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Abstract

For a finite state Markov process X and a finite collection {Γk, k ∈ K} of subsets of
its state space, let τk be the first time the process visits the set Γk. In general, X may
enter some of the Γk at the same time and therefore the vector τ := (τk, k ∈ K) may

put nonzero mass over lower dimensional regions of R
|K|
+ ; these regions are of the form

Rs = {t : ti = tj , i, j ∈ s(1)}∩
⋂|s|

l=2{t : tm < ti = tj , i, j ∈ s(l),m ∈ s(l−1)} where s is
any ordered partition of the set K and s(j) denotes the jth subset of K in the partition
s. When |s| < |K|, the density of the law of τ over these regions is said to be “singular”
because it is with respect to the |s|-dimensional Lebesgue measure over the region Rs.
We derive explicit/recursive and simple to compute formulas for these singular densities
and their corresponding tail probabilities over all Rs as s ranges over ordered partitions
of K. We give a numerical example and indicate the relevance of our results to credit
risk modeling.

1 Introduction

One of the basic random variables associated with a Markov process X is its first hitting time
to a given subset of its state space. In the present work we will confine ourselves to finite
state Markov processes. If X has an absorbing state and all of the states can communicate
with it, the distribution of the first hitting time to the absorbing state is said to be a phase-
type distribution. Phase-type distributions, which go back to Erlang [11], are used to model
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a wide range of phenomena in, e.g., reliability theory, communications systems, insurance
and finance. The literature on these distributions is immense, see, e.g., [2, 3, 1, 14, 20, 22].

To the best of our knowledge, Assaf et al. [5] were the first to study multivariate (multidi-
mensional) phase-type distributions. Their setup, for the two dimensional case, is as follows:
take two proper subsets Γ1 and Γ2 of the state space, and assume that with probability 1
the process enters their intersection; let τk be the first time the process enters Γk. The joint
law of (τ1, τ2) is a two dimensional phase-type distribution. Higher dimensional versions
are defined similarly: for a finite collection of subsets {Γk, k ∈ K} of the state space the
distribution of the random vector τ := (τk, k ∈ K) is a |K| dimensional phase-type distri-
bution, where |K| denotes the number of elements in K. In general, the underlying process
can hit some of the Γk simultaneously and this implies that multidimensional phase-type

distributions can put nonzero mass on certain lower dimensional regions of R
|K|
+ ; e.g., for

|K| = 3 some of these regions are {t : t1 = t2 < t3}, {t : t1 = t2 = t3}, {t : t2 < t1 = t3},

etc. In general, each ordered partition s of K defines an |s|-dimensional subset Rs of R
|K|
+

(where |s| denotes the number of subsets of K which appears in the partition s; subsection
2.2 gives the precise definitions) over which the law of τ may put nonzero probability mass.
The law of τ , when restricted to one of these lower dimensional regions, turns out to have a
density with respect to the |s|-dimensional Lebesgue measure of that region; these densities
are called “singular” (or “the singular part(s) of the density of τ”) because of the lower
dimensionality of Rs. The focus of the present paper is on these singular densities of τ ; our
goal is to find simple formulas for them and the tail probabilities associated with them. To
the best of our knowledge, the only paper currently available which develops density or tail
probability formulas for the singular parts is [5], which focuses on the case of |K| = 2 and
Γ1, Γ2 absorbing. The only currently available density formula for |K| > 2 was also derived
in [5] and covers only the absolutely continuous part of the density (i.e., the density over the

|K| dimensional region {t ∈ R
|K|
+ : ti 6= tj , for i 6= j}) in the case when Γk, k ∈ K, are

assumed absorbing; display (39) in subsection 4.3 gives this density formula from [5] (this
formula is stated without a proof in [5]; [12] provides a proof for it). Over the last three
decades this formula has found use in a range of application areas, e.g., [18, modeling of
plant development], [9, insurance] and [12, credit risk].

The main contributions of the present paper are Theorem 3.1, which gives an explicit

formula for the singular density of the random vector τ over each Rs ⊂ R
|K|
+ as s ranges

over all partitions of K, covering all possible singular and nonsingular parts and Theorem
3.2 which gives a recursive formula for the tail probabilities of τ using the density formulas.
We make no assumptions on whether {Γk, k ∈ K} are absorbing and Theorem 3.1 gives a
general formula for the joint density of a collection of first hitting times for any finite state
Markov process X. The density formula when Γk are absorbing follows as a special case
(Proposition 4.2).

One common method of computing a density is to compute the corresponding tail proba-
bility and then to differentiate it to get the density. This is the method used in [5, 12]. As will
be seen in subsection 3.4, “singular” tail probabilities of τ (i.e., tail probabilities where some
components of τ are equal) turn out to be more complex objects than the corresponding
densities and if one tries to compute these singular tail probabilities (for example, using the
methodology of taboo probabilities as presented in Syski [22]) one quickly runs into difficult
calculations even when |K| is small. For this reason, rather than first trying to compute the

tail probabilities of τ , we directly compute the singular densities of τ over each Rs ⊂ R
|K|
+

using the following idea: for each t ∈ Rs ⊂ R
|K|
+ , the event {τ = t} corresponds to the limit

of a specific set of trajectories of the Markov process whose (vanishing) probability can be
written in terms of the exponentials of submatrices of the intensity matrix. These sets of
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trajectories are of the following form: the process alternates at precise jump times between
a sequence of waiting sets W1, W2,..., Wk and target sets T1, T2,..., Tk where k = |s| is the
dimension of Rs. The waiting and the target sets and the jump times are all determined by
t. Subsection 3.1 gives the one step version of this idea in the computation of the density
of a single τk, given as Proposition 3.1. The same idea extends to multiple hitting times in
subsection 3.2 and the multidimensional density is given as formula (16) in Theorem 3.1.
The formula (16) gives the density of all singular parts of the distribution of τ (over all 2|K|

hyperplanes of R
|K|
+ of dimensions ranging from |K| to 1); the ability to cover all singular

parts is the novelty of the result. It accomplishes this by using exponentials of appropriate
submatrices of the rate matrix λ. The sequence of waiting and target sets determine which
submatrices of λ appear in the density formula. In contrast, the well-known density formula
(39) from [5] for the absolutely continuous part involves only exponentials of the full rate
matrix.

The proof of Theorem 3.1, although based on elementary ideas, seems to be novel. It
starts from the following idea: f is the density of τ if and only if E[g(τ )] =

∫
f(x)g(x)dx for

all bounded continuous functions g. Because τ has an arbitrary finite dimension (since |K|
and |s| are arbitrary integers), the proof must be recursive; and to deal with the generality of
the result, novel notation needs to be introduced and several conditional expectations need
to be treated carefully.

