Objects co-segmentation: Propagated from simpler images

Abstract : Recent works on image co-segmentation aim to segment common objects among image sets. These methods can co-segment simple images well, but their performance may degrade significantly on more cluttered images. In order to co-segment both simple and complex images well, this paper proposes a novel paradigm to rank images and to propagate the segmentation results from the simple images to more and more complex ones. In the experiments, the proposed paradigm demonstrates its effectiveness in segmenting large image sets with a wide variety in object appearance, sizes, orientations, poses, and multiple objects in one image. It out-performs the current state-of-the-art algorithms significantly, especially in difficult images.
Type de document :
Communication dans un congrès
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, Apr 2015, South Brisbane, Australia. 2015, <10.1109/ICASSP.2015.7178257>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01250264
Contributeur : Santiago Velasco-Forero <>
Soumis le : lundi 4 janvier 2016 - 15:13:06
Dernière modification le : mardi 12 septembre 2017 - 11:40:28
Document(s) archivé(s) le : vendredi 15 avril 2016 - 16:02:54

Fichier

icassp_submission.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marcus Chen, Santiago Velasco-Forero, Ivor Tsang, Tat-Jen Cham. Objects co-segmentation: Propagated from simpler images. Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, Apr 2015, South Brisbane, Australia. 2015, <10.1109/ICASSP.2015.7178257>. <hal-01250264>

Partager

Métriques

Consultations de
la notice

196

Téléchargements du document

124