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Modified Direct Adaptive Regulation Scheme Applied to a
Benchmark Problem

Abraham Castellanos Silva∗, Ioan Doré Landau∗,
Luc Dugard∗, Xu Chen†.

Abstract—A direct adaptive regulation scheme using a FIR
Youla-Kučera Filter has been proposed for solving the EJC
Benchmark [4] for rejection of multiple unknown and time-
varying narrow-band disturbances. Despite the excellent results
this approach requires a careful design of the central controller
in terms of selection of some of the assigned closed-loop poles. A
modified scheme is proposed in this paper which will incorporate
a particular adaptive IIR Youla-Ku čera Filter. Called ρ-notch
structure (the denominator is a projection inside the unit circle)
of the model of the disturbance which has roots on the unit
circle. The adaptive scheme estimates separately the numerator
and denominator parameters of the IIR Youla-Kučera Filter.
Stability and convergence proofs are given along with simulation
and real-time results. Comparison with results already obtained
for the EJC Benchmark are provided. The use of this approach
drastically simplify the design of the central controller and
provide even better results than [4] with the advantage to use a
single central controller independently of the number of narrow
band disturbances.

Index Terms—Adaptive Regulation, Active Vibration Control,
Inertial Actuators, Multiple Narrow Band Disturbances, Yo ula-
Kučera Parametrization, Internal Model Principle

I. I NTRODUCTION

Adaptive rejection of unknown and time-varying multiple
narrow band disturbance is an important challenge with appli-
cations in AVC (Active Vibration Control) and ANC (Active
Noise Control).

In [10] the results of an international benchmark on adaptive
regulation of an AVC problem were presented. There were a
number of contributions [1], [3], [6], [4], [16], [9] and [7]
which have been evaluated experimentally.

It was found that all the participants use directly or indi-
rectly the Internal Model Principle (IMP - [8]) along with some
variant of the Youla-Kučera parametrization [2], using either
an infinite impulse response (IIR) filter or a finite impulse
response (FIR) filter.

Among the best results considering performance, robustness
and complexity stand the ones obtained by [1], [6] and [4]. [1]
uses an IIRQ-filter to introduce a Band Stop Filter (BSF) in
the adaptive scheme. The BSF is calculated at each sampling
time on the basis of the estimated disturbance frequency,
which is identified in real time. Although this approach shows
good results and a good robustness, the drawback was the
complexity since it is an indirect adaptive control scheme
which requires the solution of a Bezout type equation which
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is computational demanding. In [4], one uses an adaptive
YK-FIR filter. The great advantage is the easy construction
of the adaptive algorithms which will require a very low
computational load. Unfortunately it requires a careful design
of the central controller (problem dependent). A first idea
for improving the approach given in [4] was to consider as
objective a direct adaptation of an appropriate IIRQ-filter. A
first attempt was unsuccessful since for the parametrization
considered the number of parameters to be estimated was too
large. Therefore the use of an appropriate parametrizationof
the YK-IIR filter was posed.

In [6], also a kind of YK-IIR filter is used which is
directly computed from the estimation of the disturbance
model represented with the help of polynomials with mirror
coefficients. The specificity of the approach resides also onthe
use of an approximate inverse of the plant transfer function
for the disturbance observer (input error observer) while in
[1], [4] an equation error disturbance observer is used.

The objective of the paper is to develop a direct adaptive
regulation scheme for multiple unknown and time-varying
disturbances using an equation-error observer and YK-IIR
filters. This has been done mainly by revisiting the approach
in [4] and incorporating the parametrization considered in[6].
By doing so it was possible to construct an direct adaptive
control scheme whose performance will not depend on the
design of the central controller. A significant contribution with
respect to the previous work presented in [4] is that using an
YK IIR structure, a single central controller can be used for
all the levels of the benchmark. Furthermore the design of the
central controller is much easier in term of selection of the
imposed closed loop poles.

The paper is organized as follows, Section II presents
briefly the active vibration control system used for the real-
time experiments, the problem statement, the plant and the
controller representation and the description of the disturbance.
In Section III the linear case (known disturbances) is discussed
in details showing the interest of the parametrization consid-
ered for the IIRQ-filter. The parameter adaptation algorithm,
based on a Youla-Kučera parametrization is presented in
Section IV. This section includes the main contribution of the
article showing two adaptive algorithms for the estimationof
the numerator and denominator parameters, respectively. This
section includes stability and convergence proof. According
to the benchmark specifications from [10], in Section V the
simulation and real-time results from such adaptive schemeare
shown. Some concluding remarks are presented in Section VI.



II. PLANT DESCRIPTION AND PROBLEM STATEMENT

A. System structure

A photo of the active vibration control experimental set up
used in this study is presented in fig. 1 along with the basic
actions performed by the system. A detailed description can
be found in [10].
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Fig. 1. Active vibration control using an inertial actuator(photo).

Here some features are recalled for sake of completeness.
The system consists of a passive damper, an inertial actuator,
a mechanical structure, a transducer for the residual force, a
controller, a power amplifier and a shaker. The system input,
u(t) is the position of the mobile part (magnet) of the inertial
actuator, the outputy(t) is the residual force measured by a
force sensor. The transfer function (H = q−d1 C

D ), between the
disturbance force (δ (t)) and the residual force (y(t)) is called
primary path. In our case (for testing purposes), the primary
force is generated by a shaker driven by a signal delivered by
the computer (up(t)). The plant transfer function (G = q−d B

A)
between the input of the inertial actuator (u(t)) and the residual
force is calledsecondary path. The parametric model of the
secondary path has a significant order,nA = 18 andnB = 21.
It can be straightforwardly obtained by system identification
techniques. The sampling frequency isFs = 800 Hz.