By a tail event we mean events of the form ∩k∈K{τk ≥ tk}. In general, the singular parts
of the distribution of τ make tail events complex because they may (and in general will)

intersect with the lower dimensional regions Rs ⊂ R
|K|
+ on which τ puts nonzero mass. This

complexity precludes the possibility of obtaining simple closed form formulas for the proba-
bilities of these events (and hence for the distribution function of τ ). A much more efficient
way to represent tail probabilities (in the presence of singularities) is given in Subsection
3.4 as Theorem 3.2; this is a recursive formula involving a single dimensional integral over a
one-dimensional version of the density formula.

In Section 4, we derive alternative expressions for the density and the tail probability
formulas for absorbing {Γk} and indicate the connections between our results and the density
formulas in [5]. Section 5 gives a numerical example.

A well known generalization of multivariate phase type distributions is given in [17]. Let
us point out how the results in [17] can be used to obtain a theoretical characterization of the
distribution of τ and compare this characterization with the formulas given in the present
work. [17] generalizes multivariate phasetype distributions (to a class called MPH* in that
work) and derives a theoretical representation of this generalization (see [17, Equation(35)]);
[17, Equation(35)] is based on an infinite sum characterization of the full occupation measure
(the time spent in each state until absorption to an absorbing state) of the process which is
given in [17, Equation(34)]. [17] also explains a procedure which represents the distribution
of τ as an MPH* (this involves the expansion of the state space of the original process
super-exponentially in the dimension of τ ). One can combine these to get an infinite sum
representation of the distribution of τ . The use of the complete occupation measure seems
necessary for the full MPH* framework but its use to represent the distribution of τ through
the route just indicated would be unnecessarily complex and impractical for the following
reasons 1) the resulting formula involves the computation of a high dimensional recursion

and an infinite sum over Z
|E|×S
+ , where S is the set of all subpartitions of K; the terms in

the sum involve products of exponentials of arbitrary length and the results of the recursion
just mentioned (thus the recursion must be computed over a high dimensional infinite set);
hence as is, even when |E| and K are small, the resulting characterization is theoretical
and not a practical formula intended to be explicitly computed 2) to get the distribution
of τ one ends up computing a much more complex distribution associated with the process
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(the distribution of the full occupation measure of the process). A much simpler route that
obviates these computations is the one followed in the present work: instead of trying to
compute tail probabilities or the distribution function of τ , we focus on the computation
of the density of τ over each Rs; the exact calculation of these turns out to involve only a
finite number |s| ≤ |K| of matrix multiplications and exponentiations. For moderate sizes of
|E|, e.g., |E| ≤ 1500, these computations can be carried out quickly on a standard modern
laptop; we give several numerical examples with |E| = 27 in Section 5.

A recent generalization of multivariate phase type distributions is given in [7], in which
a distribution on R

k
+ is called “multivariable matrix-exponential” (MVME) if its Laplace

transform is the ratio of two multivariate polynomials; as explained in the same work, these
can be seen as generalizations of multivariable phase type distributions. The main result
of [7] proves that a distribution is MVME if the Laplace transforms of its pullbacks on R+

under positive linear maps are polynomials. The main computational result of the paper
is a formula for the cross-moments of an MVME distribution. While covering a class of
distributions connected to the ones treated in the present work, the focus of [7] is on Laplace
transforms and moments (rather than densities, tail probabilities or distribution functions)
and it uses a completely different set of tools from those used in the present work.

From an applied perspective, our primary motivation in deriving the results in the present
paper has been to model default times of companies/obligors with first hitting times of a
finite state Markov process where multiple defaults are allowed to happen at the same time;
given the results of our paper this is now possible in great generality (for the case of two
obligors one could use the results in [5]). The conclusion explains this application starting
from the credit risk model of [12] and the numerical example of Section 5. In addition to
credit risk, we expect our results to be useful in reliability theory (see, e.g., [5]), counterparty
risk (see, e.g., [10]), and insurance (see, e.g., [6]). From a theoretical perspective, the first
motivation of the paper has been the solution of a problem whose two dimensional version
was solved in [5], i.e., find simple expressions for the density of τ ; surprisingly, prior to the
results of the present paper, such expressions were not available in the literature. A second
theoretical contribution of the present work is to the line of research originated in [15] and
continued in [16] and [13]; the next paragraph explains this side of our contribution.

In [15] the following problem was studied: given a filtration G = {Gu, u ∈ R+} and a
multivariate random time τ = (τ1, . . . , τm) study the conditional law, say µG

u , of τ given Gu,
in the case that where P (τi = τj) = 0 for i 6= j, i, j = 1, 2, . . . ,m. Thus, a (random) measure
was sought so that

P (τ ∈ B|Gu) =

∫

B

µG
u (dt), (1)

for any measurable subset B of Rm
+ . If the measure µG

u is represented as

µG
u (dt) = ϕG

u (t)ν(dt), (2)

where ν is a (possibly random) measure on R
m
+ , then ϕG

u is called the density of P (·|Gu) with
respect to ν, and the process ϕG

· is called the conditional density process. This study was
extended in [13], for n = 2, to the case where joint default were allowed, that is P (τ1 = τ2) >
0.

Now, let F = {Fu, u ∈ R+} be the filtration generated by X. The Markov property of X
implies that the conditional density of τ given Fu directly follows from the density formula
(16), as we show in Proposition 3.3. Thus, our results generalize (1) and (2) to the case of
arbitrary m ≥ 1 where the restriction P (τi = τj) = 0 for i 6= j, i, j = 1, 2, . . . ,m is no longer
required. It needs to be stressed though that this generalization is only done here in the
Markovian case, i.e., when G = F and when τ is defined as first hitting times of the process
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X. Still, it allows one to study and model probabilities related to simultaneous multivariate
trigger events, such as simultaneous defaults in a large pool of obligors.

2 Definitions

Let E be a finite set and X an E-valued continuous time process defined over a measurable
space (Ω,F ). If α ∈ P(E), where P(E) is the set of probability measures on E, we denote
by Pα the law of X given that the initial distribution of X is α. In the case where α = δi,
i ∈ E, we simply write Pi, so that Pi(X0 = i) = 1. Consequently, Pα =

∑
i∈E α(i)Pi.

From now on, we assume that under each Pα, X is a time homogeneous Markov chain
with intensity matrix λ. The jump rate of the process from state i is −λ(i, i) =

∑
j 6=i λ(i, j).

Remark 2.1. Until Section 4 we will assume that there are no absorbing states of X, that is
−λ(i, i) > 0 for all i ∈ E. The general case can be treated by straightforward modifications
of the arguments presented in the paper, as we shall see in Section 4.

