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Modified Direct Adaptive Regulation Scheme Applied to a
Benchmark Problem

Abraham Castellanos Siltaloan Doré Landau
Luc Dugard, Xu Cher.

Abstract—A direct adaptive regulation scheme using a FIR
Youla-Kucera Filter has been proposed for solving the EJC
Benchmark [4] for rejection of multiple unknown and time-
varying narrow-band disturbances. Despite the excellent esults
this approach requires a careful design of the central contoller
in terms of selection of some of the assigned closed-loop psl A
modified scheme is proposed in this paper which will incorpoate
a particular adaptive IR Youla-Ku Cera Filter. Called p-notch
structure (the denominator is a projection inside the unit drcle)
of the model of the disturbance which has roots on the unit
circle. The adaptive scheme estimates separately the nunaor
and denominator parameters of the IIR Youla-Kucera Filter.
Stability and convergence proofs are given along with simaition
and real-time results. Comparison with results already ob&ined
for the EJC Benchmark are provided. The use of this approach
drastically simplify the design of the central controller and
provide even better results than [4] with the advantage to us a
single central controller independently of the number of narow
band disturbances.

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Yo ula-
Kucera Parametrization, Internal Model Principle

I. INTRODUCTION

is computational demanding. In [4], one uses an adaptive
YK-FIR filter. The great advantage is the easy construction
of the adaptive algorithms which will require a very low
computational load. Unfortunately it requires a carefusige

of the central controller (problem dependent). A first idea
for improving the approach given in [4] was to consider as
objective a direct adaptation of an appropriate QFilter. A

first attempt was unsuccessful since for the parametrizatio
considered the number of parameters to be estimated was too
large. Therefore the use of an appropriate parametrization
the YK-IIR filter was posed.

In [6], also a kind of YK-IIR filter is used which is
directly computed from the estimation of the disturbance
model represented with the help of polynomials with mirror
coefficients. The specificity of the approach resides alsthen
use of an approximate inverse of the plant transfer function
for the disturbance observer (input error observer) while i
[1], [4] an equation error disturbance observer is used.

The objective of the paper is to develop a direct adaptive
regulation scheme for multiple unknown and time-varying

Adaptive rejection of unknown and time-varying multipledisturbances using an equation-error observer and YK-IIR
narrow band disturbance is an important challenge withiapgilters. This has been done mainly by revisiting the approach
cations in AVC (Active Vibration Control) and ANC (Active in [4] and incorporating the parametrization considerefbin

Noise Control).

By doing so it was possible to construct an direct adaptive

In [10] the results of an international benchmark on adaptigontrol scheme whose performance will not depend on the
regulation of an AVC problem were presented. There weredgsign of the central controller. A significant contributi@ith
number of contributions [1], [3], [6], [4], [16], [9] and [7] respect to the previous work presented in [4] is that using an

which have been evaluated experimentally.

YK IR structure, a single central controller can be used for

It was found that all the participants use directly or indiall the levels of the benchmark. Furthermore the design ef th

rectly the Internal Model Principle (IMP - [8]) along with s
variant of the Youla-KucCera parametrization [2], usinther

central controller is much easier in term of selection of the
imposed closed loop poles.

an infinite impulse response (IIR) filter or a finite impulse

response (FIR) filter.

The paper is organized as follows, Section Il presents

Among the best results considering performance, robtstn@_éieﬂy the active vibration control system used for the real

and complexity stand the ones obtained by [1], [6] and [4]. [f
uses an IIRQ-filter to introduce a Band Stop Filter (BSF) in
the adaptive scheme. The BSF is calculated at each sampl‘fﬁ
time on the basis of the estimated disturbance frequen
which is identified in real time. Although this approach sko
good results and a good robustness, the drawback Wask?

ime experiments, the problem statement, the plant and the

controller representation and the description of the distoce.

%ection [l the linear case (known disturbances) is dised
etails showing the interest of the parametrization wbns

Wg}/éd for the 1IRQ-filter. The parameter adaptation algorithm,

pged on a Youla-KuCera parametrization is presented in

complexity since it is an indirect adaptive control schem%ecuon IV. This section includes the main contribution o t

which requires the solution of a Bezout type equation Whiéﬁ

ticle showing two adaptive algorithms for the estimatign
the numerator and denominator parameters, respectiviely. T

*Control system department of GIPSA-LAB, St. Martin dhére section includes stability and convergence proof. Acaaydi
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to the benchmark specifications from [10], in Section V the
simulation and real-time results from such adaptive scheame
shown. Some concluding remarks are presented in Section VI.



Il. PLANT DESCRIPTION AND PROBLEM STATEMENT low values. Specifications for the "waterbed” effect arenals
A. System structure considered by imposing a maximum allowed amplification.

A photo of the active vibration control experimental set u -
used in this study is presented in fig. 1 along with the basi Plant and controller description
actions performed by the system. A detailed description canConsider the adaptive regulation scheme depicted in fig. 2
be found in [10]. where the IR YK-parametrized controller is shown. We con-
sider subsequently the linear case with known disturbaimces
order to clarify the plant and controller structure (the ztlee
loop is dropped out).
Inertial The structure of the identified linear time-invariant deter
actuator time model of the plant — the secondary path — used for

(partly controller design is:
visible)

Control]
action

TdB(Zfl) - Zfdle* (Tl) (1)
Azt Az

with d is equal to the plant integer time delay (number of

sampling periods),

Gzt =

Disturbance A(Z_l) =1+ alz_l +ot aﬂAZ_nA ; 2
action BzY=bizt+  +byz™=2zB(z?"; (@
B*(z 1) =by+- +bngz ™, 4
] Shaker 1 1 w1 . .
\(disturbance whereA(z +), B(z %), B*(z ) are polynomials in the complex
| generator) variablez' and na, ng and ng — 1 represent their orders

Details on system identification of the models considered in
this paper can be found in [15], [13], [12].
Fig. 1. Active vibration control using an inertial actuaighoto).