B. Problem statement

In the mentioned benchmark [10], the frequency range of
operation is between 50 and 95 Hz. In this frequency range,
1 to 3 narrow band disturbances are introduced to the system.
This defines the 3 Levels of difficulty for the benchmark (L1,
L2, L3). The frequency of these narrow band disturbances can
be either constant or time varying. See [10] for more details
of benchmark specifications and measurement procedures. The
objective is to strongly attenuate these disturbances. Outside
the operation zone, the are robustness constraints in terms
of modulus margin and noise amplification. Basically the
modulus of the sensitivity functions should be kept at very

low values. Specifications for the ”waterbed” effect are also
considered by imposing a maximum allowed amplification.

C. Plant and controller description

Consider the adaptive regulation scheme depicted in fig. 2
where the IIR YK-parametrized controller is shown. We con-
sider subsequently the linear case with known disturbancesin
order to clarify the plant and controller structure (the adaptive
loop is dropped out).

The structure of the identified linear time-invariant discrete-
time model of the plant – the secondary path – used for
controller design is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
, (1)

with d is equal to the plant integer time delay (number of
sampling periods),

A(z−1) = 1+a1z
−1 + · · ·+anAz−nA ; (2)

B(z−1) = b1z−1 + · · ·+bnBz−nB = z−1B∗(z−1) ; (3)

B∗(z−1) = b1 + · · ·+bnBz−nB+1 , (4)

whereA(z−1), B(z−1), B∗(z−1) are polynomials in the complex
variable z−1 and nA, nB and nB − 1 represent their orders1.
Details on system identification of the models considered in
this paper can be found in [15], [13], [12].

Adaptive Part

Central Controller

Fixed Part

Fig. 2. Direct adaptive scheme using an IIR YK-parametrization of the
controller. Dashed box: fixed part, Point-dash box: adaptive part.

The controller used in this paper corresponds to an IIR
Youla-KučeraRSpolynomial digital controller ([11], [15] - see
also figure 2). The controller is divided in a fixed (constant)
part which will assign part of the closed loop poles and an IIR-
YK filter, which will compensate the effect of the disturbance
by introducing the internal model of the disturbance in the
controller (polynomialBQ(z−1)) and a polynomialAQ(z−1)
which will introduce new poles to the closed loop and will
have a strong influence upon the ”waterbed” effect on the
shape of the sensitivity functions. When the disturbances are
of unknown frequency, the parameters of the IIR-YK filter will
be adapted (the estimated values will be denoted byÂQ and
B̂Q).

In this scheme, the central controller is described through
R0(z−1) and S0(z−1), which are polynomials inz−1 having

1The complex variablez−1 will be used for characterizing the system’s
behavior in the frequency domain and the delay operatorq−1 will be used for
describing the system’s behavior in the time domain.



the ordersnR0 and nS0, respectively, with the following ex-
pressions:

R0 = r0
0 + r0

1z−1 + . . .+ r0
nR0

z−nR0 = R′
0(z

−1) ·HR0(z
−1) ; (5)

S0 = 1+s0
1z

−1 + . . .+s0
nS0

z−nS0 = S′0(z
−1) ·HS0(z

−1) , (6)

where HR0 and HS0 are pre-specified parts of the controller
(used for example to incorporate the internal model of a
disturbance or to open the loop at certain frequencies).R0(z−1)
andS0(z−1) are minimal degree solutions of

P0(z
−1) = A(z−1)S0(z

−1)+z−dB(z−1)R0(z
−1), (7)

whereP0(z−1) defines thenominal closed loop poles related
to the central controller.

Under this parametrization the controller polynomials are
defined as follows2

R= AQR0 +HS0HR0ABQ (8)

S= AQS0−HS0HR0z
−dBBQ (9)

where the optimalQ-filter has the following structure:

Q(z−1) =
BQ(z−1)

AQ(z−1)
=

bQ
0 +bQ

1 z−1 + · · ·+bQ
nBQ

z−nBQ

1+aQ
1 z1 + · · ·+aQ

nAQ
z
−nAQ

. (10)

The output of the planty(t) and the inputu(t) may be
written as:

y(t) =
q−dB(q−1)

A(q−1)
·u(t)+ p(t) ; (11)

u(t) = −
R(q−1)

S(q−1)
·y(t) , (12)

whereq−1 is the delay (shift) operator (x(t) = q−1x(t +1)) and
p(t) is the resulting additive disturbance on the output of the
system.

We define the following sensitivity functions:
• Output sensitivity function (the transfer function between

the disturbancep(t) and the output of the systemy(t)):

Syp(z
−1) =

A(z−1)S(z−1)

P(z−1)
; (13)

• Input sensitivity function (the transfer function between
the disturbancep(t) and the input of the systemu(t)):

Sup(z
−1) = −

A(z−1)R(z−1)

P(z−1)
, (14)

where

P = AS+z−dBR= AQP0

= AQ

(

AS0 +z−dBR0

)

(15)

defines the poles of the closed loop (roots ofP(z−1)).
Using equations (11) and (12), one can write the output of

the system as:

y(t) =
A(q−1)S(q−1)

P(q−1)
· p(t) = Syp(q

−1) · p(t) . (16)

2The arguments(z−1) and (q−1) will be omitted in some of the following
equations to make them more compact.

D. Disturbance description

A deterministic disturbancep(t) can be represented as the
output of a filter excited by a Dirac pulse as

p(t) =
Np(q−1)

Dp(q−1)
·δ (t) , (17)

whereδ (t) is a Dirac pulse andNp(z−1), Dp(z−1) are coprime
polynomials inz−1, of degreesnNp and nDp, respectively. In
the case of persistent (stationary) disturbances the rootsof
Dp(z−1) are on the unit circle (which will be the case for this
work). The energy of the disturbance is essentially represented
by Dp(z−1). The contribution of the terms ofNp(z−1) is weak
compared to the effect ofDp(z−1) (particularly in steady state),
so one can neglect the effect ofNp(z−1).

