
HAL Id: hal-01249826
https://hal.science/hal-01249826v3

Preprint submitted on 8 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Is P equal to NP?
Frank Vega

To cite this version:

Frank Vega. Is P equal to NP?. 2016. �hal-01249826v3�

https://hal.science/hal-01249826v3
https://hal.archives-ouvertes.fr

Is P equal to NP?

Frank Vega

Abstract

P versus NP is one of the most important and unsolved problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? This incognita was
first mentioned in a letter written by Kurt Gödel to John von Neumann in 1956. However, the
precise statement of the P versus NP problem was introduced in 1971 by Stephen Cook in a
seminal paper. Under the assumption of P = NP, we show that P = EXP is also hold. Since P is
not equal to EXP, we prove that P is not equal to NP by the Reductio ad absurdum rule.

Keywords: P, NP, EXP, NEXP, coNP
2000 MSC: 68-XX, 68Qxx, 68Q15

1. Introduction

P versus NP is a major unsolved problem in computer science. This problem was introduced
in 1971 by Stephen Cook [1]. It is considered by many to be the most important open problem in
the field [2]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics
Institute to carry a US$1,000,000 prize for the first correct solution [2].

In 1936, Turing developed his theoretical computational model [3]. The deterministic and
nondeterministic Turing machine have become in some of the most important definitions related
to this theoretical model for computation. A deterministic Turing machine has only one next
action for each step defined in its program or transition function [4]. A nondeterministic Turing
machine could contain more than one action defined for each step of its program, where this one
is no longer a function, but a relation [4].

Another huge advance in the last century was the definition of a complexity class. A language
over an alphabet is any set of strings made up of symbols from that alphabet [5]. A complexity
class is a set of problems, which are represented as a language, grouped by measures such as the
running time, memory, etc [5].

In computational complexity theory, the class P contains those languages that can be de-
cided in polynomial-time by a deterministic Turing machine [6]. The class NP consists in those
languages that can be decided in polynomial-time by a nondeterministic Turing machine [6].

The biggest open question in theoretical computer science concerns the relationship between
these two classes:

Is P equal to NP?

Email address: vega.frank@gmail.com (Frank Vega)

Preprint submitted to Elsevier January 7, 2016

In a 2002 poll of 100 researchers, 61 believed the answer to be no, 9 believed the answer is
yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted
axioms and so impossible to prove or disprove [7].

In addition, we have the class EXP contains those languages that can be decided in exponential-
time by a deterministic Turing machine [6]. The class NEXP is the set of all languages that can
be decided in exponential-time by a nondeterministic Turing machine [6]. EXP and NEXP are
nothing else but P and NP on exponentially more succinct input [4]. It is known the succinct
version of the problem HAMILTON PATH, that is called SUCCINCT HAMILTON PATH, is in
NEXP–complete [4]. We shall prove if we assume that P = NP, then the language SUCCINCT
HAMILTON PATH would be in P too. However, this would imply P = EXP [4]. But, this is
a false result [4]. In this way, we shall claim that P , NP as a consequence of applying the
Reductio ad absurdum rule.

2. Results

A graph G is a pair (V, E), where V is a finite set and E is a binary relation on V [5]. The
set V is called the vertex set of G, and its elements are called vertices or nodes [5]. The set E
is called the edge set of G, and its elements are called edges [5]. If (u, v) is an edge in a graph
G = (V, E), we say that vertex v is adjacent to vertex u [5]. A path of length k from a vertex u
to a vertex u′ in a graph G = (V, E) is a sequence of vertices 〈v0, v1, v2, . . . , vk〉 such that u = v0,
u′ = vk, and (vi−1, vi) ∈ E for i = 1, 2, . . . , k [5]. One of the most basic problems on graphs is
this: Given a graph, is there a path that visits each node exactly once? We call this problem as
HAMILTON PATH [4]. HAMILTON PATH is in NP–complete [4].

A succinct representation of a graph with n nodes, where n = 2b is a power of two, is
a Boolean circuit C with 2 × b input gates [4]. The graph represented by C, denoted GC , is
defined as follows: The nodes of GC are {1, 2, . . . , n}. And (i, j) is an edge of GC if and only
if C accepts the binary representations of the b-bits integers i, j as inputs [4]. The problem
SUCCINCT HAMILTON PATH is now this: Given the succinct representation C of a graph GC

with n nodes, does GC have a Hamilton path? The problem SUCCINCT HAMILTON PATH is
in NEXP–complete [4].