Here some features are recalled for sake of completeness:
The system consists of a passive damper, an inertial actuato
a mechanical structure, a transducer for the residual face
controller, a power amplifier and a shaker. The system input,
u(t) is the position of the mobile part (magnet) of the inertial
actuator, the outpu(t) is the residual force measured by a
force sensor. The transfer functiod & q*dlg), between the
disturbance forced(t)) and the residual forcey(t)) is called Ry
primary path In our case (for testing purposes), the primary
force is generated by a shaker driven by a signal delivered by. 2. Direct adaptive scheme using an IR YK-parametioratof the
the computerL(p(t)). The plant transfer functiond = qfd %) controller. Dashed box: fixed part, Point-dash box: adeptiart.
between the input of the inertial actuataft() and the residual
force is calledsecondary pathThe parametric model of the
secondary path has a significant ordey,= 18 andng = 21.

It can be straightforwardly obtained by system identifimati
technigues. The sampling frequencyrs= 800 Hz.

1
So

Central Controller
Fixed Part

The controller used in this paper corresponds to an IIR
Youla-KuceraRSpolynomial digital controller ([11], [15] - see
also figure 2). The controller is divided in a fixed (constant)
part which will assign part of the closed loop poles and an IIR
YK filter, which will compensate the effect of the disturbanc
by introducing the internal model of the disturbance in the
B. Problem statement controller (polynomialBg(z 1)) and a polynomialAg(z™1)

In the mentioned benchmark [10]’ the frequency range M’“Ch will introduce new pOIeS to the closed |00p and will
operation is between 50 and 95 Hz. In this frequency rangtave a strong influence upon the "waterbed” effect on the
1 to 3 narrow band disturbances are introduced to the systéiape of the sensitivity functions. When the disturbances a
This defines the 3 Levels of difficulty for the benchmark (L19f unknown frequency, the parameters of the IIR-YK filterlwil
L2, L3). The frequency of these narrow band disturbances da@ adapted (the estimated values will be denoted\gyand
be either constant or time varying. See [10] for more detaﬁQ
of benchmark specifications and measurement procedures. Thin this scheme, the central controller is described through
objective is to strongly attenuate these disturbancessi@at Ro(z ) and S(z 1), which are polynomials ire~* having
the operation zone, the are robustness constraints in terms S L . ,

e complex variablez~! will be used for characterizing the system's

of modulus margin and noise amplification. Basically th@ehawor in the frequency domain and the delay opermgtérwill be used for
modulus of the sensitivity functions should be kept at vemescribing the system’s behavior in the time domain.



the ordersng, and ng,, respectively, with the following ex- D. Disturbance description

pressions: A deterministic disturbance(t) can be represented as the
Ry = r8+r‘1’z*1+...+r2Roz‘”Ro —Ry(z Y Hr(zY): (5) output of a filter excited by a l?lrac pulse as
S=1+sz .+ 2 =§(Z ) Hg(z ), (6) p(t) = gp((gl; 5(t) (17)
P

where Hr, and Hg, are pre-specified parts of the controller ) , 1 1 ,
(used for example to incorporate the internal model of whered(t) is a Dirac pulse andlip(z™*), Dp(z ™) are coprime

disturbance or to open the loop at certain frequenciegy 1) Polynomials inz—l_, of degreesw, andnp,, respectively. In
andS(z 1) are minimal degree solutions of the case of persistent (stationary) disturbances the rafts

Dp(z1) are on the unit circle (which will be the case for this
Pz =AZ Sz ) +2 9Bz H)Ro(z!),  (7) work). The energy of the disturbance is essentially repriese
by Dp(z1). The contribution of the terms dp(z 1) is weak
compared to the effect dijp(fl) (particularly in steady state),
{30 one can neglect the effect N(z 1),

The disturbances considered in the benchmark can in fact
be represented by a sum of sinusoidal disturbances.

wherePy(z 1) defines thenominal closed loop poles related
to the central controller.

Under this parametrization the controller polynomials a
defined as follows

R = AgRy+ Hg,HRr,ABq (8) n _
S=AcSH— HSOHROZ_dBBQ 9) p(t) = ZQ sin(wt+G), (18)
1=
where the optimaQ-filter has the following structure: where {Gi,w, 3} # 0 andn is the number of narrow band
L Bo(z Y b8+b?2‘1+---+b%oz’”so disturbances. In this casBp(z 1) in (17) has the expression:
Q(Z ): AQ(Z_J_) = Q 1 Q 7nAQ . (10) N n 1 )
1+arzi+---Fan,z Dp(z 1) = rl(l—ZCos{oq)z +7°9), (19)
1=
The output of the plany(t) and the inputu(t) may be
written a:.pu plany(t) inputu(t) y wherew = 2mfiTs, fi is in Hz andTs = 1/Fs is the sampling
' oyt time. Under this mirror structure, no matter the valuesof
y(t) = qA(z(ql) ) u(t) + plt) ; (11) the roots ofD, remains on the unit circle.
B R(g™Y) [1l. I NTERNAL MODEL PRINCIPLE WITH YK IIR
u(t) = R O (12) PARAMETRIZATION

whereq-L is the delay (shift) operatok(t) = g~ x(t +1)) and Consider the case when the frequencies of the disturbance
p(t) is the resulting additive disturbance on the output of tHd® known, "er(z_l_> is known and a given central controller
system. Ro(z 1) and §(z 1) is already computed The objective of