For a finite collection {Γk ⊂ E, k ∈ K} of subsets of E, define

τk := inf{u ∈ (0,∞) : Xu ∈ Γk}.

The index set K can be any finite set, but we will always take it to be a finite subset of the
integers. In the next section we derive formulas for the (conditional) joint density and tail
probabilities of the stopping times {τk, k ∈ K}. To ease notation, unless otherwise noted, we
will assume throughout that E −

⋃
k∈K Γk is not empty and that the initial distribution α

puts its full mass on this set, see Remark 3.2 and subsection 3.3 for comments on how one
removes this assumption.

For a set a ⊂ E, ac will mean its complement with respect to E and |a| will mean the
number of elements in it. For two subsets a, b ⊂ E define λ(a, b) as the matrix with elements

{
λ(i, j) if i ∈ a, j ∈ b,

0, otherwise.
(3)

For a ⊂ E, we will write λ(a) for λ(a, a), so that in particular λ = λ(E).
Throughout we will need to refer to zero matrices and vectors of various dimensions, we

will write all as 0; the dimension will always be clear from the context.

2.1 Restriction and extension of vectors and τ as a random function

For any nonempty finite set a, let Ra be the set of functions from a to R. Ra is the same as
R
|a|, except for the way we index the components of their elements. For two sets a ⊂ b and

y ∈ R
b denote y’s restriction to a by y|a ∈ R

a:

y|a(i) := y(i) for i ∈ a. (4)

The same notation continues to make sense for a of the form b× c, and therefore can be used
to write submatrices of a matrix. Thus, for M ∈ R

E×E and nonempty b, c ⊂ E

M|b×c (5)

will mean the submatrix of M consisting of its components M(i, j) with (i, j) ∈ b × c. For
b = c we will write M|b.
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For x ∈ R
a, and a ⊂ b, denote by x|b ∈ R

b the following extension of x to b:

x|b(i) =

{
x(i) for i ∈ a,

0, otherwise.
(6)

The random vector τ = (τk, k ∈ K) can also be thought of as a random function on K,
and we will often do so. Thus for A ⊂ K, we may write τ |A to denote (τk, k ∈ A). The
advantage of the notation τ |A is that we are able to index its components with elements of
A rather than with the integers {1, 2, 3, ..., |A|}; this proves useful when stating the recursive
formulas and proofs below.

2.2 Subpartitions of K

The key aspect of the distribution of τ , already mentioned in the introduction, is that it may

put nonzero mass on lower dimensional subsets of R
|K|
+ . This happens, for example, when

X can hit
⋂

k∈A Γk before
⋃

k∈A Γk −
⋂

k∈A Γk with positive probability for some A ⊂ K

with |A| > 1. As this example suggests, one can divide R
|K|
+ into a number of regions and

associate with each an intersection of events of the form “X hits a before b” for appropriate
subsets of a, b ⊂ E. To write down the various regions and the corresponding events we will
use subpartitions of K, which we introduce now.

Recall that K is the set of indices of the stopping times {τk} or equivalently the sets
{Γk}. We call an ordered sequence of disjoint nonempty subsets of K a subpartition of K.
If the union of all elements of a subpartition is K then we call it a partition. For example,
({1, 2}, {3}, {4}) [({1, 2}, {4})] is a [sub]partition of {1, 2, 3, 4}. Denote by |s| the number of
components in the subpartition and by s(n) its nth component, n ∈ {1, 2, 3, ..., |s|}. In which
order the sets appear in the partition matters. For example, ({3}, {4}, {1, 2}) is different
from the previous partition. In the combinatorics literature this is often called an “ordered
partition,” see, e.g., [21]. Only ordered partitions appear in the present work and therefore
to be brief we always assume every subpartition to have a definite order and we drop the
adjective “ordered.” With a slight abuse of notation we will write s(n1, n2) to denote the
n2-th element of the n1-th set in the partition.

Two subpartitions s1 and s2 are said to be disjoint if ∪ns1(n) and ∪ns2(n) are disjoint
subsets ofK. For a given disjoint pair of subpartitions s1, s2 let s1∪s2 be their concatenation,
for example ({1, 2}, {3}) ∪ ({4, 6}) = ({1, 2}, {3}, {4, 6}).

For a subpartition s, let Ls be its shift given as

Ls = L(s(1), s(2), ..., s(|s|)) := (s(2), s(3), ..., s(|s|)).

Let Lm denote left shift m times. Similarly for t ∈ R
n, n > 1 let Lt ∈ R

n−1 be its left shift.
For t ∈ R

n and r ∈ R let t− r denote (t1 − r, t2 − r, ..., tn − r).
Given a subpartition s and an index 0 < n ≤ |s|, let s− s(n) be the subpartition which

is the same as s but without s(n), e.g., ({1, 2}, {3}, {4, 7}) −{3} = ({1, 2}, {4, 7}). Given a

nonempty A ⊂ K −
⋃|s|

n=1 s(n) let s + A denote the subpartition that has all the sets in s
and A, e.g., ({1, 2}, {3}) + {4, 7} = ({1, 2}, {3}, {4, 7}).

Define S(s) :=
⋃|s|

n=1

⋃
k∈s(n) Γk, S(s) is the set of all states ofX contained in the partition

s. For a partition s, define Rs ⊂ R
K
+ as
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Rs :=

|s|⋂

n=1

{
t ∈ R

K
+ : tk1 = tk2 , k1, k2 ∈ s(n)

}

∩

{
t ∈ R

K
+ : ts(1,1) < ts(2,1) < · · · < ts(|s|,1)

}
. (7)

Example 2.1. For |K| = 6, and s = ({1, 4}, {2}, {3, 5, 6}), we have |s| = 3, s(1) =
{1, 4}, s(2) = {2}, s(3) = {3, 5, 6}, s(1, 1) = 1, s(2, 1) = 2, s(3, 1) = 3 and

Rs = {t : t1 = t4 < t2 < t3 = t5 = t6}.

Let S be the set of all partitions of K. The sets Rs, s ∈ S, are disjoint and their union
is R

K
+ . Our main result, Theorem 3.1 below, shows that for each s ∈ S, the distribution

of τ restricted to Rs is absolutely continuous with respect to the |s|-dimensional Lebesgue
measure on Rs and gives a formula for the corresponding density.

Let I be the identity matrix I ∈ R
|E|×|E|. For a ⊂ E, we replace its rows whose indices

appear in ac with the 0 vector and call the resulting matrix Ia, e.g., IE is I itself and I∅ is
the zero matrix. The action of matrix Ia on matrices is described in the following simple
well-known fact:

Lemma 2.1. Let n be a positive integer. For any M ∈ R
|E|×n, the left multiplication by

Ia, i.e. IaM, acts on the rows of M, and IaM is the same as M except that its rows whose
indices are in ac are replaced by 0 (a zero row vector of dimension n), i.e., if ri is the i

th row
of M then the ith row of IaM is ri if i ∈ a and 0 otherwise. Similarly, right multiplication
by Ia acts on the columns of a matrix M ∈ R

n×|E|, and MIa is the same as M except that
now the columns with indices in ac are set to zero.