Theorem 2.1. If P = NP, then SUCCINCT HAMILTON PATH would be in P.

Proof. Let’s take an arbitrary succinct representation C of a graph GC with n nodes, where n = 2b

is a power of two and C will be a Boolean circuit of 2 × b input gates. The circuit C computes
a Boolean function fC : {true, f alse}2×b → {true, f alse} [4]. Now, if C is a “yes” instance of
SUCCINCT HAMILTON PATH, then there will be a linear order Q on the nodes of GC , that
is, a binary relationship isomorphic to < on the nodes of GC , such that consecutive nodes are
connected in GC [4].

This linear order Q must require several things:

1. All distinct nodes of GC are comparable by Q,
2. next, Q must be transitive but not reflexive,
3. and finally, any two consecutive nodes in Q must be adjacent in GC .

Any binary relationship Q that has these properties must be a linear order, any two consecu-
tive elements of which are adjacent in GC—that is, it must be a Hamilton path [4].

2

Let R be a binary relation on strings. R is called polynomially decidable if there is a deter-
ministic Turing machine deciding the language {x; y : (x, y) ∈ R} in polynomial time [4]. We say
that R is polynomially balanced if (x, y) ∈ R implies |y| < |x|k for some k ≥ 1 [4].

The linear order Q can be represented as a graph GQ. In this way, the succinct representation
CQ of the graph GQ will represent the linear order Q too. We can define a polynomially balanced
relation RQ, where for all succinct representation C of a graph: There is another Boolean circuit
CQ that will represent a linear order Q on the nodes of GC such that (C,CQ) ∈ RQ if and only
if C ∈ SUCCINCT HAMILTON PATH [4]. Indeed, the graphs GC and GQ will comply with
|GQ| < |GC |

3 when (C,CQ) ∈ RQ, since both graphs would have the same number of nodes and
GC would contain a Hamilton path. Certainly, if the graph GC of n nodes contains a Hamilton
path, then it would have at least (n − 1) edges. But, if GC is a pair (VGC , EGC), GQ is (VGQ , EGQ)
and (C,CQ) ∈ RQ, where VGC and VGQ are vertex sets and EGQ and EGC are edge sets, then
|VGC | = |VGQ | and |EGQ | < |EGC |

3 when |EGC | > 1, because the maximum number of edges in a
graph of n nodes is lesser than n × (n − 1) [5]. Consequently, we obtain the same property for
their succinct representations, that is, CQ should be polynomially bounded by C. Indeed, for a
sufficiently large n, the Boolean circuits C and CQ will be exponentially more succinct than GC

and GQ respectively [4].
A language L is in class NP if there is a polynomially decidable and polynomially balanced

relation R such that L = {x : (x, y) ∈ R for some y} [4]. We shall show the binary relation RQ

would be polynomially decidable if P = NP. In this way, we show that SUCCINCT HAMILTON
PATH would be in NP under this assumption. Moreover, since P would be equal to NP, we obtain
that SUCCINCT HAMILTON PATH would be in P too.

Given the chosen arbitrary Boolean circuit C, we will show we could decide in polynomial-
time whether (C,CQ) ∈ RQ for some circuit CQ. This circuit CQ must compute a Boolean function
fQ : {true, f alse}2×b → {true, f alse} [4].

First, let’s define two simple languages:

Definition 2.2. Problem BETWEEN:
INSTANCE: Three positive integers x, i, and j.
QUESTION: Is x between i and j?

Definition 2.3. Problem EQUAL:
INSTANCE: Two positive integers x and y.
QUESTION: Is x equal to y?

It is easy to see these problems are in P. Hence, they will have uniformly polynomial circuits
[4]. Certainly, a language L has uniformly polynomial circuits if and only if L ∈ P [4]. Conse-
quently, we can obtain in logarithmic-space a Boolean circuit Cbt of polynomial size in relation
to b, where Cbt will have (2× b) + 1 input gates, such that for some positive integer x represented
on a binary string of length b, x is between 1 and n if and only if the output of Cbt is true, when
the ith input variable is true if xi = 1, and false otherwise [4]. The other input gates in Cbt do
not require a truth assignment, because they are not variable gates. Indeed, in these input gates
we use the same conversion for the binary sequence of 1 and n into a Boolean sequence of final
length (b + 1): That is true in a bit 1, and false otherwise. The circuit Cbt computes a Boolean
function fbt : {true, f alse}b → {true, f alse} [4]. Similarly, we could obtain a Boolean circuit Ceq

in logarithmic-space, where Ceq has only 2 × b input gates and its size is polynomial in relation
to b, such that for two positive integers x and y represented on binary strings of length b, the

3

output of Ceq is true if and only if x is equal to y. The circuit Ceq computes a Boolean function
feq : {true, f alse}2×b → {true, f alse} [4].

