Uniform result for solutions of an equation with boundary singularity.
Samy Skander Bahoura

To cite this version:
hal-01250730v1

HAL Id: hal-01250730
https://hal.archives-ouvertes.fr/hal-01250730v1
Submitted on 5 Jan 2016 (v1), last revised 23 Oct 2018 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNIFORM RESULT FOR SOLUTIONS OF AN EQUATION WITH BOUNDARY SINGULARITY.

SAMY SKANDER BAHOURA

ABSTRACT. We give a blow-up analysis for a Brezis-Merle’s type problem, with singularity and with Dirichlet condition. An application, we have a proof of a compactness result for this problem.

Keywords: blow-up, boundary, singularity, a priori estimate, Lipschitz condition.

1. INTRODUCTION AND MAIN RESULTS

We set \(\Delta = \partial_{11} + \partial_{22} \) on open set \(\Omega \) of \(\mathbb{R}^2 \) with a smooth boundary.

We consider the following equation:

\[
(P_\beta) \begin{cases}
-\Delta u = |x|^{2\beta}Ve^u & \text{in } \Omega \subset \mathbb{R}^2, \\
u = 0 & \text{in } \partial\Omega.
\end{cases}
\]

Here:

\(\beta \in (0, 1), \ 0 \in \partial\Omega \)

and,

\(u \in W_0^{1,1}(\Omega), \ |x|^{2\beta}e^u \in L^1(\Omega) \) and \(0 \leq V \leq b \).

The above equation was studied by many authors, with or without the boundary condition, also for Riemann surfaces, see [1-15], we can find some existence and compactness results.

Among other results, we can see in [6] the following important Theorem. (as in [6], we use the first eigenfunction \(\varphi_1 \) and the expansion of \(\varphi_1 \) near 0 to bound uniformly \(\int_K |x|^{2\beta}Ve^u \) for all compact \(K \) of \(\Omega \), because \(0 < \beta < 1, |x-x_0|^2 \leq C|x-x_0|^{2\beta} \) and we use Holder inequality in \(\int u_i\varphi_1 \leq \left(\int u_i^\gamma \varphi_1^4 \right)^{1/8} \left(\int \varphi_1^{4/7} \right)^{8/7} \leq C(\int |x-x_0|^2\varphi_1Ve^u)^{1/8}, \) here \(x_0 = 0 \).

Theorem (Brezis-Merle [6]). If \((u_i), \) and \((V_i), \) are two sequences of functions relative to the problem \(P_0) \) with, \(0 < a \leq V_i \leq b < +\infty, \) then,
\[\sup_K u_i \leq c, \]

with \(c \) depending on \(a, b, K \) and \(\Omega \).

One can find in [6] an interior estimate if we assume \(a = 0 \), but we need an assumption on the integral of \(e^{u_i} \), namely, we have:

Theorem B (Brezis-Merle [6]). For \((u_i)_i \) and \((V_i)_i \) two sequences of functions relative to the problem \((P_0)\) with,

\[0 \leq V_i \leq b < +\infty \text{ and } \int_\Omega e^{u_i} dy \leq C, \]

then it holds;

\[\sup_K u_i \leq c, \]

with \(c \) depending on \(b, C, K \) and \(\Omega \).

When \(a = 0 \), the boundedness of \(\int_\Omega e^{u_i} \) is a necessary condition to work on the problem \((P_\beta)\) as showed in [6] by the following counterexample.

Theorem C (Brezis-Merle [6]). There are two sequences \((u_i)_i \) and \((V_i)_i \) of the problem \((P_0)\) with,

\[0 \leq V_i \leq b < +\infty \text{ and } \int_\Omega e^{u_i} dy \leq C, \]

such that,

\[\sup_\Omega u_i \to +\infty. \]

In the regular case \((\beta = 0)\) this equation has many properties:

Note that for the problem \((P_0)\), by using the Pohozaev identity, we can prove that \(\int_\Omega e^{u_i} \) is uniformly bounded when \(0 < a \leq V_i \leq b < +\infty \) and \(||\nabla V_i||_{L^\infty} \leq A \) and \(\Omega \) starshaped, when \(a = 0 \) and \(\nabla \log V_i \) is uniformly bounded, we can bound uniformly \(\int_\Omega V_i e^{u_i} \). In [14], Ma-Wei have proved that those results stay true for all open sets not necessarily starshaped.