The disturbances considered in the benchmark can in fact
be represented by a sum of sinusoidal disturbances.

p(t) =
n

∑
i=1

Ci sin(ωit + βi) , (18)

where {Ci ,ωi ,βi} 6= 0 and n is the number of narrow band
disturbances. In this case,Dp(z−1) in (17) has the expression:

Dp(z
−1) =

n

∏
i=1

(

1−2cos(ωi)z
−1 +z−2) , (19)

whereωi = 2π fiTs, fi is in Hz andTs = 1/Fs is the sampling
time. Under this mirror structure, no matter the values ofωi ,
the roots ofDp remains on the unit circle.

III. I NTERNAL MODEL PRINCIPLE WITH YK IIR
PARAMETRIZATION

Consider the case when the frequencies of the disturbance
are known, i.e.Dp(z−1) is known and a given central controller
R0(z−1) and S0(z−1) is already computed3. The objective of
this section is to find the way to compute an optimalYK-
IIR filter for rejecting the effect of a narrow-band disturbance
described by (17).

Consider the eq. (16). In order to asymptotically reject the
effect of p(t) over y(t), the polynomialS(z−1) should incor-
porate the denominatorDp(z−1) ( Internal Model Principle -
[8]), as is shown next:

S(z−1) = S′(z−1) ·HS(z
−1)

= S′(z−1) ·
(

HS0(z
−1) ·Dp(z

−1)
)

. (20)

Looking at the eq. (9), is possible to define a diophantine
equation allowing to compute the optimalQ-IIR filter which
introduces the model of the disturbance into the controller.
The diophantine equation is

S′Dp +HR0z
−dBBQ = AQS′0, (21)

where the common termHS0(z
−1) has been eliminated. Here

Dp(z−1), HR0(z
−1), d, B(z−1) and S′0(z

−1) are known, and
BQ(z−1) andS′(z−1) are unknown but onlyBQ(z−1) is needed.

3Pole placement with sensitivity function shaping is used ascomputation
method but any other technique can be used for the central controller. The
central controller generally includes all the stable polesof the plant model,
additional auxiliary real poles for robustness and a fixed part HR0(z

−1) =
1−z−2 for opening the loop at 0Fs and 0.5Fs.



In order to eq. (21) be solvable,AQ(z−1) should be defined.
Suppose temporarily thatAQ(z−1) is known, and for stability
reasons it is an asymptotically stable (a.s.) polynomial since
this polynomial will define additional poles for the closed-loop
(see eq. (15)). Then, eq. (21) has a unique and minimal degree
solution for S′(z−1) and BQ(z−1) with nAQ +nS′0

−1≤ nDp +
nHR0

+nB+d−1, nS′ = nB+d+nHR0
−1 andnBQ = nDp −1.

Remark: As for the FIR case (whenAQ(z−1) = 1, see [14]),
the order of the numeratorBQ(z−1) depends on the order
of the disturbance modelDp(z−1). In the IIR case,AQ(z−1)
introduces one addtional degree of freedom for the controller.
In eq. (21) the polynomialAQ(z−1) was assumed known and
a.s.In next section the structure and values of such polynomial
is discussed.

A. Structure of AQ(z−1)

As shown in [4], the proximity of the low-damped complex
zeros to the disturbance frequency increase the difficulty to
compute a stable controller, when aQ-FIR filter is used (with
AQ(z−1) = 1). Therefore, one of the features expected from
the denominatorAQ(z−1) is to increase the robustness, even
in the proximity of such plant zeros.

In eq. (21), the computed numeratorBQ(z−1) introduces ze-
ros in the polynomialS(z−1), through the YK-parametrization.
This allows the rejection of the narrow-band disturbance. But
at the same time, due to the proximity of the low-damped
complex zeros the modulus margin (∆M - see [15]) – a
major robust indicator – is drastically decreased. Hence, the
denominatorAQ(z−1) could be used to improve this situation.

Consider the case when a BSF structure is introduced in the
controller instead of the model of the disturbance. According
to [1], the BSF structure can be written as

NBSF(z−1)

DBSF(z−1)
=

1+ β1z−1 + β2z−2

1+ γ1z−1 + γ2z−2 , (22)

resulting from the discretization of a continuous-time BSFfil-
ter. This filter introduce a finite attenuation defined by the ratio
between the numerator and denominator damping (the damp-
ing of the zeros and the poles of the BSF). Then, the following
changes are introduced in eq. (15)AQ(z−1) = DBSF(z−1) is
used and in eq. (20),HS(z−1)= HS0(z

−1)·NBSF(z−1) instead of
using the polynomialDp(z−1). This leads to a new diophantine
equation

S′NBSF+HR0z
−dBBQ = DBSFS

′
0. (23)

The disadvantage of this approach is that requires the compu-
tation of a BSF under the basis of the disturbance frequency,
which has to be estimated. Once the computation of the BSF
is done, it is necessary to solve at each sampling a time
consuming Bezout equation to incorporate the BSF in the
controller. In [1] the dimension of the Bezout equation have
been reduce by using a YK-parametrization.