We define the following sensitivity functions: this section is to find the way to compute an optinye-
« Output sensitivity function (the transfer function bet\meeIIR filter for rejecting the effect of a narrow-band disturica

; . described by (17).
the disturbancep(t) and the output of the systeyit)): Consider the eq. (16). In order to asymptotically reject the

(%) = AzYHS(zY) (13) effect of p(t) overy(t), the polynomialS(z-1) should incor-
Sp Pzl porate the denominatd,(z ) ( Internal Model Principle -
« Input sensitivity function (the transfer function betwee|[18])’ as is shown next:
the disturbancep(t) and the input of the system(t)): s(zfl) - s'(zfl) ) Hs(zfl)
Az Y)R(z1 =Sz (Hg(z 1) - Dp(z h)). 20
Sz ) = (P(g) ) 14) (1) (He(z)-Dp(zh)).  (20)
Looking at the eq. (9), is possible to define a diophantine
where equation allowing to compute the optim@HIR filter which

introduces the model of the disturbance into the controller

— —dpR_
P=AS+ZzBR=Aoh The diophantine equation is

= Ag (AS) + z*dBPo) (15)

SDp + Hr,z “BBg = Ao, (21)
defines the poles of the closed loop (rootsPgE ). where the common terriig, (z 1) has been eliminated. Here
Using equations (11) and (12), one can write the output pr(zfl)’ Hr,(z 1), d, B(z 1) and §(z 1) are known, and
the system as: Bo(z 1) andS(z 1) are unknown but onlo(z 1) is needed.

_Al@hHs@ah e 1 . . o . o _
y(t) = —5T p(t) =S,p(d™") - p(t) . (a6) Pole placement with sensitivity function shaping is used@sputation
P(q* ) method but any other technique can be used for the centratolen The

central controller generally includes all the stable paléshe plant model,
2The argumentgz-1) and (q~1) will be omitted in some of the following additional auxiliary real poles for robustness and a fixett pig,(z 1) =
equations to make them more compact. 1—z2 for opening the loop at® and 05Fs.



In order to eq. (21) be solvabl@\Q(z*l) should be defined. wherea = —2cog2mfTs) and using a constamt,0 < p < 1.
Suppose temporarily thaﬁQ(fl) is known, and for stability By the assumption thale(fl) has its roots over the unit
reasons it is an asymptotically stabke.g) polynomial since circle (see eq. (19)), the change of each by pz 1 makes
this polynomial will define additional poles for the closiedp that the roots ofAq(z 1) are located in the same radial line
(see eq. (15)). Then, eq. (21) has a unique and minimal degbeg inside of the unit circle, and therefore it is asymptaitic
solution forS(z 1) andBg(z ™) with Na, +Ng —1<np,+ stable. In this approach the constanis defined as a function
NHg, + N8+ d—1,ng=ng+d-+ NHg, — 1 andnBQ =np,—1. w.rt the desired attenuation. This is also a parameter for
Remark: As for the FIR case (wheAg(z 1) = 1, see [14]), tuning the robustness, since it has influence over the weaderb
the order of the numeratdBo(z ) depends on the ordereffect in Sp(z*)(i.e. the choice ofp allows a compromise
of the disturbance moddd,(z 1). In the IIR caseAq(z 1) between disturbance attenuation and robustness).
introduces one addtional degree of freedom for the comtroll In fig. 3 the magnitude of the frequency response of the
In eq. (21) the polynomiako(z 1) was assumed known andoutput sensitivity function with a single central conteslbut
a.s.In next section the structure and values of such polynomfalr different structures of the YK filter used for disturbanc
is discussed. compensation is shown. The first case corresponds to the
use of an YK-FIR filter for implementing the model of
1 the disturbance and it is depicted using a dotted line. The
A. Structure of #(z) amplifications outside of the frequency of the disturbaree a
As shown in [4], the proximity of the low-damped complesimportant and could lead to insufficient robustness. Thersgc
zeros to the disturbance frequency increase the difficalty ¢ase, represented with a dashed line, correspondes to ¢he us
compute a stable controller, wherQaFIR filter is used (with of a BSF filter approach for computing the optinig(z 1)
Ao(z'1) = 1). Therefore, one of the features expected fromnd Aq(z 1). The BSF was computed using the disturbance
the denominatoAQ(z*l) is to increase the robustness, evefrequency, a desired attenuation of -60 dB and a denominator
in the proximity of such plant zeros. damping of 0.09. The third case, represented with a sol@ lin
In eq. (21), the computed numeraﬁw(fl) introduces ze- corresponds tg-notch type filter structure witihq given in
ros in the polynomia(z 1), through the YK-parametrization. (24). A constanp = 0.97 was used for this case (the numerator
This allows the rejection of the narrow-band disturbanagt. Bcorresponds to the YK-FIR case considered earlier).
at the same time, due to the proximity of the low-damped As we can see, the impact of the denominator of the YK-
complex zeros the modulus margidM - see [15]) — a filter (BSF andp-notch cases) is very important by strongly
major robust indicator — is drastically decreased. Herloe, treducing the waterbed effect. Also we can remark that-a
denominatoro(z 1) could be used to improve this situationnotch type structure can achieve almost the same result as
Consider the case when a BSF structure is introduced in #adBSF structure. Looking at the design parameters, the BSF
controller instead of the model of the disturbance. Acaagdi approach of [1] requires the desired attenuation, the akntr
to [1], the BSF structure can be written as frequency of the filter {) and the damping of the denominator
B followed by the solution of a Bezout type equation. T
Nasr(Z ) - L+ Bz '+ Boz (22) notch type structure requires onty and a given consta’r?f
Desr(z!) 1+wnzt+ypz?’ for directly implementing the YK-IIR filter. For that reason
resulting from the discretization of a continuous-time B this type of structure has been chosen for the denominator
ter. This filter introduce a finite attenuation defined by tagor Aq(z %) in order to develop a direct adaptive scheme.
between the numerator and denominator damping (the damp-
ing of the zeros and the poles of the BSF). Then, the following Output sentivity function magnitude response for different structures
changes are introduced in eq. (18)(z 1) = Dgsr(z'1) is 20f ‘ ! SRRnE
used and in eq. (20Hs(z 1) = Hg,(z 1) Ngsr(z 1) instead of
using the polynomiaDp(fl). This leads to a new diophantine
equation o
SNasr+ Hr,z YBBg = DpsrS). (23)