It follows from (3) and Lemma 2.1 that λ(a, b) = IaλIb. The operation of setting some
of the columns of the identity matrix to zero commutes with set operations, i.e., one has
Ia∩b = IaIb, Ia∪b = Ia+Ib−IaIb, Iac = I−Ia. Using this and Lemma 2.1 one can write any
formula involving λ in a number of ways. For example, λ(ac, a) can be written as IacλIa =
(I− Ia)λIa = λIa − IaλIa, and λ(a, b ∩ c) can be written as IaλIb∩c = IaλIbIc = IaλIcIb.

3 The density of first hitting times

We start by deriving the density of a single hitting time over sets of sample paths that avoid
a given subset of the state space until the hitting occurs.

3.1 Density of one hitting time

For any set d ⊂ E, j ∈ E, α ∈ P(E) and u ∈ R+ we define puα,d(j) := Pα(Xu = j,Xv /∈
d, ∀v ≤ u), pud(i, j) := puδi,d(j) = Pi(Xu = j,Xv /∈ d, ∀v ≤ u), and pu(i, j) := Pi(Xu = j). The
symbol pu

α,d will denote the row vector with components puα,d(j); p
u
d and pu will denote the

|E| × |E| matrices with elements pud(i, j) and pu(i, j), respectively. Note that pu
α,d = αpu

d . It
follows from the definition of pu that

lim
u→0

pu(i, j)/u = λ(i, j). (8)

Lemma 3.1. Let α be an initial distribution on E with α|d = 0. Then

pu
α,d = αeuλ(d

c). (9)
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Proof. We only need to modify slightly the proof of [2, Theorem 3.4, page 48]. The steps are:
1) write down a linear ordinary differential equation (ODE) that the matrix valued function
u → pu

d |dc , u ∈ R+, satisfies, 2) the basic theory of ODEs will tell us that the unique solution
is u → euλ(d

c)|dc .
Let ν1 be the first jump time of X; for X0 = i ∈ dc, ν1 is exponentially distributed with

rate −λ(i, i) > 0.1 Conditioning on ν1 gives

pud(i, j) = Pi(ν1 > u)δi(j) +

∫ u

0

λ(i, i)eλ(i,i)v


 ∑

l∈dc−{i}

λ(i, l)

λ(i, i)
pu−v
d (l, j)


 dv (10)

for (i, j) ∈ dc × dc. In comparison with the aforementioned proof we have only changed the
index set of the last sum to ensure that only paths that keep away from d are included. The
unique solution of (10) equals pu

d |dc = euλ|dc = euλ(d
c)|dc . The equality (9) follows from this

and α|d = 0.

Remark 3.1. Probabilities that concern sample paths that stay away from a given set are
called “taboo probabilities” in [22, Section 1.2]; [22, Equation (F), page 28] is equivalent to
(10).

The next result (written in a slightly different form) is well known, see, e.g., [19, 5]; we
record it as a corollary here.

Corollary 3.1. For τd := inf{u : Xu ∈ d}, and an initial distribution with α|d = 0

Pα(τd > u) = αeuλ(d
c)1. (11)

Proof. Pα(τd > u) =
∑

j∈dc Pα(Xu = j,Xv /∈ d, ∀v ≤ u) = αeuλ(d
c)1, where the last equality

is implied by (9).

Remark 3.2. One must modify (11) to Pα(τd > u) = αIdce
uλ(dc)1, Pα(τd = 0) = αId1 if

one does not assume α|d = 0.

Once Pα(τd > u) is known, one can differentiate it to compute the density of τd. This
seems to be the main method of derivation in most of the prior literature on phase-type
distributions. This works well for a single hitting time or for nonsingular parts of the dis-
tribution of τ (see [5, 12]). However, as explained in the introduction, the same idea runs
into difficulties if one tries to use it to compute the singular parts of the distribution of τ .
The next theorem computes the density directly for the case of a single stopping time τd.
The theorem allows also to specify a subset b ⊂ E that the process is required to stay away
before the hitting time; this generalization turns out to be useful in extending the theorem
to multiple hitting times (see the next subsection).

Proposition 3.1. Let a, b ⊂ E, a ∩ b = ∅ be given. Define τa := inf{u : Xu ∈ a} and set
d = a ∪ b. Then

d

du
[Pα(τa ∈ (0, u], Xv /∈ b, ∀v < τa)] = αeuλ(d

c)
λ(dc, a)1, (12)

where α is the initial distribution of X with α|d = 0.

In other words, the density of τa on the set {Xv /∈ b, ∀v < τa} is given by the right side
of (12).

1See Remark 2.1.
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Proof of Proposition 3.1. The definition of the exponential distribution implies thatX jumps
more than once during the time interval [u, u+ h] has probability O(h2). This, (8) and the
Markov property of X (invoked at time u) give

Pi(Xτa = j, τa ∈ (u, u+ h), Xv /∈ b, ∀v ≤ u)

=

(
∑

l∈dc

pud(i, l) λ(l, j)

)
h+ o(h). (13)

Pi(τa ∈ (u, u+ h), Xv /∈ d, ∀v ≤ u) =


∑

j∈a

∑

l∈dc

pud(i, l) λ(l, j)


h+ o(h). (14)

By the previous lemma pud(i, l) equals exactly the (i, l)th component of euλ(d
c). These imply

(12).

Setting b = ∅ in Proposition 3.1 we get the density of τa. The following result will be
needed in the proof of Theorem 3.1.

Proposition 3.2. Let a, b ⊂ E, a ∩ b = ∅. Define τa := inf{u : Xu ∈ a} and d = a ∪ b. Let
α is an initial distribution on E with α|d = 0. Set α1 := αeτaλ(d

c)
λ(dc, a) and V := {Xv /∈

b, ∀v ≤ τa}. Then
Pα(Xτa = j|(τa, 1V)) = α1(j)/α11 on V ,

where 1V is the indicator function of the event V .

Note that V is the event that X does not visit the set b before time τa.

Proof. The proof follows from (13) and the definition of the conditional expectation.