With a similar objective, instead of a BSF approach, in [6] a
particular notch type structure is directly used for the YK-IIR
filter. This is achieved by choosing

AQ(z−1) = Dp(ρz−1) = 1+ ραz−1+ ρ2z−2, (24)

whereα = −2cos(2π f Ts) and using a constantρ ,0 < ρ < 1.
By the assumption thatDp(z−1) has its roots over the unit
circle (see eq. (19)), the change of eachz−1 by ρz−1 makes
that the roots ofAQ(z−1) are located in the same radial line
but inside of the unit circle, and therefore it is asymptotically
stable. In this approach the constantρ is defined as a function
w.r.t. the desired attenuation. This is also a parameter for
tuning the robustness, since it has influence over the waterbed
effect in Syp(z−1)(i.e. the choice ofρ allows a compromise
between disturbance attenuation and robustness).

In fig. 3 the magnitude of the frequency response of the
output sensitivity function with a single central controller but
for different structures of the YK filter used for disturbance
compensation is shown. The first case corresponds to the
use of an YK-FIR filter for implementing the model of
the disturbance and it is depicted using a dotted line. The
amplifications outside of the frequency of the disturbance are
important and could lead to insufficient robustness. The second
case, represented with a dashed line, correspondes to the use
of a BSF filter approach for computing the optimalBQ(z−1)
and AQ(z−1). The BSF was computed using the disturbance
frequency, a desired attenuation of -60 dB and a denominator
damping of 0.09. The third case, represented with a solid line
corresponds toρ-notch type filter structure withAQ given in
(24). A constantρ = 0.97 was used for this case (the numerator
corresponds to the YK-FIR case considered earlier).

As we can see, the impact of the denominator of the YK-
filter (BSF andρ-notch cases) is very important by strongly
reducing the waterbed effect. Also we can remark that aρ-
notch type structure can achieve almost the same result as
a BSF structure. Looking at the design parameters, the BSF
approach of [1] requires the desired attenuation, the central
frequency of the filter (f ) and the damping of the denominator
followed by the solution of a Bezout type equation. Theρ-
notch type structure requires onlyα and a given constantρ
for directly implementing the YK-IIR filter. For that reason
this type of structure has been chosen for the denominator
AQ(z−1) in order to develop a direct adaptive scheme.
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IV. PARAMETER ADAPTATION ALGORITHM

Consider eqs. (16) and (9). From fig. 2, the signalw(t +1)
is defined as follows

w(t +1) = A(q−1)y(t +1)−B∗(q−1)u(t −d)

= A(q−1)p(t +1), (25)

then, the output of the closed-loop system can be express as
follows

y(t) =

[

ÂQS0−HS0HR0q
−dBB̂Q

]

ÂQP0
w(t). (26)

Following the principles given in [14] and [12] as was
indicated in the Introduction, it is possible to develop a direct
adaptive algorithm for a Youla-Kučera parametrization using a
IIR-filter. An adaptation algorithm can be associated. Stability
of the error can be assured by Positive Real conditions, but
unfortunately the number of estimated parameters exceeds
the double of sinusoidal signals and therefore, the Frequency
Richness Condition for Parameter Convergence does not holds
([11]). Meaning that we can not assure that the parameters
converge to their optimal values. A different parametrization
has to be chosen in order to overcome this problem. The
solution will be provided by the use of theρ type YK-IIR
filters

This parametrization suggests that one has to estimate first
the parameters ofDp(z−1). The algorithm from [14] have
proved to be a very efficient solution for the estimation
of BQ(z−1) (FIR case) using an equation error disturbance
observer.

OnceDp(z−1) is estimated one has two options: either use
the approach of [5] (computing the polynomialÂQ(z−1) from
the knowledge ofDp(z−1) and ρ) and computeB̂Q(z−1) by
solving a Bezout equation or try do directly estimates the
parameters of̂BQ(z−1). It is the second option which will be
considered.

A. Estimation of Dp(q−1)

Assume that the signalp(t) containsn narrow-band com-
ponents.p(t) will then satisfy

n

∏
i=1

(

1−2cos(ωi)z
−1 +z−2) p(t) = 0, (27)

whereωi (i = 1, . . . ,n) is the frequency of theith narrow-band
component inp(t). Eq (27) can be equivalently written:

Dp(z
−1)p(t +1) = 0. (28)

The disturbance model can be expressed:

p(t +1) = −
n−1

∑
i=1

αi [p(t +1− i)+ p(t +1−2n+ i)]−·· ·

· · ·−αnp(t +1−n)− p(t+1−2n). (29)

Introduce the parameter vector to be estimated:

θDp = [α1,α2, . . . ,αn]
T . (30)

Introduce also the regressor vector at the timet:

φDp(t) =
[

φ1,Dp(t),φ2,Dp(t),φn,Dp(t)
]T

, (31)

where

φ j ,Dp(t) = −p(t +1− j)− p(t +1−2n+ j) , j = 1, . . . ,n−1
(32)

φn,Dp(t) = −p(t +1−n). (33)

Eq. (29) can then be simply represented by

p(t +1) = θ T
Dp

φDp(t)− p(t +1−2n). (34)

Define thea priori prediction ofp(t +1):

p̂0(t +1) = θ̂ T
Dp

(t)φDp(t)− p(t +1−2n), (35)

whereθ̂Dp(t) is the predicted parameter vector at timet.
The a priori prediction error is given by

e0(t +1) = p(t +1)− p̂0(t +1) = −θ̃ T
Dp

(t)φDp(t), (36)

whereθ̃Dp(t) = θ̂Dp(t)−θDp is the parameter estimation error.
Define the followinga posteriorisignals:

• the a posterioriprediction ofp(t +1):

p̂(t +1) = θ̂ T
Dp

(t +1)φDp(t)− p(t +1−2n), (37)

• the a posterioriprediction error:

e(t +1) = p(t +1)− p̂(t +1) =−θ̃ T
Dp

(t +1)φDp(t). (38)

Equation 38 has the standard form of an a posteriori adap-
tation error which allows to associate the standard parameter
adaptation algorithm (PAA) introduced in [11]

