicate the position of the amino acid impacted by coding mRNA events. The overall conservation across sequences is depicted below each alignment. The mRNA editing event impacting COG3 was detected in both white adipose tissue and liver, while the ones impacting CES1 and FLNB were WAT-specific, and the one impacting KCMA1 was specific to liver.

Figure 7. Impact of genetic background, age, feeding condition and sex on mRNA editing level.

Editing level (in %) at 5 genomic positions, in white adipose tissue (WAT) and liver according to (A) genetic background, (B) age, (C) feeding condition and (D) sex. Each boxplot shows the distribution of editing levels across N=8 biological replicates. * p < 0.05, ** p < 0.01, *** p < 0.001, unpaired two-tailed Student t-test. Pre-pub.: prepuberal animals; Post-pub.: postpuberal animals; M: Males; F: Females.
The extent of mRNA editing is limited in chicken liver and adipose, but impacted by tissue context, genotype, age and feeding as exemplified with a conserved edited site in COG3.
The extent of mRNA editing is limited in chicken liver and adipose, but impacted by tissular context, genotype, age and feeding as exemplified with a conserved edited site in COG3. G3 - Genes Genomes Genetics, sous presse, sous presse. DOI : 10.1534/g3.115.022251