3.2 The multidimensional density

One can extend (12) to a representation of the distribution of τ using the subpartition
notation of subsection 2.2 as follows. For a partition s of K, n ∈ {1, 2, ..., |s|} and t ∈ Rs ⊂
R
K
+ , define

t̄n := ts(n,1), t̄0 := 0, Wn := [S(Ln−1s)]c, Tn :=


 ⋂

k∈s(n)

Γk


 ∩Wn+1, (15)

where W stands for “waiting” and T for “target.” In particular, W1 = [S(L0s)]c = [S(s)]c =
[
⋃

k∈K Γk]
c = E −

⋃
k∈K Γk.

The key idea of the density formula and its proof is the |s| step version of the one in
Proposition 3.1: in order for τ = t ∈ R

K
+ , X has to stay in the set W1 until time t̄1 and jump

exactly at that time into T1 ⊂ W2; then stay in the set W2 until time t̄2 and jump exactly
then into T2 and so on until all of the pairs (Wn, Tn), n ≤ |s|, are exhausted.

Although not explicitly stated, all of the definitions so far depend on the collection
{Γk, k ∈ K}. We will express this dependence explicitly in the following theorem by including
the index set K as a variable of the density function f . This will be useful in its recursive
proof, in the next subsection where we comment on the case when α is an arbitrary initial
distribution and in Proposition 3.3. For a sequence M1,M2, ...,Mn of square matrices of
the same size

∏n
m=1Mm will mean M1M2 · · ·Mn.
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Theorem 3.1. For any partition s ∈ S, the distribution of τ on the set Rs has density

fs(α, t,K) = α




|s|∏

n=1

eλ(Wn)(t̄n−t̄n−1)λ(Wn, Tn)


1, t ∈ Rs (16)

with respect to the |s|-dimensional Lebesgue measure on Rs.

Proof. The proof will use induction on |K|. For |K| = 1, (16) is the same as (12) with b = ∅.
Let κ > 1 and suppose that (16) holds for all K with |K| ≤ κ − 1; we will now argue that
(16) also holds for all K with |K| = κ. Fix a K with |K| = κ and a partition s of K; we
will show that the distribution of τ restricted to Rs has the density (16). Specifically, we
will show that for any bounded and measurable function g : RK → R the following equality
holds

E[1Rs
(τ )g(τ )] =

∫

Rs

g(t)fs(α, t,K)dst, (17)

where dst denotes the |s|-dimensional Lebesgue measure on Rs.
Define ϑ := min{τk, k ∈ K}, i.e., ϑ is the first time X enters the set

⋃
k∈K Γk. In the

rest of the proof we will proceed as if Pα(ϑ < ∞) = 1; the treatment of the possibility
Pα(ϑ = ∞) > 0 needs no new ideas and the following argument can be extended to handle
it by adding several case by case comments. On the set {τ ∈ Rs} the following conditions
hold:

1) Xϑ ∈ T1, 2) Xu ∈ W1 for u ≤ ϑ.

These imply ϑ = τs(1,1) holds on the same set. Therefore,

{τ ∈ Rs} ⊂ W1 := {Xu ∈ W1, u < ϑ} ∩ {Xϑ ∈ T1}. (18)

Proposition 3.1 implies that if λ(W1, T1) is zero, then W1 has probability zero. Thus, (18)
implies that if λ(W1, T1) is zero then Pα(τ ∈ Rs) = 0 and, indeed, fs(α, t,K) = 0 is the
density of τ on Rs. From here on, we will treat the case when λ(W1, T1) is nonzero.

Next, define the process X̂ by X̂u := Xu+ϑ, u ≥ 0, and τ̂ = (τ̂k, k ∈ S(Ls)) where
τ̂k := inf{u : X̂u ∈ Γk}; X̂ is the trajectory of X after time ϑ. The strong Markov property
of X implies that X̂ is a Markov process with intensity matrix λ and starting from X̂0 = Xϑ.
This and (18) imply

τ̂ = τ |Ls − ϑ, (19)

where τ |Ls is defined in accordance with (4). Finally, the definition of τ̂ and that of W1

imply
{τ ∈ Rs} = W1 ∩ {τ̂ ∈ RLs}. (20)

In words, this equality says: for τ to be partitioned according to s, among all {Γk}, X
must visit

⋂
k∈s(1) Γk first and after this visit the rest of the hitting times must be arranged

according to the partition Ls.

Denote by 11 the function that maps all elements of K to 1. Define ĝ : R+ ×R
S(Ls)
+ → R

as
ĝ(u, t̂) := g

(
u11 + t̂|S(s)

)
,

where we used the vector extension notation of (6). Equalities (19) and (20) imply

E[1Rs
(τ )g(τ )] = E[1W1

1RLs
(τ̂ )ĝ(ϑ, τ̂ )]

= E[E[1W1
1RLs

(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]] (21)

= E[1W1
E[1RLs

(τ̂ )ĝ(ϑ, τ̂ )|Fϑ]],
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where for the last equality we used the fact that the set W1 is Fϑ measurable. The
property 5A in [8, page 98] implies

E[1RLs
(τ̂ )ĝ(ϑ, τ̂ )|Fϑ] = h(ϑ)

where
h(u) := E[1RLs

(τ̂ )ĝ(u, τ̂ )|Fu]. (22)

The strong Markov property of X and the definition of X̂ imply

h(u) = E[1RLs
(τ̂ )ĝ(u, τ̂ )|Xu] = E[1RLs

(τ̂ )ĝ(u, τ̂ )|X̂0].

The random variable X̂0 takes values in a finite set and therefore one can compute the con-
ditional expectation E[1RLs

(τ̂ )ĝ(u, τ̂ )|X̂0] by conditioning on each of these values separately.

Since X̂ is a Markov process with initial value X̂0 with intensity matrix λ, one can invoke
the induction hypothesis for the set K − s(1) to conclude that, on the set {X̂0 = j},

h(u) = E[1RLs
(τ̂ )ĝ(u, τ̂ )|X̂0 = j] =

∫

RLs

fLs(δj , t,K − s(1))g(u, t)dLst (23)

where fLs is given as in (16) with s changed to Ls and K changed to K − s(1). Once we
substitute (23) in (21) we get an expectation involving only three random variables: ϑ, 1A
and X̂0 = Xϑ, where A = {Xu ∈ W1, u < ϑ}. Proposition 3.1 implies that the density
of ϑ on the set A is αeλ(W1)t̄1λ(W1, T1)1, and Proposition 3.2 implies that the law of X̂0

conditioned on ϑ and 1W1
is

αeλ(W1)ϑλ(W1, T1)

αeλ(W1)ϑλ(W1, T1)1
.

These, the induction hypothesis, (22) and (23) imply that the outer expectation (21) equals
(17). This last assertion finishes the proof of the induction step and hence the theorem.

In what follows, to ease exposition, we will sometimes refer to f as the “density” of τ
without explicitly mentioning the reference measures ds, s ∈ S.