If NP is the class of problems that have succinct certificates, then the complexity class coNP
contains those problems that have succinct disqualifications [4]. That is, a “no” instance of a
problem in coNP possesses a short proof of its being a “no” instance [4]. An interesting language
is TAUTOLOGY which is defined as follows: Given a Boolean formula φ, is there not any truth
assignment that makes φ false? TAUTOLOGY is in coNP–complete, because its complement is
NP–complete [8]. A Boolean formula in TAUTOLOGY is frequently called a tautology [4].

Using the previous functions fQ, fbt and feq, we can define another Boolean functions as
follows:

ψ(X,Y) = δ(X,Y)⇒ (fQ(X,Y) ∨ fQ(Y, X) ∨ feq(X,Y))

ϕ(X,Y,Z) = γ(X,Y,Z)⇒ ((⇁ fQ(X, X)) ∧ ((fQ(X,Y) ∧ fQ(Y,Z))⇒ fQ(X,Z)))

where

δ(X,Y) = fbt(X) ∧ fbt(Y)

and

γ(X,Y,Z) = fbt(X) ∧ fbt(Y) ∧ fbt(Z).

We let X be a set of Boolean variables {xi ∈ X : i ∈ N and 1 ≤ i ≤ b} that represent a b-bits
integer m, where the ith variable xi is true if mi = 1, and false otherwise. We will define the set of
Boolean variables Y and Z in the same way. The functions δ and γ guarantee the b-bits integers
represented by X, Y and Z will always evaluate ψ and ϕ to true when they are not between 1 and
n.

In analogy with Boolean circuits compute Boolean functions, the Boolean functions could
be expressed by Boolean expressions [4]. All distinct nodes of GC are comparable by a binary
relationship Q on nodes of GC if and only if the Boolean expression that expresses the function
ψ is a tautology. Moreover, a binary relationship Q on nodes of GC is transitive but not reflexive
if and only if the Boolean expression that expresses the function ϕ is a tautology. But, if P = NP,
then P = NP = coNP [4]. In this way, TAUTOLOGY would be in P, and thus, it has been
proved that we can check in polynomial-time the first and second property of a linear order Q on
nodes of GC .

For the verification of the third property we need to define a new language:

Definition 2.4. Problem EVALUATION:
INSTANCE: Two Boolean formulas φ1 and φ2. The formula φ2 contains all the variables of

φ1, but φ2 might have some variables that are not in φ1.
QUESTION: Does every truth assignment T of φ1 which converts φ2 into a tautology after

its evaluation in T , a satisfying truth assignment of φ1?

A truth assignment for a Boolean formula φ is a set of values for the variables of φ and a
satisfying truth assignment is a truth assignment that causes it to evaluate to true.

Let’s see one example of this language:

φ1 = p ∧ q
4

φ2 = (p ∧ r) ∨ (q ∧⇁ r).

The only truth assignment T of φ1 that makes φ2 a tautology after its evaluation in T is
p = true and q = true. Certainly, the formula φ2 after the evaluation in T would be r ∨ ⇁ r,
that is, a trivial tautology [4]. However, T will be a satisfying truth assignment of φ1, and thus,
〈φ1; φ2〉 ∈ EVALUAT ION.

Theorem 2.5. If P = NP, then EVALUATION would be in P.

Proof. We can find a succinct disqualification of an instance 〈φ1; φ2〉, when this one would be a
“no” instance of EVALUATION, if P = NP. Given a truth assignment T of φ1, we could check
in polynomial-time whether φ2 is a tautology after its evaluation in T , because TAUTOLOGY
would be in P. A language LNT = {〈φ1; φ2〉}, such that there is not any truth assignment T of φ1
that makes φ2 a tautology after its evaluation in T , would be in coNP. Certainly, its complement
would be in NP, since as we mentioned before, we can verify in polynomial-time whether a truth
assignment T of φ1 converts φ2 into a tautology when P = NP. But, these kind of “no” instances
of EVALUATION, which are the elements of LNT , could be checked in polynomial-time. Indeed,
LNT would be in coNP, and therefore, this language would be in P. At the same time, if some
truth assignment T of φ1, such that φ2 is converted into a tautology after its evaluation in T , is not
a satisfying truth assignment of φ1, then this could be verified in polynomial-time. Certainly, we
could verify in polynomial-time whether a truth assignment is not a satisfying truth assignment
of φ1 [4]. Hence, we have proved that EVALUATION would be in coNP if we assume that
P = NP, and thus, it would be in P too.