θ̂Dp(t +1) = θ̂Dp(t)+
F2(t)φDp(t)e

0(t +1)

1+ φDp(t)TF2(t)φDp(t)
(39)

e0(t +1) = p(t +1)− p̂0(t +1) (40)

p̂0(t +1) = θ̂ T
Dp

(t)φDp(t)+ p(t +1−2n) (41)

F2(t +1)−1 = λ1(t)F2(t)
−1−λ2(t)φDp(t)φDp(t)

T (42)

0 < λ1(t) ≤ 1; 0≤ λ2(t) < 2; F2(0) > 0

B. Stability of Dp(z−1) estimation

1) Error convergence:Taking in account the structure of
the equation (38) and the results of [11], chapter 3 one can
immediately conclude that

lim
t→∞

e(t) = 0. (43)

and
lim
t→∞

θ̃ T
Dp

(t +1)φDp(t). = 0. (44)

2) Parameter Convergence:From equation (44) one gets:

θ̃ T
Dp

(t)φDp(t −1)

=
n−1

∑
i=1

(p(t − i)+ p(t−2n+ i))α̃i(t)+ p(t−n)α̃n(t)

=

(

n−1

∑
i=1

(

z−i +z−2n+i) α̃i(t)+z−nα̃n(t)

)

p(t)

→ 0 as t → ∞ (45)

where{α̃i}
n
1 = {α̂i(t)−αi}

n
1.



TABLE I
COMPARISON OF ALGORITHMS FOR THE ADAPTATION OF THE

DENOMINATOR PARAMETERSBQ(z−1)

Adaptation Prediction Regressor Positive Observations
error error vector Real Cond.

v(t +1) ε(t +1) Φ1(t) H′(z−1)

ε(t +1) Eq. (51) φ1(t)
1

AQ
− λ2

2 -

ÂQε(t +1) Eq. (51) φ1(t)
ÂQ
AQ

− λ2
2 -

ε(t +1) Eq. (51) φ f
1 (t)

ÂQ
AQ

− λ2
2 -

ε(t +1) Eq. (51) φ f
1 (t)

ÃQ(t)
AQ

− λ2
2

Local
Convergence

Based on the assumption thatp(t) has n independent
frequency components, the Frequency Richness Condition for
Parameter Convergence holds. Therefore, the only solutionto
the above equation is limt→∞ α̃i(t) = 0, i.e., the parameters
converge to their true values.

Therefore, when t → ∞, D̂p(z−1) = Dp(z−1). Since
AQ(z−1) = Dp(ρz−1), thenÂQ(z−1) = D̂p(ρz−1), which could
be interpreted also as

lim
t→∞

ÂQ(z−1) = AQ(z−1) (46)

C. Estimation of BQ(z−1)

Using eq. (26), thea posteriorierror is defined as

ε(t +1) = v1(t +1)+ · · ·

· · ·
(

BQ− B̂Q(t +1)
)

wf (t +1) · · ·

−
(

A∗
Q− Â∗

Q(t +1)
)

ûf
Q(t)−A∗

Qε(t) (47)

where

wf (t +1) =
HS0HR0q−dB

P0
w(t +1) (48)

ûf
Q(t) =

HS0HR0q−dB

P0
ûQ(t) (49)

v1(t +1) =
S′HS0ANp

AQP0
δ (t +1) (50)

(see also figure 2). The signalv1(t + 1) tends asymptotically
towards zero (an asymptotically stable system excited by a
Dirac pulse).

The equation for thea posteriorierror takes the form

ε(t +1) =
1

AQ

[

θ T
1 − θ̂ T

1 (t +1)
]

φ1(t +1)+ · · ·

· · ·+vf
1(t +1)+v2(t +1), (51)

where

vf
1(t +1) =

1
AQ

v1(t +1)→ 0, sinceAQ is a.s. (52)

v2(t +1) =
1

AQ

(

A∗
Q− Â∗

Q(t +1)
)

(

−ûf
Q(t)

)

→ 0, (53)

θ1 =
[

bQ
0 , · · · ,bQ

2n−1

]T
(54)

θ̂1(t +1) =
[

b̂Q
0 (t +1), · · · , b̂Q

2n−1(t +1)
]T

(55)

φ1(t +1) =
[

wf (t +1), · · · ,wf (t +2−2n)
]T

(56)

(57)

where n is the number of narrow-band disturbances. The
convergence towards zero for the signalv2(t + 1) is assured
by the result of Eq. (46). Sincevf

1(t + 1) and v2(t + 1) tend
towards zero, (51) has the standard form of an adaptation error
equation [11], and the following PAA is proposed:

θ̂1(t +1) = θ̂1(t)+F1(t)Φ1(t)ν(t +1) (58)

ν(t +1) =
ε0(t +1)

1+ ΦT
1 (t)F1(t)Φ1(t)

(59)

ν0(t +1) = w1(t +1)− θ̂ T
1 (t)Φ1(t) (60)

w1(t +1) =
S0

P0
w(t +1) (61)

F1(t +1)−1 = λ1(t)F1(t)
−1−λ2(t)Φ1(t)ΦT

1 (t) (62)

0 < λ1(t) ≤1; 0≤ λ2(t) < 2; F1(0) > 0 (63)

There are several possible choices for the regressor vector
Φ1(t) (see Table I).

D. Stability of BQ(z−1) estimation

1) Error convergence:In all the cases the equation for the
a posteriori adaptation error takes the form

ν(t +1) = H(q−1)[θ1− θ̂1(t +1)]Φ1(t) (64)

which allows to use straightforwardly for stability analysis the
results of [11], chapter 3. For each choice a different positive
real condition has to be satisfied for assuring asymptotic
stability. The various options and the stability conditions are
summarized in Table I and discussed subsequently.