Remark 3.3. The first κ > 0 jump times of a standard Poisson process with rate λ ∈ (0,∞)
have the joint density

∏κ
n=1 e

λ(tn−tn−1)λ, 0 = t0 < t1 < t2 < · · · < tκ. Similarly, the
first κ > 0 jump times of a Markov arrival process with intensity matrix C + D (where
C [D] is the matrix of transition intensities with [without] arrivals) have joint density
α
(∏κ

n=1 e
D(tn−tn−1)C

)
1, see [4] or [2, page 304]. The density (16) can also be interpreted

as a generalization of these formulas.

3.3 When α puts positive mass on ∪kΓk

If α puts positive mass on γ :=
⋃

k∈K Γk, one best describes the law of τ proceeding as
follows. Define ᾱ′ := 1 −

∑
i∈γ α(i) and α′ := (α −

∑
i∈γ α(i)δi)/ᾱ

′ if ᾱ′ > 0; ᾱ′ is a real
number and α′, when defined, is a probability measure.

First consider the case when ᾱ′ > 0. The foregoing definitions imply

Pα(τ ∈ U) = ᾱ′Pα′(τ ∈ U) +
∑

i∈γ

α(i)Pi(τ ∈ U) (24)

for any measurable set U ⊂ R
K
+ . By its definition α′ puts no mass on γ = ∪k∈KΓk and

therefore Theorem 3.1 is applicable and f(α′, ·,K) is the density of the probability measure
Pα′(τ ∈ ·). For the second summand of (24), it is enough to compute each Pi(τ ∈ U)
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separately. Define Ki := {k : i ∈ Γk}, Ui := {t : t ∈ U, tk = 0, k ∈ Ki}, Ūi := {t|Kc

i
, t ∈ Ui}.

Now remember that i ∈ γ; thus if i ∈ Γk then τk = 0 under Pi, and therefore Pi(τ ∈ U) =
Pi(τ ∈ Ui). For τ ∈ Ui, the stopping times τ |Ki

are all deterministically 0. Thus to compute
Pi(τ ∈ Ui) it suffices to compute Pi(τ |Kc

i
∈ Ūi). But by definition i /∈ ∪k∈Kc

i
Γk and once

again Theorem 3.1 is applicable and gives the density of τ |Kc

i
under Pi as f(δi, ·,K

c
i ).

If ᾱ′ = 0 then
Pα(τ ∈ U) =

∑

i∈γ

α(i)Pi(τ ∈ U)

and the computation of Pi(τ ∈ U) goes as above.

3.4 Tail probabilities of τ

Probabilities of tail events have representations as integrals of densities given in Theorem

3.1 over appropriate subsets of R
|K|
+ . But to try to evaluate such integrals directly would not

be a good idea. In the present subsection, we derive a recursive and compact representation
of these probabilities that use a version of the density formula and the ideas used in its
derivation.

By tail probabilities we mean probabilities of sets of the form {τ2 = τ4 > t1, τ3 > t2, τ1 =
τ5 > t2, τ3 6= τ2, τ1 6= τ2, τ1 6= τ3}, or more generally

|s|⋂

n=1

⋂

k1,k2∈s(n)

{τk1
= τk2

} ∩
{
τs(n,1) > tn

} ⋂

n1 6=n2,n1,n2≤|s|

{τs(n1,1) 6= τs(n2,1)}, (25)

where s is a partition of K, and t ∈ R
|s|
+ is such that tn < tn+1. In (25) all equality and

inequality condition are explicitly specified. One can write standard tail events in terms of
these e.g., {τ1 > t1} ∩ {τ2 > t2} is the same as the disjoint union

({τ1 > t1, τ2 > t2} ∩ {τ1 6= τ2}) ∪ {τ1 = τ2 > max(t1, t2)}.

Both of these sets are of the form (25). Thus, it is enough to be able to compute probabilities
of events of the form (25).

Remark 3.4. From here on, to keep notation short, we will assume that, over tail events,
unless explicitly stated with an equality condition, all stopping times appearing in them are
different from each other (therefore, when writing formulas, we will omit the last intersection
in (25)).

A tail event of the form (25) consists of a sequence of constraints of the form

{τs(n,1) = τs(n,2) = · · · = τs(n,|s(n)|) > tn}.

There are two types of sub-constraints involved here: that entrances to all Γk, k ∈ s(n),
happen at the same time and that this event occurs after time tn. Keeping track of all of
these constraints as they evolve in time requires that we introduce yet another class of events

that generalize (25). For two disjoint subpartitions s1 and s2 of K and an element t ∈ R
|s1|
+

such that t|s1| > t|s1|−1 > · · · > t2 > t1 (if |s1| = 0 by convention set t = 0) define

T (s1, s2, t) :=




|s1|⋂

n=1

⋂

k1,k2∈s1(n)

{τk1 = τk2} ∩
{
τs1(n,1) > tn

}

∩

|s2|⋂

m=1

⋂

ℓ1,ℓ2∈s2(m)

{τℓ1 = τℓ2}. (26)
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In view of Remark 3.4, setting s1 = s and s2 = ∅ reduces (26) to (25). The indices in s1
appear both in equality constraints and time constraints while indices in s2 appear only in
equality constraints.

Remark 3.5. The definition (26) implies that if a component of s2 has only a single element,
that component has no influence on T (s1, s2, t). For example, T (s1, ({1}, {2, 3}), t) is the
same as T (s1, ({2, 3}), t).

To express Pα(T (s1, s2, t)) we will define a collection of functions pi, i ∈ E, of s1, s2 and
t. We will denote by p the column vector with components pi, i ∈ E.

For s1 = ∅, and i ∈ E define pi(∅, s2, 0) as pi(∅, s2, 0) := Pi(T (∅, s2, 0)). If s2 is empty
or if it consists of components with single elements, then the definitions of p and T and
Remark 3.5 imply

p(∅, s2, 0) = 1. (27)

For a given disjoint pair of subpartitions s1, s2 define

Tn(s1, s2) :=
⋂

k∈s2(n)

Γk − S(s1 ∪ s2 − s2(n)), T (s1, s2) :=

|s2|⋃

n=1

Tn(s1, s2).

If s1 6= ∅, define p recursively as

p(s1, s2, t) := (28)

∫ t1

0
euλ(W )

λ(W,T (s1, s2))




|s2|∑

n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)


 du

+ et1λ(W )p (Ls1, s2 + s1(1), Lt− t1) ,

where W = [S(s1 ∪ s2)]
c.

Theorem 3.2. Suppose E − S(s1 ∪ s2) is not empty and that α is an initial distribution on
E that puts all of its mass on this set. Then

Pα(T (s1, s2, t)) = αp(s1, s2, t).