In [9], Chen-Li have proved that if \(a = 0 \) and \(\nabla \log V_i \) is uniformly bounded, then the functions are uniformly bounded near the boundary.

In [9], Chen-Li have proved that if \(a = 0 \) and \(\int_\Omega e^{u_i} \) is uniformly bounded and \(\nabla \log V_i \) is uniformly bounded, then we have the compactness result directly. Ma-Wei in [14], extend this result in the case where \(a > 0 \).
If we assume V more regular, we can have another type of estimates, a $\sup + \inf$ type inequalities. It was proved by Shafrir see [15], that, if $(u_i)_i, (V_i)_i$ are two sequences of functions solutions of the previous equation without assumption on the boundary and, $0 < a \leq V_i \leq b < +\infty$, then we have the following interior estimate:

$$C \left(\frac{a}{b} \right) \sup_K u_i + \inf_{\Omega} u_i \leq c = c(a, b, K, \Omega).$$

Now, if we suppose $(V_i)_i$ uniformly Lipschitzian with A the Lipschitz constant, then, $C(a/b) = 1$ and $c = c(a, b, A, K, \Omega)$, see [5].

In this paper we look to the behavior of the blow-up points on the boundary and we have a proof of compactness result when we assume V_i uniformly Lipschitzian.

Here, we write an extension of Brezis-Merle Problem (see [6]) is:

Problem. Suppose that $V_i \to V$ in $C^0(\bar{\Omega})$, with, $0 \leq V_i \leq b$ for some positive constant b. Also, we consider a sequence of solutions (u_i) of (P) relatively to (V_i) such that,

$$\int_{\Omega} |x|^{2\beta} e^{u_i} dx \leq C,$$

is it possible to have:

$$||u_i||_{L^\infty} \leq C = C(V, \beta, \Omega, C)?$$

Here, we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when V_i are uniformly Lipschitzian. For the behavior of the blow-up points on the boundary, the following condition is enough,

$$0 \leq V_i \leq b,$$

The condition $V_i \to V$ in $C^0(\bar{\Omega})$ is not necessary.

But for the proof of the compactness result (for the Brezis-Merle type problem) we assume that:

$$||\nabla V_i||_{L^\infty} \leq A.$$

We have the following caracterization of the behavior of the blow-up points on the boundary.

Theorem 1.1. Assume that $\max_{\Omega} u_i \to +\infty$, where (u_i) are solutions of the probleme (P) with:

$$0 \leq V_i \leq b, \text{ and } \int_{\Omega} |x|^{2\beta} e^{u_i} dx \leq C, \forall \ i,$$
then; after passing to a subsequence, there is a function \(u \), there is a number \(N \in \mathbb{N} \) and \(N \) points \(x_1, x_2, \ldots, x_N \in \partial \Omega \), such that,

\[
\partial_\nu u_i \to \partial_\nu u + \sum_{j=1}^{N} \alpha_j \delta_{x_j}, \quad \alpha_j \geq 4\pi \text{ weakly in the sense of measure } L^1(\partial \Omega).
\]

and,

\[
u_i \to u \text{ in } C^1_{loc}(\bar{\Omega} - \{x_1, \ldots, x_N\}).
\]

In the following theorem, we have a new proof for the global a priori estimate which concern the problem \((P) \).