• When Φ1(t) = φ1(t). The adaptation errorv(t + 1) is
chosen as the prediction errorε(t +1) and the regressor
vectorΦ1(t) = φ1(t). Therefore, the stability condition is
hold when the transfer functionH ′ = 1

AQ
− λ2

2 is strictly
positive real (S.P.R.).

• Whenv(t +1) = ÂQε(t +1). Here the adaptation error is
considered as the product of the prediction errorε(t +1)
filtered by the estimated̂AQ. This leads to the regressor
vectorΦ1(t) = φ1(t) and the stability condition is modi-

fied toH ′ =
ÂQ
AQ

− λ2
2 should be S.P.R. This obtained when

Eq. (51) is multiplied byÂQ.
• When Φ1(t) = φ f

1 (t). Instead of filtering the adaptation
error, the observations can be filtered to relax the stability

condition4. By multiplying Eq. (51) by
ÂQ

ÂQ
we have that

v(t +1) = ε(t +1), the stability condition isH ′ =
ÂQ
AQ

− λ2
2

should be S.P.R. and the regressor vectorΦ1(t) = φ f
1 (t),

whereφ f
1 (t) = 1

ÂQ
φ1(t). HereÂQ is a fixed estimation.

• When ÂQ = ÂQ(t). If filtering through a current estima-
tion ÂQ(t) then the condition is similar to the previous
case except that is only valid locally [11].

2) Parameter convergence:Noting that limt→∞ v(t +1)= 0,
and since bothvf

1(t + 1) and v2(t + 1) tends asymptotically
towards zero, we need to show that

[

θ T
1 − θ̂ T

1 (t +1)
]

φ1(t +1)→ 0 as t → ∞ (65)

4Neglecting the non commutativity of the time-varying operators.



will implies:

θ̂1(t +1) = θ1 as t → ∞ (66)

Proof. Equation (65) can be written in form

lim
t→∞

v(t +1) = lim
t→∞





nDp−1

∑
i=0

(

bQ
i − b̂Q

i (t +1)
)

q−i



wf (t) = 0

(67)
with nBQ=nDp −1.

Since asymptoticallyb̂Q
i , i = 0,1, · · · ,nDp − 1 will be a

constant, Eq. (67) can hold either ifbQ
i − b̂Q

i = 0, i =
0,1, · · · ,nDp−1 or if wf (t) is a solution of the difference equa-

tion
[

∑
nDp−1
i=0

(

bQ
i − b̂Q

i (t +1)
)

q−i
]

wf (t) = 0. In the presence

of the external disturbance,wf (t) which is a filtered version of
the disturbance (see Eqs. (25) and (48)) will be characterized
by a difference equation of ordernDp and it cannot be a
solution of a difference equation of ordernDp −1. Thererfore,
limt→∞ ν(t + 1) = 0 implies also the parametric convergence
in the presence of the disturbance.

V. A PPLICATION TO THEEJC BENCHMARK

A standard design method such as Pole Placement with
sensitivity function shaping [15] is used to calculate the central
controller.

• For P0(z−1): All the stable poles of the system are
preserved. Also 6 real poles for robustness reasons are
added.

• For HR0(z
−1): Four band stop filters (BSF) are considered

to shapeSup(z−1) outside the operation zone. The loop
is open at 0Fs and 0.5Fs.

• No pre-specified parts where considered forHS0(z
−1).

A value of ρ = 0.97 has been used for all the levels and
all the test. This value provides a good compromise between
performance and robustness. The value is not very critical.

A. Simulation results

Table II summarizes the simulation results for theSimple
Step Test. The objectives are shown in the column named
Level, according to [10].

For Level 1, both global attenuation (GA) and disturbance
attenuation (DA) specifications were achieved for all the fre-
quencies. For the maximum amplification (MA) the challenge
was fulfilled in general (only at 75 Hz the amplification was 7
dB). The transient behavior can be analyzed from the truncated
two-norm (N2T), the maximum value (MV) and through the
transient duration (TD) which is a main indicator (for the
definition see [10]). The control scheme achieves for all the
frequencies 100% of the transient duration.

The Level 2 results shows that the control scheme proposed
achieves both global and disturbance attenuation for all the
cases. For the maximum amplification, the limit is exceeded
only for the case 50-70 Hz (7.2 dB).

Finally the Level 3 shows that in the most difficult situation
the global attenuation specification can be achieved by this
approach along with a very good disturbance attenuation. The

TABLE III
SIMULATION RESULTS FOR THEYK-IIR ALGORITHM - STEP

CHANGES IN FREQUENCY.

Sequence 1 Sequence 2 Sequence 3
N2T MV N2T MV N2T MV

×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

L
ev

el
1 19.5 23.1 19.4 24.2 41.6 23.9

17.8 22.8 24.3 27.8 61.3 28.9
24.6 26.0 18.6 25.5 22.2 25.6
39.5 33.5 20.1 24.5 21.1 24.4

L
ev

el
2 44.0 34.4 68.1 35.4 - -

40.6 32.7 86.1 37.9 - -
54.0 37.9 56.9 37.0 - -
60.8 41.7 50.0 34.9 - -

L
ev

el
3 128.7 68.4 170.3 59.1 - -

164.5 66.8 233.1 59.3 - -
105.5 61.0 123.7 63.7 - -
152.6 69.0 131.7 68.4 - -

maximum amplification results are very promising since for
all the cases the limit was respected (9 dB). The transient
duration objective is fulfilled except for the last case 65-80-95
Hz (70.8 %).