We omit the proof which is parallel to that of Theorem 3.1 and proceeds by induction.
Theorem 3.2 holds for all finite state Markov processes and does not require that any of the
{Γk} be absorbing. The evaluations of p on the right side of the recursion (28) will have
smaller subpartitions in its arguments; then in a finite number of steps these recursions will
lead to an evaluation of p with s1 = ∅.

Note that (28) reduces to

p(s1, ∅, t) = eλ(S(s1)
c)t1p(Ls1, s1(1), Lt− t1), (29)

if s2 = ∅.
When s1 has no equality constraints and s2 = ∅, one can invoke (29) |s1| times along

with Remark 3.5 and (27) and get

Corollary 3.2. Let α be as in Theorem 3.2. If |s1| > 0 equals the dimension of t, (in
particular, there are no equality constraints) then

Pα(T (s1, ∅, t)) = αp(s1, ∅, t) = α




|s1|∏

n=1

eλ(Wn)(tn−tn−1)


1 (30)

where Wn = [S(Ln−1(s1))]
c.

The formula (30) is a generalization of [5, equation (7)] to general finite state Markov
processes.
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3.5 Conditional formulas

Here we shall compute the conditional density of τ |V c
u0

− u0 given Fu0
, where u0 is a deter-

ministic time. To this end, introduce the set valued process

Vu := {k ∈ K, τk < u}.

K is finite, then so is its power set 2K , thus Vu takes values in a finite set. The set Vu is
the collection of Γk that X has visited up to time u. For ease of notation we will denote the
complement of Vu by V c

u . The times τ |Vu0
are known by time u0 and hence they are constant

given Fu0
. Thus, we only need to write down the regular conditional density of τ |V c

u0

, i.e.,
the hitting times to the Γk that have not been visited by time u0. From here on the idea is
the same as in the proof of Theorem 3.1. Define X̂u := Xu+u0

and for k ∈ V c
u0

τ̂k := inf{u ∈ (0,∞) : X̂u ∈ Γk}.

The definitions of X̂ and τ̂ imply

τ̂ = τ |V c
u0

− u0. (31)

X̂0 = Xu0
is a constant given Fu0

. Thus the process X̂ has exactly the same distribution
as X with initial point Xu0

and Theorem 3.1 applies and gives the density of τ̂ , which
is, by (31), the regular conditional distribution of τ |V c

u0

− u0. Therefore, for any bounded

measurable g : RV c
u0 → R and a partition s′ of V c

u0

E

[
g
(
τ |V c

u0

)
1R

s′

(
τ |V c

u0

)
|Fu0

]
=

∫

R
s′

g(u0 + u)f(δXu0
, u, V c

u0
)ds′u.

We record this as

Proposition 3.3. The regular conditional density of τ |V c
u0

−u0 given Fu0
is f(δXu0

, t, V c
u0
).

4 Absorbing {Γk} and connections to earlier results

The next subsection shows how the formulas in the previous sections can be simplified when
Γk are absorbing; this assumption is made in [5, 12]. The subsection following it shows how
formulas from [5] can be interpreted as special cases of the formulas derived in the present
work.

4.1 Density formula for absorbing {Γk}

A nonempty subset a ⊂ E is said to be absorbing if λ(i, j) = 0 for all i ∈ a and j ∈ ac, i.e., if
λ(a, ac) = 0. Let us derive an alternative expression for the density formula (16) under the
assumption that all {Γk, k ∈ K} are absorbing. For this the following proposition is useful:

Proposition 4.1. If a is absorbing and if α|a = 0, then, denoting

puα,a(j) := Pα(Xu = j,Xv /∈ a, ∀v ≤ u),

we have
puα,a = αeλ(a

c)u = αeλuIac (32)
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Proof. We already know from Lemma 3.1 that the first equality holds. Therefore, it only
remains to show puα,a = αeλuIac . The distribution of X at time u is αeλu, i.e., Pα(Xu = j) =

αeλu(j) for all j ∈ E. The fact that a is absorbing implies that if Xu0
∈ a then Xu ∈ a for

all u ≥ u0, Therefore, for j ∈ ac, Pα(Xu = j) = Pα(Xu = j,Xv /∈ a, v ≤ u), i.e.,

(αpuα,a)|ac = (αeλuIac)|ac . (33)

The definition of puα,a and α|a = 0 imply (αpuα,a)|a = 0; The definition of Iac implies

(αeλuIac)|a = 0. This and (33) imply (32).

The previous proposition implies that, when all Γk are absorbing, one can replace the
quantity λ(Wn) that appears in the density formula (16) with λ:

Proposition 4.2. Assume that all Γk are absorbing, and let α be such that α|W c

1
= 0. Then,

for any s ∈ S and t ∈ Rs we have

fs(α, t,K) = α




|s|∏

n=1

eλ(t̄n−t̄n−1)λ(Wn, Tn)


1 , (34)

where fs is the density given in Theorem 3.1.

4.2 Tail probabilities for absorbing {Γk}

When {Γk, k ∈ K} are absorbing, then, in view of (32), one can write the tail probability
that appears in Theorem 3.2, as

Pα(T (s1, s2, t)) =

α

∫ t1

0
eλuλ(W,T (s1, s2))




|s2|∑

n=1

ITn(s1,s2) p(s1, s2 − s2(n), t− u)


 du

+ αeλt1IW p (Ls1, s2 + s1(1), Lt− t1)

and, in particular,

Pα(T (s1, ∅, t)) = αeλt1IS(s1)cp(s1 − s1(1), s1(1), Lt− t1). (35)

4.3 Connections with earlier results

This subsection relates the phasetype density/ tail probability formulas from [5] to the for-
mulas derived in the present work. In [5], the authors assume that E has a single absorbing
state called ∆ and they denote by A what in our paper is denoted by λ|{∆}c . Moreover, [5]

uses the letter α to denote the initial distribution of X, but on the set Ê := E−{∆}, rather
then on the set E as it is done here; in particular, [5] implicitly assumes P (X0 = ∆) = 0. We
will use the symbol α̂ to denote the ‘α of [5].’ The relation between α and α̂ is α|{∆}c = α̂.