The disadvantage of this approach is that requires the compu
tation of a BSF under the basis of the disturbance frequency,

—10}F

—20}F

Magnitude [dB]

which has to be estimated. Once the computation of the BSF 0} « — pnoteh) |
is done, it is necessary to solve at each sampling a time

consuming Bezout equation to incorporate the BSF in the -or

controller. In [1] the dimension of the Bezout equation have 0 ‘ ‘ ‘ ‘

been reduce by using a YK-parametrization. 0 20 40 &0 8 100

Frequency [Hz]
With a similar objective, instead of a BSF approach, in [6] a

particular notch type structure is directly used for the ¥R- iy 3 zo0m at the frequency response of the output seitifinction for

filter. This is achieved by choosing different YK-filters. FIR case: dotted line, BSF case: dasl®e andp-notch
case: solid line.

Aoz Yy =Dplpz Y =1+pazt+p?22  (24)



IV. PARAMETER ADAPTATION ALGORITHM where
Consider egs. (16) and (9). From fig. 2, the sigwél+ 1) @op(t) = —p(t+1—j)—pt+1-2n+j),j=1,...,n—1

is defined as follows (32)
w(t+1) =A@ Hy(t+1) - B*(q Hu(t —d) ®hp,(t) = —p(t+1-—n). (33)
=A@ hp(t+1), (25)  Eq. (29) can then be simply represented by
]Egﬁg\;v;he output of the closed-loop system can be express as plt+1) = Ggqup(t) —p(t+1—2n). (34)
) = [AQSo— H%,HROq*dBBQ] wlt) 26) Define tAhoea priori pA)rTedlctmn of p(t +1):
AqPo pr(t+1)= GDp(t)qbp(t)— p(t+1—2n), (35)

. Eollown"_ng the prmuplgs given In [.14] and [12] as WaswhereéD (t) is the predicted parameter vector at tite
indicated in the Introduction, it is possible to develop eedi pr s o
. . N T The a priori prediction error is given by

adaptive algorithm for a Youla-Kucera parametrizatioimgs B
lIR-filter. An adaptation algorithm can be associated. Htgb t+1) =pt+1) - p°(t+1) =65 ()aw,(t), (36)
of the error can be assured by Positive Real conditions, but . ) o
unfortunately the number of estimated parameters exced#iereéb,(t) = 6o, (t) - 6b, is the parameter estimation error.
the double of sinusoidal signals and therefore, the Frezyuen Define the followinga posteriorisignals:
Richness Condition for Parameter Convergence does nos holde the a posterioriprediction of p(t + 1):
([11]). Meaning that we can not assure that the parameters . AT
converge to their optimal values. A different parametiaat plt+1)= 6Dp(tJr 1)@, (1) — p(t+1-2n), (37)
has to be chosen in order to overcome this problem. The. the a posterioriprediction error:
solution will be provided by the use of the type YK-IIR ~ <7
filters e(t+1)=p(t+1)—p(t+1)=—6p, (t+1)@,(t). (38)

This parametrization iuggests that one has to estimate ﬁrSEquation 38 has the standard form of an a posteriori adap-
the parameters oDp(z *). The algorithm from [14] have tation error which allows to associate the standard pammet

proved to be a very efficient solution for the estimatioggaptation algorithm (PAA) introduced in [11]
of BQ(z*l) (FIR case) using an equation error disturbance

observer.

