Stick-slip instabilites in magnetorheological fluids - Archive ouverte HAL Accéder directement au contenu
Chapitre D'ouvrage Année : 2015

Stick-slip instabilites in magnetorheological fluids

Résumé

In this work we review our recent experimental and theoretical results on the flow instabilities observed in magnetorheological (MR) fluids subjected to applied magnetic fields. We study three types of MR fluids, consisting of suspensions of respectively silica-coated iron particles, carbonyl iron particles and CoNi fibers dispersed in a liquid carrier, and subjected to two types of flow, shear flow between parallel plates and pressure-driven flow through a capillary. In all cases we found that the flow curves showed a decreasing branch corresponding to a region of negative differential viscosity, for which a stable steady-state flow was impossible. We found different physical reasons for the observed instabilities. For shear flow between parallel plates of highly concentrated suspensions of spherical iron particles, fracture of the magnetic field-induced particle structures in combination with shear localization were on the basis of the observed instabilities. Periodic formation and fracture of the particle structures due to the magnetic field gradient and the hydrodynamic drag forces respectively was responsible for instabilities in the case of pressure-driven flow through a capillary of suspensions of spherical iron particles. In the case of suspensions of CoNi fibers, interparticle friction forces were in the origin of the obtained negative differential viscosity, as a consequence of hindering fiber reorientation inside the aggregates as they were deviated by shear forces from the direction of the applied field. In addition to the interest of this work from a fundamental point of view, its practical relevance stands on the importance of a detailed knowledge of the conditions that give rise to instabilities in order to rule them out and avoid malfunction of technological devices based on the MR effect.
Fichier principal
Vignette du fichier
Lopez-Lopez and co-workers_final.pdf (5.74 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01249349 , version 1 (04-01-2016)

Identifiants

  • HAL Id : hal-01249349 , version 1

Citer

Modesto Lopez-Lopez, Laura Rodriguez-Arco, Pavel Kuzhir, Juan D.G. Durán, Andrey Zubarev, et al.. Stick-slip instabilites in magnetorheological fluids. Francisco Chinesta, Gilles Ausias. Rheology of Non-Spherical Particle Suspensions , ISTE Press, 2015, 978-1-78548-036-2. ⟨hal-01249349⟩
112 Consultations
132 Téléchargements

Partager

Gmail Facebook X LinkedIn More