Theorem 1.2. Assume that \((u_i) \) are solutions of \((P) \) relative to \((V_i) \) with the following conditions:

\[
\beta \in (0, 1), \quad 0 \in \partial \Omega,
\]

and,

\[
0 \leq V_i \leq b, \quad ||\nabla V_i||_{L^\infty} \leq A, \quad \int_{\Omega} |x|^{2\beta} e^{u_i} \leq C,
\]

We have,

\[
||u_i||_{L^\infty} \leq c(b, \beta, A, C, \Omega),
\]

2. **Proof of the theorems**

Proof of theorem 1.1:

We have,

Since \(\int_{\Omega} |x|^{2\beta} e^{u_i} \leq C \), we have, by the Brezis-Merle result see [6], \(e^{k u_i} \in L^1(\Omega) \) for \(k > 2 \) and the elliptic estimates imply that

\[
u_i \in W^{2,k}(\Omega) \cap C^{1,\epsilon}(\bar{\Omega}).
\]

We denote by \(\partial_\nu u_i \) the inner normal derivative of \(u_i \). By the maximum principle, \(\partial_\nu u_i \geq 0 \).

By the Stokes formula, we obtain
\[\int_{\partial \Omega} \partial_{\nu} u_{i} d\sigma \leq C. \]

Thus, using the weak convergence in the space of Radon measures, we have the existence of a positive Radon measure \(\mu \) such that

\[\int_{\partial \Omega} \partial_{\nu} u_{i} d\sigma \leq C, \]

Without loss of generality, we can assume that \(\partial_{\nu} u_{i} > 0 \). Thus, using the weak convergence in the space of Radon measures, we have the existence of a positive Radon measure \(\mu \) such that,

\[\int_{\partial \Omega} \partial_{\nu} u_{i} \varphi d\sigma \rightarrow \mu(\varphi), \quad \forall \ var \in C^{0}(\partial \Omega). \]

We take an \(x_{0} \in \partial \Omega \) such that, \(\mu(x_{0}) < 4\pi \). Without loss of generality, we can assume that the following curve, \(B(x_{0}, \epsilon) \cap \partial \Omega := I_{\epsilon} \) is an interval. (In this case, it is more simple to construct the following test function \(\eta_{\epsilon} \)). We choose a function \(\eta_{\epsilon} \) such that,

\[\begin{cases}
\eta_{\epsilon} \equiv 1, & \text{on } I_{\epsilon}, \ 0 < \epsilon < \delta/2, \\
\eta_{\epsilon} \equiv 0, & \text{outside } I_{2\epsilon}, \\
0 \leq \eta_{\epsilon} \leq 1, \\
\|\nabla \eta_{\epsilon}\|_{L^{\infty}(I_{2\epsilon})} \leq \frac{C_{0}(\Omega, x_{0})}{\epsilon}.
\end{cases} \]

We take \(\tilde{\eta}_{\epsilon} \) such that,

\[\begin{cases}
-\Delta \tilde{\eta}_{\epsilon} = 0 & \text{in } \Omega \\
\tilde{\eta}_{\epsilon} = \eta_{\epsilon} & \text{on } \partial \Omega.
\end{cases} \]

We use the following estimate, see [7]

\[\|\nabla u_{i}\|_{L^{q}} \leq C_{q}, \quad \forall \ i \text{ and } 1 < q < 2. \]

We deduce from the last estimate that, \((u_{i}) \) converge weakly in \(W_{0}^{1,q}(\Omega) \), almost everywhere to a function \(u \geq 0 \) and \(\int_{\Omega} e^{u} < +\infty \) (by Fatou lemma). Also, \(V_{i} \) weakly converge to a nonnegative function \(V \) in \(L^{\infty} \). The function \(u \) is in \(W_{0}^{1,q}(\Omega) \) solution of:

\[\begin{cases}
-\Delta u = |x|^{2\beta} V e^{u} \in L^{1}(\Omega) & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases} \]
As in the corollary 1 of Brezis-Merle result, see [6], we have $e^{ku} \in L^1(\Omega), k > 1$. By the elliptic estimates, we have $u \in C^1(\overline{\Omega})$.