0
OnceDy(z 1) is estimated one has two options: either use g, (t+1)= p (t) Fa(t) o, (DE°(t +1) (39)
the approach of [5] (computing the polynomigy(z 1) from P P 1+ o, (1) TFR2(t) o, (1)
the knowledge oD,(z 1) and p) and computeBo(z 1) by (t+1) = p(t+1) — p°t+1) (40)
solving a Bezout equation or try do directly estimates the 50t +1) = &7 (t t t+1-—2 a1
parameters 0Bq(z1). It is the second option which will be pi(t+ i DP( )¢bp(1)+ p(t+ n N (41)
considered. F(t+1)"" = Ac(O)R2(t) " = A2(t) o, (1) g, (1) (42)
0<Ai(t) <1; 0<At)<2; R(0)>0
A. Estimation of R(q?)
Assume that the signgi(t) containsn narrow-band com- B. Stability of Dy(z 1) estimation
ponents.p(t) will then satisfy 1) Error convergence:Taking in account the structure of
n B N the equation (38) and the results of [11], chapter 3 one can
1 2 _
H (1-2cogw)z *+27) p(t) =0, (27)  immediately conclude that
wherew (i = 1,...,n) is the frequency of thé" narrow-band fim e(t) = 0. (43)
component inp(t). Eq (27) can be equivalently written: and
Dp(z Hp(t+1) =0. (28) lim 85, (t+ 1)@, (t). =0. (44)
The disturbance model can be expressed: 2) Parameter Convergencéirom equation (44) one gets:
n—1 ~T
pt+1)=— Zai [p(t+1—i)+pt+1—2n+i)—--- 6p, (), (t—1)
i= n-1
o —app(t+1-n)— p(t+1—2n). (29) :_Zl(p(tfiHp(t72n+i>)5fi(t)+p(tfn)an(t)
1=
Introduce the parameter vector to be estimated: n—1
= Z' 772 Gi(t) + 2 "an(t) | p(t
er:[al;027---;an]T- (30) <|Z|( + ) |()+ n( )) p()
Introduce also the regressor vector at the time —0 as t—ow (45)

@, (t) = [(Pl,Dp(t),(Pz,Dp(t)a%Dp(t)}T7 (31) where{d;i}] = {ai(t) —ai}].



TABLE |
COMPARISON OF ALGORITHMS FOR THE ADAPTATION OF THE
DENOMINATOR PARAMETERSBq(z 1)

Adaptation  Prediction  Regressor Positive Observations
error error vector Real Cond.

v(t+1) e(t+1) P4 (t) H'(zY)

et+1)  Ea.(B) @l 5% -
Age(t+1)  Eq.(B) @) 2% -

et+1)  Eq.(51)  @(t) 2-% -

f Aoy A Local
e(t+1) Eq. (51) @ A, ~ 7 Convergence

Based on the assumption thait)

the above equation is lim. &i(t) =0, i.e.,
converge to their true values.

Therefore, whent — o, Dp(z ) = Dp(z'1). Since
Aq(z*) =Dp(pz 1), thenAg(z t) =
be interpreted also as
lim Ag(z 1) = Ag(z 1) (46)
C. Estimation of B(z 1)
Using eq. (26), the posteriorierror is defined as
et+1)=w(t+1)+
=z (BQ*BQ(tJrl))Wf(tJrl)"'
— (A~ Ag(t+1) Golt) — Age()  (47)
where
—d
wh(t+ 1) = DoHRATB g (48)
—d
afyt) = "0 Zgoq) (49)
1) = =884 (50)

(see also figure 2). The signea(t + 1) tends asymptotically
towards zero (an asymptotically stable system excited by a

Dirac pulse).
The equation for the posteriorierror takes the form

e(t+1):i (6] — BT (t+ 1] @uft+1)+ -

V(1) +va(t+2), (51)
where

v{(t+1) = %vl(tJrl) — 0, sinceAgisas. (52)
Vot +1) = AZ(AQ Rylt+1) (—0hm) —0.  (59)
0y = [0, b3, 4 (54)
Buft+1) = [B(t+1),- BT, l(t+1)} (55)
@t+1) = [wit+1),-- wit+2-2n)]" (56)
(57)

has n independent
frequency components, the Frequency Richness Condition fo
Parameter Convergence holds. Therefore, the only soltion
the parameters There are several possible choices for the regressor vector

Dp(pz” ) which could - stability of By(z 2

where n is the number of narrow-band disturbances. The
convergence towards zero for the signalt + 1) is assured
by the result of Eq. (46). Slncel( +1) andvw,(t+1) tend
towards zero, (51) has the standard form of an adaptation err
equation [11], and the following PAA is proposed:

Bi(t+1) = B1(t) + FL(t) D1 ()v(t +1) (58)
Ot +1)

R RO (AN 9
VOt 4+ 1) =wy(t+1) — 6] ()P4 (t) (60)
Wi(t+1) = S‘; Wit +1) (61)

Fit+1) 1= A1(O)F(t) 1 = A(t) D1 (1) D] (1) (62)
0 < A1(t) <1; 0< A(t) < 2; F(0) >0 (63)

P4 (t) (see Table I).

) estimation

1) Error convergencein all the cases the equation for the
a posteriori adaptation error takes the form

V(t+1)=H(q )61 - bu(t+1)]da(t) (64)

which allows to use straightforwardly for stability anadl/she
results of [11], chapter 3. For each choice a different passit
real condition has to be satisfied for assuring asymptotic
stability. The various options and the stability condigcere
summarized in Table | and discussed subsequently.

o When ®4(t) = @(t). The adaptation errow(t + 1) is
chosen as the prediction erreft + 1) and the regressor
vector®4(t) = @ (t). Therefore, the stability condition is
hold when the transfer functiod’ = AQ AZZ is strictly
positive real (S.P.R.).

o Whenv(t+1)= AQe(t +1). Here the adaptation error is
considered as the product of the prediction eg@r 1)
filtered by the estimateéQ. This leads to the regressor
vector Py (t) = (pl( ) and the stability condition is modi-

fied toH’ = % —% should be S.P.R. This obtained when
Eq. (51) is multlphed byAQ.

o When ®,(t) = (plf(t). Instead of filtering the adaptation

error, the observations can be filtered to relax the stgbilit

conditiorf. By multiplying Eq. (51) by% we have that

V(t+1) = £(t+ 1), the stability condition i$’ = % —
should be S.P.R. and the regressor vedigft) = ( )

where(pl( )= %(pl( ). HereAQ is a fixed estlmat|on

. WhenAQ Aq(t). If filtering through a current estima-
tion AQ( ) then the condition is similar to the previous
case except that is only valid locally [11].