As far as the singular densities / tail probabilities of τ [5] treats only the case of |K| = 2.
Using the notation of that paper, we are given two sets Γ1,Γ2 ⊂ E with Γ1 ∩ Γ2 = {∆}, Tk

is the first hitting time to Γk. The formula [5, Equation (5), page 692] says

Pα(T1 = T2 > u) = α̂eAuA−1(Ag1g2 − [A, g1]− [A, g2])e, (36)

where gk = IΓk
|{∆}c and for two matrices B and C, [B,C] := BC − CB. The absorbing

property of Γ1 and Γ2 implies that the matrix inside the parenthesis in (36) equals g′A,
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where g′ = I(Γ1∪Γ2)c |Ê i.e., the same matrix as A except that the rows whose indices appear
in Γ1 ∪ Γ2 are replaced with 0. Thus (Ag1g2 − [A, g1]− [A, g2])e is another way to take the
∆ column of λ and replace its components whose indices appear in Γ1 ∪ Γ2 with 0. Denote
this vector by C∆. Then the right side of (36) is

α|
Ê

(
eλu|

Ê

)
A−1C∆. (37)

In the present work, the same probability is expressed by a special case of (35); for the
present case one sets K = {1, 2}, s1 = ({1, 2}); for these values, (29) and conditioning on
the initial state gives

Pα(τ1 = τ2 > u) = αeλuIwp(∅, ({1, 2}), 0), (38)

where w = (Γ1∪Γ2)
c. One sees that this is equivalent to (37) as follows. On the right side of

the last display s1 = ∅ and we have no time constraints (the inequality constraints related to
t) and thus p(∅, ({1, 2}), 0) is the probability of the event {τ1 = τ2}; the expression following
the matrix exponential in (37) represents this probability. Finally, the absorbing property
of the underlying chain and X0 6= ∆ imply that we can ignore the restriction to Ê in (37).

The second density formula from [5] is for the absolutely continuous part of the distri-
bution of τ ; [12] makes use of this formula in the following context. The process X of [12]
is a Markov jump process (with absorbing boundary) taking values in Z

m
2 := {0, 1}m (the

m-fold Cartesian product), with jumps in {−ek, k = 1, 2, 3, ...,m}, where ek is the unit vector
with kth coordinate equal to 1. In [12] the absorbing sets are denoted as ∆i, see the display
after [12, (2.3)], and they correspond to Γk = {z ∈ Z

m
2 : zk = 0} in our present setup. The

key property of the setup in [12] is this: take any collection {Γk1 ,Γk2 , ...,Γkn} with n > 1;
because the only increments of X are the {−ek}, the process cannot enter the sets in the
collection at the same time. Thus, in this formulation, X must hit the {Γk} at separate
times and the distribution of τ has no singular part, i.e., P (τ ∈ Rs) = 0 for |s| < m, and one
needs only the density of τ with respect to the full Lebesgue measure in R

m (the “absolutely
continuous part”); thus, for the purposes of [12] the density of the absolutely continuous
part of the distribution of τ is sufficient and a formula for this is already available in [5] and
is given in [12, display (3.1.1)] as follows:

f(t) = (−1)mα

(
m−1∏

n=1

eλ(t̄n−t̄n−1)(λGkn −Gknλ)

)
eλ(t̄m−t̄m−1)λGkm1, (39)

for t ∈ Rs with |s| = m; here Gk = IΓc

k
and kn is the index for which tkn = t̄n ([12] uses

the letter Q for the rate matrix λ). We have derived the full density formula (34) in the
absorbing case in Section 4 describing the density of τ over its all possible parts (singular
and nonsingular). Arguments similar to those given for th two dimensional formula can be
used to show that (34) reduces to (39) when all components of t are distinct.

5 Numerical Example

The state space of our numerical example is E = Z
3
3, where Z3 = {0, 1, 2}; the state space

has 27 elements. For z ∈ Z
3
3 and k ∈ K = {1, 2, 3} let zk denote the kth component of z. For

the collection {Γk} take
Γk = {z ∈ E : zk = 0}.

τk, as before, is the first time the process X hits the set Γk. The initial distribution α will
be the uniform distribution over the set

E −
⋃

k∈K

Γk =

{
z ∈ E : min

k∈K
zk > 0

}
.
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Figure 1: The level curves of the density f for τ2 = τ3 < τ1. On the right: the values of f
over the line segment connecting (0, 0) to (0.5, 1)
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Figure 2: The density f for τ1 = τ2 = τ3

We will compute the density of τ = (τ1, τ2, τ3) over the sets Rs1 , Rs2 ⊂ R
3
+ defined by

the partitions s1 = ({2, 3}, {1}) and s2 = ({1, 2, 3}); the first corresponds to the event
{τ ∈ Rs1} = {τ2 < τ1 = τ3} and the second to {τ ∈ Rs2} = {τ1 = τ2 = τ3}.

The dynamics of X on Z
3
3 for our numerical example will be that of a constrained random

walk with the following increments:

± ek,±(e1 + e2),±(e1 + e2 + e3), k ∈ K, (40)

where e1 := (1, 0, 0), e2 := (0, 1, 0) and e3 := (0, 0, 1); the {Γk} are assumed to be absorbing,
i.e., if Xu0

∈ Γk any increment involving ±ek can no longer be an increment of X for u > u0.
The sets Bk := {z : zk = 2} are “reflecting” in the sense that if Xt ∈ Bk for some t,
increments involving +ek cannot be the first increment of X in the time interval [t,∞). We
assume the following jump rates for the increments listed in (40):

2 , 1 , 2 , 1 , 3 , 1 , 0.5 , 0.5 , 0.2 , 0.2;

e.g., if X0 = (1, 1, 1) and σ1 denotes the first jump time of X, σ1 is exponentially distributed
with rate s where s is the sum of the rates in the above display and P (Xσ1

= X0+ e1+ e2+
e3) = 0.2/s. These rates and the aforementioned dynamics give a 27 × 27 λ matrix. The
level sets f(α, ·,K)|Rs1

are depicted in Figure 1 and the graph of f(α, ·,K)|Rs2
is depicted

in Figure 2.
For the parameter values of this numerical example, Pα(∩k 6=k′τk 6= τk′) = 0.899 and thus

the singular parts account for around 10% of the distribution of τ .
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6 Conclusion

Our primary motivation in deriving the formulas in the present paper has been their potential
applications to credit risk modeling. Let us comment on this potentiality starting from the
credit risk model of [12]. With the results in the present work one can extend the modeling
approach of [12] in two directions. Remember that the underlying process in [12] can only
move by increments of {−ek} i.e., the model assumes that the obligors can default only one
at a time. However, for highly correlated obligors it may make sense to allow simultaneous
defaults, i.e., allow increments of the form −

∑
n ekn . Once multiple defaults are allowed

the default times will have nonzero singular parts and the formulas in the present work can
be used to compute them, as is done in the numerical example of Section 5. Secondly, the
default sets {Γk} no longer have to be assumed to be absorbing. Thus, with our formulas,
one can treat models that allow recovery from default.

As |E| increases (16) and other formulas derived in the present paper can take too long
a time to compute (the same holds for earlier density formulas in the prior literature). Thus
it would be of interest to derive asymptotic approximations for these densities.
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