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Abstract

Global sensitivity analysis is a set of methods aiming at quantifying the contribution of
an uncertain input parameter of the model (or combination of parameters) on the variability
of the response. We consider here the estimation of the Sobol indices of order 1 which are
commonly-used indicators based on a decomposition of the output’s variance. In a deter-
ministic framework, when the same inputs always give the same outputs, these indices are
usually estimated by replicated simulations of the model. In a stochastic framework, when
the response given a set of input parameters is not unique due to randomness in the model,
metamodels are often used to approximate the mean and dispersion of the response by deter-
ministic functions. We propose a new non-parametric estimator without the need of defining
a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped
wavelets and is adaptive in the regularity of the model. The convergence of the mean square
error to zero, when the number of simulations of the model tend to infinity, is computed
and an elbow effect is shown, depending on the regularity of the model. Applications in
Epidemiology are carried to illustrate the use of non-parametric estimators.

Keywords: Sensitivity analysis in a stochastic framework; Sobol indices of order 1; adaptive
non-parametric inference; warped wavelets; model selection; applications to epidemiology; SIR
model; spread of the Hepatitis Virus C among drug users.
MSC2010: 49Q12; 62G08; 62P10.

1 Introduction

Sensitivity analysis is widely used for modelling studies in public health, since the number of
parameters involved is often high (see e.g. [31, 36] and references therein). It can be applied
to a variety of problems, and we focus here on the question of evaluating the impact of input
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parameters on an output of a model. If we assume that the output of the model, y ∈ R, depends
on p ∈ N input parameters x = (x1, ...xp) ∈ Rp through the relation y = f(x), we are interested
here in evaluating how the parameter x`, for ` ∈ {1, . . . , p} affects y. The vector x of the input
parameters can be considered as a realisation of a set of random variables X = (X1, ...Xp), with
a known distribution and with possibly correlated components. Also, sensitivity analyses in
epidemiology deal with deterministic models although in many cases, randomness and nuisance
parameters have to be included, which is one of the goal of the present paper.

In public health, most of the studies on sensitivity analysis are performed by letting the input
parameters vary on a deterministic grid, or by sampling all parameters from a prior probability
distribution [3]. However, there exist other ways of measuring the influence of the inputs on the
output. In this article, we are interested in Sobol indices [28], which are based on an ANOVA
decomposition (see [27, 16, 17] for a review). Denoting by Y = f(X) the random response, the
first order Sobol indices can be defined for ` ∈ {1, . . . , p} by

S` =
Var
(
E[Y | X`]

)
Var(Y )

. (1.1)

This index represents the fraction of the variance of the output Y due to the input X`. Several
numerical procedures to estimate the Sobol indices have been proposed, in particular by Jansen
[19] (see also [26, 27]). These estimators, that we recall in the sequel, are based on Monte-Carlo
simulations of (Y,X1 . . . Xp).

The literature focuses on deterministic relations between the input and output parameters.
In a stochastic framework where the model response Y is not unique for given input parameters,
few works have been done, randomness being usually limited to input variables. Assume that:

Y = f(X, ε), (1.2)

where X = (X1, . . . Xp) still denotes the random variables modelling the uncertainty of the input
parameters and where ε is a noise variable. In this paper, we will assume that f (and hence
Y ) is bounded by M > 0. When noise is added in the model, the classical estimators do not
always work: Y can be very sensitive to the addition of ε. Moreover, this variable is not always
controllable by the user.

When the function f is linear, we can refer to [12]. In the literature, meta-models are used:
approximating the mean and the dispersion of the response by deterministic functions allows to
come back to the classical deterministic framework (e.g. Janon et al. [18], Marrel et al. [23]). We
study here another point of view, which is based on the non-parametric statistical estimation
of the term Var

(
E[Y | X`]

)
appearing in the numerator of (1.1). Approaches based on the

Nadaraya-Watson kernel estimator have been proposed by Da Veiga and Gamboa [10] or Soĺıs
[29]. We propose here a new approach based on warped wavelet decompositions introduced by
Kerkyacharian and Picard [20]. An advantage of these non-parametric estimators is that their
computation requires less simulations of the model. For Jansen estimators, the number of calls
of f required to compute the sensitivity indices is n(p+1), where n is the number of independent
random vectors (Y i, Xi

1, . . . X
i
p) (i ∈ {1, . . . n}) that are sampled for the Monte-Carlo procedure,

making the estimation of the sensitivity indices time-consuming for sophisticated models with
many parameters.