We can write,

$$-\Delta((u_i - u)\tilde{\eta}_\epsilon) = |x|^{2\beta} (V_i e^{u_i} - V e^u)\tilde{\eta}_\epsilon + 2 < \nabla (u_i - u) |\nabla \tilde{\eta}_\epsilon > .$$ \hfill (1)

We use the interior estimate of Brezis-Merle, see [6].

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between $\tilde{\eta}_\epsilon$ and u, we obtain,

$$\int_\Omega |x|^{2\beta} V e^{u} \tilde{\eta}_\epsilon dx = \int_{\partial \Omega} \partial_\nu u \eta \tilde{\eta}_\epsilon \leq 4\epsilon ||\partial_\nu u||_{L^\infty} = C\epsilon$$ \hfill (2)

We have,

\[
\begin{cases}
-\Delta u_i = |x|^{2\beta} V_i e^{u_i} & \text{in } \Omega \\
u_i = 0 & \text{on } \partial \Omega,
\end{cases}
\]

We use the Green formula between u_i and $\tilde{\eta}_\epsilon$ to have:

$$\int_\Omega |x|^{2\beta} V_i e^{u_i} \tilde{\eta}_\epsilon dx = \int_{\partial \Omega} \partial_\nu u_i \eta \tilde{\eta}_\epsilon d\sigma \to \mu(\eta_\epsilon) \leq \mu(I_{2\epsilon}) \leq 4\pi - \epsilon_0, \ \epsilon_0 > 0$$ \hfill (3)

From (2) and (3) we have for all $\epsilon > 0$ there is $i_0 = i_0(\epsilon)$ such that, for $i \geq i_0$,

$$\int_\Omega |x|^{2\beta}|(V_i e^{u_i} - V e^u)\tilde{\eta}_\epsilon| dx \leq 4\pi - \epsilon_0 + C\epsilon$$ \hfill (4)

Step 2: Estimate of integral of the second term of the right hand side of (1).

Let $\Sigma_\epsilon = \{ x \in \Omega, d(x, \partial \Omega) = \epsilon^3 \}$ and $\Omega_{\epsilon^3} = \{ x \in \Omega, d(x, \partial \Omega) \geq \epsilon^3 \}, \epsilon > 0$. Then, for ϵ small enough, Σ_ϵ is hypersurface.

The measure of $\Omega - \Omega_{\epsilon^3}$ is $k_2 \epsilon^3 \leq \mu_L (\Omega - \Omega_{\epsilon^3}) \leq k_1 \epsilon^3$.

Remark: for the unit ball $\bar{B}(0, 1)$, our new manifold is $\bar{B}(0, 1 - \epsilon^3)$.

We write,

$$\int_\Omega \frac{1}{4\pi} < \nabla (u_i - u) |\nabla \tilde{\eta}_\epsilon > |dx = \int_{\Omega_{\epsilon^3}} \frac{1}{4\pi} < \nabla (u_i - u) |\nabla \tilde{\eta}_\epsilon > |dx +$$
\[+ \int_{\Omega - \Omega,3} < \nabla (u_i - u) | \nabla \tilde{\eta}_k > |dx. \]

(5)

Step 2.1: Estimate of \(\int_{\Omega - \Omega,3} < \nabla (u_i - u) | \nabla \tilde{\eta}_k > |dx. \)

First, we know from the elliptic estimates that \(\| \nabla \tilde{\eta}_k \|_{L^{\infty}} \leq C_1/\epsilon^2 \), \(C_1 \) depends on \(\Omega \).

We know that \((|\nabla u_i|)_i \) is bounded in \(L^q \), \(1 < q < 2 \), we can extract from this sequence a subsequence which converge weakly to \(h \in L^q \). But, we know that we have locally the uniform convergence to \(|\nabla u| \) (by Brezis-Merle theorem), then, \(h = |\nabla u| \) a.e. Let \(q' \) be the conjugate of \(q \).