2) Parameter convergencéNoting that lim_,.v(t+1) =0,

and since both/{(tJr 1) and v(t + 1) tends asymptotically
towards zero, we need to show that

(0] — 8] (t+

4Neglecting the non commutativity of the time-varying opera.

1)]@(t+1)—0 as t—oo (65)



will implies: TABLE Il
SIMULATION RESULTS FOR THEYK-IIR ALGORITHM - STEP

él(t +1)=6;, as t— o (66) CHANGES IN FREQUENCY.
Proof. Equation (65) can be written in form Sequence 1 Sequence 2 Sequence 3
N2T MV N2T MV N2T MV
npp—1 x10°% x10% x10°% x10% x10% x10°
. . I 1 f
Jim v(t+1) = lim Z) (biQ ~b(t+ 1)) q'|wi(t)=0 195 231 194 242 416 239
i= 5 178 22.8 24.3 27.8 61.3 28.9
(67) 3 246 26.0 18.6 255 222 25.6
with ngo_np, — 1. 39.5 335 20.1 245 21.1 24.4
; - Qo B - ~ 440 34.4 68.1 35.4
Since asymptoticallyb;*, i = 0, .1, ;ND,, AlQ will bg a S 406 327 861 379
constant, Eq. (67) can hold either R — bR = 0,i= & 540 37.9 56.9 37.0
o e - he dif - 608 417 500 349
0,1,---,np,—Lorifw!(t) is a solution of the difference equa- : : : :
; mp-1/Q_ pQ STt 4y w 1287 684 1703  59.1
tion [Zi:O (bi —b(t+1))g'|w'(t)=0. In the presence ® 1645 668 2331  59.3
of the external disturbance;' (t) which is a filtered version of g 1055 610 1237 637

the disturbance (see Eqs. (25) and (48)) will be charaet@riz 152.6 69.0 1317 684

by a difference equation of ordenp, and it cannot be a

solution of a difference equation of ordes, — 1. Thererfore,

limi—e V(t 4+ 1) = 0 implies also the parametric convergencmaximum amplification results are very promising since for

in the presence of the disturbance. O all the cases the limit was respected (9 dB). The transient
duration objective is fulfilled except for the last case G6I5
V. APPLICATION TO THEEJC BENCHMARK Hz (70.8 %).
Table Il presents the simulation results for the

A standard design method such as Pole Placement
sensitivity function shaping [15] is used to calculate tbatcal
controller.

Wgpep Frequency Changes Tedor the three Ilevels.
The Chirp Test is not presented here due to space
1. constraints but can be find on the web page:
o For Py(z1): All the stable poles of the system A ttp://www.gipsa-lab.grenoble-inp fibandore.landau/
preserved. Also 6 real poles for robustness reasons g hmarkadaptive regulation/files/YKIIR results.pdf. The
added. ) . transient behavior is evaluated using both measurements
« ForHg,(z'1): F?urband stop filters (BSF) are considerefit 5nq Mmv. According to the test protocol, each three
to shapeSyp(z™") outside the operation zone. The 100Rqngs the disturbance frequency will change in a specific
is open at G§ _and 05F. ) 1 profile (but unknown for the designer). At each change
« No pre-specified parts where considered kg (z 1). (step) the truncated two-norm fM) and the maximum value
A value of p = 0.97 has been used for all the levels anii) are measured. Larger values, correspond to less good
all the test. This value provides a good compromise betweggansient behavior. As expected, if the number of narrondban
performance and robustness. The value is not very critical.disturbances increases, the transient behavior will bs les
good. This is reflected in both columns. Notice that for MV
A. Simulation results the increase is around 30% 50%, but for NT is around

: . : : 100% ween the vari levels.
Table Il summarizes the simulation results for Benple 00% between the various levels

Step TestThe objectives are shown in the column named )
Level, according to [10]. B. Real-time results
For Level 1, both global attenuation (GA) and disturbance Table IV summarizes the real-time results for tBanple
attenuation (DA) specifications were achieved for all thee fr Step TestAs for the simulations, the objectives were settled
guencies. For the maximum amplification (MA) the challengas in [10].
was fulfilled in general (only at 75 Hz the amplification was 7 For Level 1, regarding GA only in two cases (80 and 85 Hz)
dB). The transient behavior can be analyzed from the tregcathe results are below the objective. For DA, the last case (95
two-norm (NET), the maximum value (MV) and through theHz) shows the only result that do not achieves the objective.
transient duration (TD) which is a main indicator (for th&Vith respect to MA, the results shows that even this kind of
definition see [10]). The control scheme achieves for all ttepproach presents amplifications over the desired limé; th
frequencies 100% of the transient duration. case where the objective was more close to be fulfill is at 85
The Level 2 results shows that the control scheme propodéd (6.3 dB of MA). Transient duration requirement is fulfdle
achieves both global and disturbance attenuation for a&ll tfor all the cases.
cases. For the maximum amplification, the limit is exceededLevel 2 results shows that the control scheme proposed in
only for the case 50-70 Hz (7.2 dB). this paper achieves both GA and DA specifications for all the
Finally the Level 3 shows that in the most difficult situatiorcases. Is in the maximum amplification where the difficulties
the global attenuation specification can be achieved by thkigses. The settled limit of 7 dB is not respected, and only at
approach along with a very good disturbance attenuatioa. Te0-80 and 65-85 Hz the results are close to the desired value.