Now, let’s build the following Boolean functions from the previous functions fC , fQ, δ and γ:

ψ′(X,Y) = δ(X,Y)⇒ (fQ(X,Y)⇒ fC(X,Y))

ϕ′(X,Y,Z) = γ(X,Y,Z)⇒ (⇁ fQ(X,Z) ∨⇁ fQ(Z,Y)).

In addition, we obtain the Boolean expressions ψ′1 and ϕ′2 from the Boolean functions ψ′ and
ϕ′ respectively. We can see ϕ′2 is a tautology for a truth assignment of ψ′1 if and only the nodes
represented by X and Y are consecutive nodes in the binary relationship Q, or (⇁ fQ(X,Y))
is true, or the b-bits integers represented by X and Y are not between 1 and n. In this way,
any two consecutive nodes in a binary relationship Q must be adjacent in GC if and only if
〈ψ′1;ϕ′2〉 ∈ EVALUAT ION. But, as we just proved before, EVALUATION would be in P, and
thus, we could verify in polynomial-time the third and last property of a linear order Q on nodes
of GC too.

Finally, we have checked in polynomial-time whether a succinct representation CQ of a graph
GQ with n nodes could be a linear order Q on nodes of the graph GC if P = NP. That is equivalent
to show the graph represented by the arbitrary Boolean circuit C can contain a Hamilton path. In
this way, we have shown the polynomially balanced relation RQ would be polynomially decidable
when P = NP. For this purpose, the Boolean functions fC , fQ, fbt and feq can be created in
polynomial-time from the circuits C, CQ, Cbt and Ceq [4]. Furthermore, we have obtained in
polynomial-time the Boolean circuits Cbt and Ceq, since BETWEEN ∈ P and EQUAL ∈ P [4].
In conclusion, we have demonstrated if P = NP, then SUCCINCT HAMILTON PATH would be
in P.

5

Theorem 2.6. P , NP.

Proof. We start assuming that P = NP. The Theorem 2.1 states when P = NP, the problem
SUCCINCT HAMILTON PATH would be in P. But, we already know if P = NP, then EXP =

NEXP [4]. Since SUCCINCT HAMILTON PATH is in NEXP–complete, then it would be in
EXP–complete, because the completeness of both classes uses the polynomial-time reduction
[4]. But, if some EXP–complete problem is in P, then P should be equal to EXP, because P
and EXP are closed under reductions and P is a subset of EXP [4]. However, as result of the
Hierarchy Theorem the class P cannot be equal to EXP [4]. To sum up, we obtain a contradiction
under the assumption that P = NP, and thus, we can claim that P , NP as a direct consequence
of applying the Reductio ad absurdum rule.

3. Conclusions

This proof explains why after decades of studying the NP problems no one has been able
to find a polynomial-time algorithm for any of more than 300 important known NP–complete
problems [8]. Indeed, it shows in a formal way that many currently mathematically problems
cannot be solved efficiently, so that the attention of researchers can be focused on partial solutions
or solutions to other problems.

Although this demonstration removes the practical computational benefits of a proof that
P = NP, it would represent a very significant advance in computational complexity theory and
provide guidance for future research. In addition, it proves that could be safe most of the existing
cryptosystems such as the public-key cryptography [9]. On the other hand, we will not be able
to find a formal proof for every theorem which has a proof of a reasonable length by a feasible
algorithm.

References

[1] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd IEEE Symp. on the Founda-
tions of Computer Science, 1971, pp. 151–158.

[2] L. Fortnow, The Status of the P versus NP Problem, Communications of the ACM 52 (9) (2009) 78–86.
doi:10.1145/1562164.1562186.

[3] A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, Proceedings of the
London Mathematical Society 42 (1936) 230–265.

[4] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, 2001.
[6] M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Thomson Course Technology, 2006.
[7] W. I. Gasarch, The P=?NP poll, SIGACT News 33 (2) (2002) 34–47.
[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition,

San Francisco: W. H. Freeman and Company, 1979.
[9] O. Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University Press, 2010.

6