Table III presents the simulation results for the
Step Frequency Changes Testfor the three levels.
The Chirp Test is not presented here due to space
constraints but can be find on the web page:
http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/
benchmarkadaptiveregulation/files/YKIIR results.pdf. The
transient behavior is evaluated using both measurements
N2T and MV. According to the test protocol, each three
seconds the disturbance frequency will change in a specific
profile (but unknown for the designer). At each change
(step) the truncated two-norm (N2T) and the maximum value
(MV) are measured. Larger values, correspond to less good
transient behavior. As expected, if the number of narrow band
disturbances increases, the transient behavior will be less
good. This is reflected in both columns. Notice that for MV
the increase is around 30%∼ 50%, but for N2T is around
100% between the various levels.

B. Real-time results

Table IV summarizes the real-time results for theSimple
Step Test. As for the simulations, the objectives were settled
as in [10].

For Level 1, regarding GA only in two cases (80 and 85 Hz)
the results are below the objective. For DA, the last case (95
Hz) shows the only result that do not achieves the objective.
With respect to MA, the results shows that even this kind of
approach presents amplifications over the desired limit; the
case where the objective was more close to be fulfill is at 85
Hz (6.3 dB of MA). Transient duration requirement is fulfilled
for all the cases.

Level 2 results shows that the control scheme proposed in
this paper achieves both GA and DA specifications for all the
cases. Is in the maximum amplification where the difficulties
arises. The settled limit of 7 dB is not respected, and only at
60-80 and 65-85 Hz the results are close to the desired value.



TABLE II
SIMULATION RESULTS FORYK-IIR A LGORITHM - SIMPLE STEP TEST.

Level Case (Hz) GA (dB) DA (dB) MA (dB@Hz) N2T
(

×10−3
)

N2R
(

×10−3
)

MV
(

×10−3
)

TD %

50 35.8 40.5 6.2@57.8 76.4 3.6 24.1 100
55 35.4 44.8 4.6@48.5 55.5 3.7 35.2 100
60 35.3 45.2 4.8@51.6 45.3 3.6 34.3 100

1 65 34.9 49.7 5.4@54.7 40.7 3.7 33.8 100
GA≥30 70 34.8 51.9 5.2@64.1 31.0 3.8 25.4 100
DA≥40 75 34.8 48.5 7.0@68.8 21.4 3.8 21.9 100
MA≤6 80 35.0 46.5 5.0@71.9 15.9 3.7 22.3 100

85 34.5 44.4 3.9@75.0 15.9 3.7 22.3 100
90 33.3 42.7 4.1@79.7 19.1 3.8 25.9 100
95 29.5 38.4 5.4@85.9 21.0 4.2 32.9 100

50-70 41.2 43.5-50.3 7.2@59.4 71.7 3.7 31.3 100
2 55-75 40.9 47.6-49.5 6.1@67.2 51.6 3.8 31.9 100

GA≥30 60-80 41.1 44.1-45.3 6.0@71.9 33.3 3.7 35.8 100
DA≥40 65-85 40.6 45.8-44.2 5.9@75.0 28.9 3.8 38.2 100
MA≤7 70-90 39.6 50.6-40.7 5.5@78.1 41.1 4.0 41.7 100

75-95 37.9 50.0-43.0 6.0@87.5 50.4 4.2 45.8 100

3 50-65-80 44.5 42.2-42.3-45.3 8.2@54.7 167.7 3.8 60.0 100
GA≥30 55-70-85 43.7 45.5-45.4-43.4 6.6@64.1 138.6 4.0 71.4 100
DA≥40 60-75-90 43.0 45.4-47.2-40.7 6.2@82.8 127.5 4.1 54.1 100
MA≤9 65-80-95 42.5 45.7-42.3-43.4 6.4@89.1 125.8 4.0 61.4 70.80

TABLE IV
REAL-TIME RESULTS FOR THEYK-IIR ALGORIHTM - SIMPLE STEP TEST.

Level Case (Hz) GA (dB) DA (dB) MA (dB@Hz) N2T
(

×10−3
)

N2R
(

×10−3
)

MV
(

×10−3
)

TD %

50 34.5 40.3 9.3@62.5 111.3 6.8 30.7 92.2
55 33.1 45.4 8.2@50.0 47.6 5.8 29.4 100
60 33.3 45.6 6.8@125.0 27.5 5.1 20.9 100

1 65 31.8 45.4 9.1@56.3 15.2 5.2 19.6 100
GA≥30 70 29.9 45.6 8.1@131.3 13.6 5.6 20.8 100
DA≥40 75 30.3 47.9 8.6@70.3 19.8 5.0 18.4 100
MA≤6 80 29.5 48.6 7.7@6.3 13.4 5.3 20.9 100

85 29.5 43.6 6.3@117.2 21.3 5.2 23.3 100
90 29.1 43.7 7.5@117.2 18.1 5.0 23.4 100
95 27.1 39.0 6.8@375.0 20.9 4.8 28.1 100

50-70 38.2 40.9 - 43.9 10.3@64.1 99.3 6.8 30.9 100
2 55-75 35.9 46.1 - 47.2 11.9@60.9 52.9 6.9 30.5 100

GA≥30 60-80 37.8 45.6 - 45.9 7.9@70.3 38.0 5.1 34.2 100
DA≥40 65-85 35.2 42.9 - 42.9 7.9@212.5 28.9 6.2 35.7 100
MA≤7 70-90 36.1 43.7 - 44.9 10.0@115.6 42.8 5.2 39.3 100

75-95 35.0 44.9 - 40.0 9.9@128.1 51.3 5.4 44.2 100

3 50-65-80 40.1 38.3 - 39.7 - 43.7 8.9@125.0 151.5 7.2 50.2 100
GA≥30 55-70-85 40.1 45.2 - 45.1 - 42.7 7.8@78.1 103.0 6.0 57.6 100
DA≥40 60-75-90 38.7 45.2 - 42.2 - 43.3 10.8@78.1 105.3 6.4 79.7 100
MA≤9 65-80-95 38.8 43.9 - 41.7 - 40.5 10.2@85.9 119.2 5.8 63.6 80.9

Finally the Level 3 shows that in the most difficult situation
GA specification is achieved for all the cases. However, at this
level the DA is not fulfilled for 50-65-80 Hz. One possible
explanation is the presence of low damped complex poles and
zeros near 50 Hz. For Level 3 the MA specification is achieved
for the 50 % of the cases and slightly exceeds the specification
for the other 50 %.