TABLE Il
SIMULATION RESULTS FORYK-IIR A LGORITHM - SIMPLE STEPTEST.

Level  Case (Hz) GA (dB) DA (dB) MA (dB@Hz) NPT (x107%) N2R (x107%) MV (x10%) TD%

50 35.8 405 6.2@57.8 76.4 36 24.1 100
55 35.4 44.8 4.6@48.5 55.5 37 35.2 100
60 35.3 45.2 4.8@51.6 453 36 34.3 100
1 65 34.9 49.7 5.4@54.7 40.7 37 33.8 100
GA>30 70 34.8 51.9 5.2@64.1 31.0 38 254 100
DA>40 75 34.8 485 7.0@68.8 21.4 3.8 21.9 100
MA <6 80 35.0 46.5 5.0@71.9 159 37 223 100
85 345 44.4 3.9@75.0 159 37 223 100
2 333 427 4.1@79.7 19.1 3.8 25.9 100
95 295 38.4 5.4@85.9 21.0 4.2 329 100
50-70 412 43.5-50.3 7.2@59.4 717 37 313 100
2 55-75 40.9 47.6-49.5 6.1@67.2 51.6 3.8 319 100
GA>30  60-80 411 44.1-45.3 6.0@71.9 333 37 35.8 100
DA>40 6585 40.6 45.8-44.2 5.9@75.0 289 38 38.2 100
MA<7  70-90 39.6 50.6-40.7 55@78.1 41.1 4.0 417 100
7595 37.9 50.0-43.0 6.0@87.5 50.4 4.2 45.8 100
3 50-65-80 445  42.2-42.3-453  8.2@54.7 167.7 38 60.0 100
GA>30 557085 437 455454434  6.6@64.1 138.6 4.0 714 100
DA>40  60-75-90 430  454-47.2-407  6.2@82.38 1275 4.1 54.1 100
MA<9  65-80-95 425  457-423-434  6.4@89.1 1258 4.0 61.4 70.80
TABLE IV
REAL-TIME RESULTS FOR THEYK-IIR ALGORIHTM - SIMPLE STEP TEST.
Level  Case (Hz) GA (dB) DA (dB) MA (dB@Hz) NPT (x107%) N?R (x107%) MV (x10%) TD %
50 345 403 9.3@62.5 111.3 6.8 30.7 92.2
55 331 45.4 8.2@50.0 47.6 58 29.4 100
60 33.3 45.6 6.8@125.0 275 5.1 20.9 100
1 65 318 45.4 9.1@56.3 15.2 5.2 19.6 100
GA>30 70 29.9 45.6 8.1@131.3 13.6 5.6 208 100
DA>40 75 30.3 47.9 8.6@70.3 19.8 5.0 18.4 100
MA <6 80 295 48.6 7.7@6.3 13.4 53 20.9 100
85 295 43.6 6.3@117.2 213 5.2 233 100
20 29.1 437 75@117.2 18.1 5.0 234 100
95 27.1 39.0 6.8@375.0 20.9 48 28.1 100
50-70 38.2 409 - 439 10.3@64.1 99.3 6.8 30.9 100
2 55-75 35.9 46.1 - 47.2 11.9@60.9 52.9 6.9 305 100
GA>30  60-80 37.8 456 - 45.9 7.9@70.3 38.0 5.1 342 100
DA>40 6585 352 42,9 - 42.9 7.9@212.5 28.9 6.2 35.7 100
MA<7 7090 36.1 43.7 - 44.9 10.0@115.6 42.8 5.2 39.3 100
75-95 35.0 44.9 - 40.0 9.9@128.1 51.3 5.4 44.2 100
3 50-65-80  40.1  38.3-39.7-437  89@125.0 1515 72 50.2 100
GA>30 55-70-85  40.1  452-451-427  7.8@78.1 103.0 6.0 57.6 100
DA>40  60-75-90 387  452-422-433  10.8@78.1 105.3 6.4 79.7 100
MA<9  65-80-95 388  43.9-417-405  10.2@85.9 119.2 5.8 63.6 80.9

Finally the Level 3 shows that in the most difficult situatiorthe increase is 67.8%.
GA specification is achieved for all the cases. However,iat th
level the DA is not fulfilled for 50-65-80 Hz. One possible . .