We have, \(\forall f \in L^{q'}(\Omega) \)

\[\int_{\Omega} |\nabla u_i| f dx \to \int_{\Omega} |\nabla u| f dx \]

If we take \(f = 1_{\Omega - \Omega,3} \), we have:

for \(\epsilon > 0 \exists i_1 = i_1(\epsilon) \in \mathbb{N}, \ i \geq i_1, \ \int_{\Omega - \Omega,3} |\nabla u_i| \leq \int_{\Omega - \Omega,3} |\nabla u| + \epsilon^3. \)

Then, for \(i \geq i_1(\epsilon) \),

\[\int_{\Omega - \Omega,3} |\nabla u_i| \leq mes(\Omega - \Omega,3)||\nabla u||_{L^{\infty}} + \epsilon^3 = \epsilon^3(k_1||\nabla u||_{L^{\infty}} + 1). \]

Thus, we obtain,

\[\int_{\Omega - \Omega,3} < \nabla (u_i - u) | \nabla \tilde{\eta}_k > |dx \leq \epsilon C_1(2k_1||\nabla u||_{L^{\infty}} + 1) \]

(6)

The constant \(C_1 \) does not depend on \(\epsilon \) but on \(\Omega \).

Step 2.2: Estimate of \(\int_{\Omega,3} < \nabla (u_i - u) | \nabla \tilde{\eta}_k > |dx. \)

We know that, \(\Omega, \subset \subset \Omega \), and (because of Brezis-Merle’s interior estimates) \(u_i \to u \) in \(C^1(\Omega,3) \). We have,

\[||\nabla (u_i - u)||_{L^{\infty}(\Omega,3)} \leq \epsilon^3, \text{ for } i \geq i_3 = i_3(\epsilon). \]

We write,
\[
\int_{\Omega_3} |\nabla (u_i - u)| \nabla \tilde{\eta} |dx \leq \|\nabla (u_i - u)\|_{L^\infty(\Omega_3)} \|\nabla \tilde{\eta}\|_{L^\infty} \leq C_1 \epsilon \text{ for } i \geq i_3.
\]

For \(\epsilon > 0 \), we have for \(i \in \mathbb{N}, i \geq \max\{i_1, i_2, i_3\} \),

\[
\int_{\Omega} |\nabla (u_i - u)| \nabla \tilde{\eta} |dx \leq \epsilon C_1 (2k_1 \|\nabla u\|_{L^\infty} + 2) \tag{7}
\]

From (4) and (7), we have, for \(\epsilon > 0 \), there is \(i_3 = i_3(\epsilon) \in \mathbb{N}, i_3 = \max\{i_0, i_1, i_2\} \) such that,

\[
\int_{\Omega} |\Delta [(u_i - u) \tilde{\eta}]|dx \leq 4\pi - \epsilon_0 + \epsilon 2C_1 (2k_1 \|\nabla u\|_{L^\infty} + 2 + C) \tag{8}
\]

We choose \(\epsilon > 0 \) small enough to have a good estimate of (1).

Indeed, we have:

\[
\begin{cases}
-\Delta [(u_i - u) \tilde{\eta}] = g_{i,\epsilon} & \text{in } \Omega, \\
(u_i - u) \tilde{\eta} = 0 & \text{on } \partial \Omega.
\end{cases}
\]

with \(\|g_{i,\epsilon}\|_{L^1(\Omega)} \leq 4\pi - \epsilon_0 \).

We can use Theorem 1 of [6] to conclude that there is \(q > 1 \) such that:

\[
\int_{V_{\epsilon}(x_0)} e^{g_{(u_i-u)}}dx \leq \int_{\Omega} e^{g_{(u_i-u)\tilde{\eta}}}dx \leq C(\epsilon, \Omega).
\]

where, \(V_{\epsilon}(x_0) \) is a neighborhood of \(x_0 \) in \(\bar{\Omega} \).