Table V presents the real-time results for theStep Frequency
Changes Testfor the three levels. As for the simulation results,
if the number of narrow band disturbances increases, the
transient behavior measured in terms of N2T and MV will
be less good. This can be seen for both measurements. The
increase for the N2T is 50% between various levels. For MV,
the increase from L1 to L2 is 44% and passing for L2 to L3

the increase is 67.8%.

C. Global Evaluation Comparison

The results which have been presented has to be evaluated
comparatively with the the most relevant schemes presented
for the EJC benchmark [10]. This comparison will be done
on a global basis using the procedure presented in [10]. The
results presented above will be compared with those of [1],
[6] and [4].

Four comparisons are presented and enlisted here:

• Benchmark Satisfaction Index (BSI) for steady state
performance, known also asTuning capabilities. This
criterion use the results from the Simple Step Test in order



TABLE V
REAL-TIME RESULTS FOR THEYK-IIR ALGORITHM - STEP

CHANGES IN FREQUENCY.

Sequence 1 Sequence 2 Sequence 3
N2T MV N2T MV N2T MV

×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

L
ev

el
1 23.3 23.2 18.2 23.2 33.4 18.5

22.2 25.7 21.3 23.4 57.7 26.8
50.5 23.2 20.3 24.4 21.1 24.4
48.0 36.8 19.8 22.0 19.3 20.1

L
ev

el
2 47.6 37.9 66.6 40.6 - -

48.7 35.7 79.2 38.1 - -
65.0 37.9 59.3 35.4 - -
70.5 45.5 49.5 33.2 - -

L
ev

el
3 102.3 66.0 167.8 59.0 - -

145.6 68.8 237.7 60.2 - -
168.8 63.5 146.1 67.6 - -
125.9 65.2 143.5 66.0 - -

to show how ”good” is the performance of a specified
scheme, by measuring the fulfillment of the specifications
(columnLevel in Table II) assigning a percentage. Here a
100% means a complete fulfillment of the specifications.

• Normalized Performance Loss. This criterion is used to
measure the difference in performance between simula-
tions and real-time results. For this criterion, lower values
indicates better robustness with respect to plant model and
noise uncertainties.

• Average Global Criterion for Transient Performance. This
criterion use an average found from the results of both
Step Changes in Frequency Test and Chirp Test. Lower
values of the criterion corresponds to a better transient
behavior.

• Complexity evaluation is done in terms of measurement
of the Task Execution Timemeasured5. The value of the
criterion is obtained from the average task execution time
(TET) measured in the xPC-Target environment from
MATLAB. Low values correspond to less complexity of
the control scheme.

In fig. 4 the comparison of the BSI for the steady state
performance is presented for the four approaches mentioned.
As shown, the adaptive scheme proposed in this article (named
YK-IIR) achieves the highest performance in real-time for the
first level (BSI1-RT), a very good performance for the second
level (BSI2-RT) and the second best (only behind [4]) for the
third level (BSI3-RT).

The difference between the simulation results and real-time
results are illustrated by the Normalized Performance Loss
comparison shown in fig. 5. Among all the results given
in [10], the four approaches compared here show the lowest
values for this criterion (less than 20%). However, the adaptive
scheme proposed in this paper achieves the lower loss for first
level (NPL1). The approach of [4] shows the best result for
the second level (NPL2). For the third level both approaches,
[4] and YK-IIR, give the best results (this is the most difficult
level).

5In fact the difference between the task execution time in closed loop and
in open loop is considered in the criterion.
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Fig. 4. Benchmark Satisfaction Index comparison for four approaches.

Normalized Performance Loss
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Fig. 5. Normalized Performance Loss comparison for four approaches.

The average global criterion for transient evaluation crite-
rion (namedJTRAVk k= 1, · · · ,3) is presented in fig. 6. While
the approach presented in this paper does not always has the
best performance compared to the other three approaches, it
is clearly on the average the best.

Finally, in terms of complexity the YK-IIR has a significant
increases∆TET compared to the one obtained in [4] (which
is the lowest). However this value is still significantly smaller
than the∆TET of of [1].

The new scheme has also been tested using
the ”modified protocol ” (a different disturbance
scenario) defined in the benchmark website
(http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/
benchmarkadaptiveregulation/index.html). It was found
that the adaptive scheme proposed here shows excellent
results under this modified protocol. The results are available
at: http://www.gipsa-lab.grenoble-inp.fr/∼ioandore.landau/
benchmarkadaptiveregulation/files/YKIIR results.pdf

VI. CONCLUDING REMARKS

The results on this paper suggest that with an adaptive
IIR Youla-Kučera Filter it is possible to achieve similar and
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even better results that with an FIR Youla-Kučera Filter for
the strong attenuation of multiple unknown and time-varying
disturbances. The advantages of using this approach is one
hand the drastic simplification of the design of the central
controller and on the other hand the possibility of using a sin-
gle central controller independently of the number of narrow
band disturbances to be attenuated. To solve the problem it was
necessary to overcome the problem of over parametrization
when using adaptive IIR Youla-Kučera Filters by using mirror
type polynomials for describing the disturbance models.
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