L C.,Global Evaluation Comparison

explanation is the presence of low damped complex poles and
zeros near 50 Hz. For Level 3 the MA specification is achieved The results which have been presented has to be evaluated
for the 50 % of the cases and slightly exceeds the specificat@mparatively with the the most relevant schemes presented
for the other 50 %. for the EJC benchmark [10]. This comparison will be done

Table V presents the real-time results for tep Frequency ON @ global basis using the procedure presented in [10]. The
Changes Tedor the three levels. As for the simulation resultstesults presented above will be compared with those of [1],
if the number of narrow band disturbances increases, & and [4].
transient behavior measured in terms ocfTNand MV will Four comparisons are presented and enlisted here:
be less good. This can be seen for both measurements. The Benchmark Satisfaction Index (BSI) for steady state
increase for the R is 50% between various levels. For MV, performance, known also aBuning capabilities This
the increase from L1 to L2 is 44% and passing for L2 to L3  criterion use the results from the Simple Step Test in order



TABLE V Benchmark Satisfaction Index
REAL-TIME RESULTS FOR THEYK-IIR ALGORITHM - STEP .
CHANGES IN FREQUENCY. 100.00 - For Steady State Performance (Tuning)
Sequence 1 Sequence 2 Sequence 3 90,00 -
N2T MV N2T MV N2T MV 80,00 -
x10%  x10° x10°% x10°% «x10° x10°° 70.00 |
o 233 23.2 18.2 23.2 334 18.5 60,00 -
5 222 25.7 21.3 234 57.7 26.8 50.00
& 505 23.2 20.3 24.4 21.1 24.4 NI
- 480 36.8 19.8 22.0 19.3 20.1 40,00 -
~ 476 37.9 66.6 40.6 - - 30,00 v
5 487 35.7 79.2 38.1 - - 20,00 -8
& 650 37.9 59.3 35.4 - - 10.00 |
- 705 455 495 33.2 ’
0,00 -
102.3 66.0 167.8 59.0 - -
™
5 1456 688 2377  60.2 - - (61 8 [4] YK-IIR
& 1688 63.5 146.1 67.6 - -
- 1259 652 1435  66.0 - - Level 11l Level 2[] Level 31l

Fig. 4. Benchmark Satisfaction Index comparison for foysrapches.

to show how "good” is the performance of a specified
scheme, by measuring the fulfillment of the specifications
(columnLevel in Table 1) assigning a percentage. Here a 20,00
100% means a complete fulfillment of the specifications.
« Normalized Performance Loss. This criterion is used to
measure the difference in performance between simula-

Normalized Performance Loss

tions and real-time results. For this criterion, lower wHu
indicates better robustness with respect to plant model and 210,00 + 7
noise uncertainties.

« Average Global Criterion for Transient Performance. This 53 ES ES GS
criterion use an average found from the results of both 0 W i} i
Step Changes in Frequency Test and Chirp Test. Lower ZZ ZZ ZZ ZZ
values of the criterion corresponds to a better transient 0,00 o 4 YKIR

behavior.

« Complexity evaluation is done in terms of measurement , _
of the Task Execution Timeeasured The value of the Fig. 5. Normalized Performance Loss comparison for fouramghes.
criterion is obtained from the average task execution time

(TET) measured in the xPC-Target environment from The average global criterion for transient evaluationeerit
MATLAB. Low values correspond to less complexity Offion (named)TRAY k=1, ---,3) is presented in fig. 6. While
the control scheme. the approach presented in this paper does not always has the
In fig. 4 the comparison of the BSI for the steady stateest performance compared to the other three approaches, it
performance is presented for the four approaches mentionigdclearly on the average the best.
As shown, the adaptive scheme proposed in this article (dame Finally, in terms of complexity the YK-IIR has a significant
YK-IIR) achieves the highest performance in real-time fog t increasefATET compared to the one obtained in [4] (which
first level (BSI1-RT), a very good performance for the secorid the lowest). However this value is still significantly dran
level (BSI2-RT) and the second best (only behind [4]) for th#han theATET of of [1].
third level (BSI3-RT). The new scheme has also been tested using
The difference between the simulation results and rea-tithe "modified protocol ” (a different disturbance
results are illustrated by the Normalized Performance Lossenario)  defined in the  benchmark  website
comparison shown in fig. 5. Among all the results givethttp://www.gipsa-lab.grenoble-inp.fibandore.landau/
in [10], the four approaches compared here show the lowé&sinchmarkadaptiveregulation/index.html). It was found
values for this criterion (less than 20%). However, the éidap that the adaptive scheme proposed here shows excellent
scheme proposed in this paper achieves the lower loss for fitssults under this modified protocol. The results are abvkla
level (NPL;). The approach of [4] shows the best result foat: http://www.gipsa-lab.grenoble-inpfrbandore.landau/
the second levelNPLy). For the third level both approachespenchmarkadaptive regulation/files/YKIIR results.pdf
[4] and YK-IIR, give the best results (this is the most difficu
level). VI. CONCLUDING REMARKS

5in fact the difference between the task execution time isedoloop and 1 N€ reSUItf’ on t_h's paper suggest that _W'th an adaptive
in open loop is considered in the criterion. IIR Youla-Kucera Filter it is possible to achieve similanca
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Fig. 6. Average global criterion for the transient perfono@ comparison for
four approaches.
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Fig. 7. Average task execution time comparison for four apphes.

even better results that with an FIR Youla-Kucera Filter fo
the strong attenuation of multiple unknown and time-vagyin
disturbances. The advantages of using this approach is one
hand the drastic simplification of the design of the central
controller and on the other hand the possibility of usingra si
gle central controller independently of the number of narro
band disturbances to be attenuated. To solve the probleasit w
necessary to overcome the problem of over parametrization
when using adaptive IIR Youla-KuCera Filters by using wrirr
type polynomials for describing the disturbance models.
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