Thus, for each \(x_0 \in \partial \Omega - \{\bar{x}_1, \ldots, \bar{x}_m\} \) there is \(\epsilon_{x_0} > 0, q_1 > 1 \) such that:

\[
\int_{B(x_0, \epsilon_{x_0})} e^{q_1 u_i}dx \leq C, \quad \forall \ i.
\]

By the elliptic estimates, \((u_i \eta)_i\) is uniformly bounded in \(W^{2,q_1}(\Omega) \) and also, in \(C^1(\bar{\Omega}) \).

Finally, we have, for some \(\epsilon > 0 \) small enough,

\[
\|u_i\|_{C^1(\partial B(x_0, \epsilon))} \leq c_3 \quad \forall \ i. \tag{9}
\]

We have proved that, there is a finite number of points \(\bar{x}_1, \ldots, \bar{x}_m \) such that the sequence \((u_i)_i\) is locally uniformly bounded in \(\Omega - \{\bar{x}_1, \ldots, \bar{x}_m\} \).
Proof of theorem 1.2:

Without loss of generality, we can assume that 0 is a blow-up point (either, we are in the regular case). Also, by a conformal transformation, we can assume that \(\Omega = B_1^+ \), the half ball, and \(\partial^+ B_1^+ \) is the exterior part, a part which not contain 0 and on which \(u_i \) converge in the \(C^1 \) norm to \(u \). Let us consider \(B_\epsilon^+ \), the half ball with radius \(\epsilon > 0 \).

The Second Pohozaev identity gives (see [14]):

\[
2(1+\beta) \int_{B_\epsilon^+} |x|^{2\beta} V_i e^{u_i} dx + \int_{B_\epsilon^+} < x|\nabla V_i > |x|^{2\beta} V_i e^{u_i} dx + \int_{\partial B_\epsilon^+} < \nu |x > |x|^{2\beta} V_i e^{u_i} d\sigma = \int_{\partial^+ B_1^+} g(\nabla u_i) d\sigma, \tag{10}
\]

with,

\[
g(\nabla u_i) = < \nu |\nabla u_i > < x|\nabla u_i > - < x|\nu > \frac{|\nabla u_i|^2}{2}.
\]

also,

\[
2(1+\beta) \int_{B_\epsilon^+} |x|^{2\beta} V e^{u} dx + \int_{B_\epsilon^+} < x|\nabla V > |x|^{2\beta} V e^{u} dx + \int_{\partial B_\epsilon^+} < \nu |x > |x|^{2\beta} V e^{u} d\sigma = \int_{\partial^+ B_1^+} g(\nabla u) d\sigma, \tag{11}
\]

Thus,

\[
2(1+\beta) \int_{B_\epsilon^+} |x|^{2\beta} V_i e^{u_i} dx - 2(1+\beta) \int_{B_\epsilon^+} |x|^{2\beta} V e^{u} dx +
\]

\[
+ \int_{B_\epsilon^+} < x|\nabla V_i > |x|^{2\beta} V_i e^{u_i} dx - \int_{B_\epsilon^+} < x|\nabla V > |x|^{2\beta} V e^{u} dx + o(1) =
\]

\[
= \int_{\partial^+ B_1^+} g(\nabla u_i) - g(\nabla u) d\sigma = o(1),
\]

First, we tend \(i \) to infinity after \(\epsilon \) to 0, we obtain:

\[
\lim_{\epsilon \to 0 \leftarrow i \to +\infty} 2(1+\beta) \int_{B_\epsilon^+} |x|^{2\beta} V_i e^{u_i} dx = 0, \tag{12}
\]

But,

\[
\int_{B_\epsilon^+} |x|^{2\beta} V_i e^{u_i} dx = \int_{\partial B_\epsilon^+} \partial_{\nu} u_i + o(\epsilon) + o(1) \to \alpha_1 > 0.
\]
A contradiction.

REFERENCES

DEPARTEMENT DE MATHEMATIQUES, UNIVERSITE PIERRE ET MARIE CURIE, 2 PLACE JUSSEU, 75005, PARIS, FRANCE.

E-mail address: samybahoura@yahoo.fr