In Section 2, we present the non-parametric estimators of the Sobol indices of order 1 in
the case of the stochastic model (1.2) and study their convergence rates. The approximation
of Var

(
E[Y | X`]

)
is very important to obtain the speed of convergence. When the conditional

expectation is estimated by a Nadaraya-Watson kernel estimator, these results have been ob-
tained by Soĺıs [29] and Da Veiga and Gamboa [10]. The use of wavelets for estimating the
conditional expectation in Sobol indices is new to our knowledge. Wavelet estimators are more
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tractable than kernel estimators in that we do not have to handle approximations of quotients.
We derive the convergence rate for the estimator based on wavelets, using ideas due to Lau-
rent and Massart [21] who considered estimation of quadratic functionals in a Gaussian setting.
Because we are not necessarily in a Gaussian setting here, we rely on empirical processes and
use sophisticated technology developed by Castellan [5]. Contrarily to the kernel estimators for
which convergence rates rely on assumptions on the joint distribution of Y and of X1, . . . Xp,
we have an upper-bound for the convergence rates that depend on the regularity of the output
Y with respect to the inputs X1, . . . Xp. Moreover, our estimator is adaptive and the exact reg-
ularity does not need to be known to calibrate our non-parametric wavelet estimator. Since we
estimate covariance terms, we obtain elbow effects: there is a threshold in the regularity defining
two different regimes with different speeds of convergence for the estimator. In our case, this
allows us to recover convergence rates in 1/n when the model exhibits sufficient regularities.
Further discussion is carried in the body of the article. These estimators are then computed and
compared for toy examples introduced by Ishigami [15].

In Section 3, we then address models from Epidemiology for which non-parametric Sobol
estimators have never been used to our knowledge. First, the stochastic continuous-time SIR
model is considered, in which the population of size N is divided into three compartments: the
susceptibles, infectious and removed individuals (see e.g. [1] for an introduction). Infections and
removals occur at random times whose laws depend on the composition of the population and on
the infection and removal parameters λ and µ as input variables. The output variable Y can be
the prevalence or the incidence at a given time T for instance. Y naturally depends on λ, µ and
on the randomness underlying the occurrence of random times. Second, we consider a stochastic
multi-level epidemic model for the transmission of Hepatitis C virus (HCV) among people who
inject drugs (PWID) that has been introduced by Cousien et al. [8, 9]. This model describes an
individual-based population of PWID that is structured by compartments showing the state of
individuals in the heath-care system and by a contact-graph indicating who injects with whom.
Additionally the advance of HCV in each patient is also taken into account. The input variables
are the different parameters of the model. Ouputs depend on these inputs, on the randomness
of event occurrences and on the randomness of the social graph. We compare the sensitivity
analysis performed by estimating the Sobol indices of order 1 with the naive sensitivity analysis
performed in [8, 9] by letting the parameters vary in an a priori chosen windows.

In the sequel, C denotes a constant that can vary from line to line.

2 A non-parametric estimator of the Sobol indices of order 1

Denoting by V` = E
(
E2(Y | X`)

)
, we have:

S` =
V` − E(Y )2

Var(Y )
, (2.1)

which can be approximated by

Ŝ` =
V̂` − Ȳ 2

σ̂2
Y

(2.2)

where

Ȳ =
1

n

n∑
j=1

Yj and σ̂2
Y =

1

n

n∑
j=1

(Yj − Ȳ )2

are the empirical mean and variance of Y . We can think of several approximations V̂` of V`, for
example, based on Nadaraya-Watson and on warped wavelet estimators. At an advanced stage
of this work, we learned that the Nadaraya-Watson-based estimator of Sobol indices of order 1
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had also been proposed and studied in the PhD of Soĺıs [29]. Using a result on estimation of
covariances by Loubes et al. [22], they obtain an elbow effect. However their estimation is not
adaptive, and requires the knowledge of the regularity of the joint density function of (X`, Y ).
For the warped wavelet estimator, we propose a model selection procedure based on a work by
Laurent and Massart [21] to make the estimator adaptive.

2.1 Definitions

Assume that we have n independent couples (Y i, Xi
1, . . . X

i
p) in R × Rp, for i ∈ {1, . . . , n},

generated by (1.2).
Our wavelet estimator is based on a warped wavelet decomposition of

E(Y |X` = x). Let us denote by L2(µ) the space of real functions that are square integrable
with respect to the measure µ. When we do not specify µ, L2 denotes the space of real functions
that are square integrable with respect to the Lebesgue measure on R. In the sequel, we denote
by 〈f, g〉 =

∫
R f(u)g(u)du, for f, g ∈ L2, the usual scalar product of L2. The associated L2-norm

is ‖f‖22 =
∫
R f

2(u)du. Wavelet estimators are projection estimators, and L2 is a natural setting
to work with. But when dealing with a probability framework, one can face the need to consider
different Hilbert structures. Let now µ be a probability measure with cumulative distribution
function G. Warped wavelet decompositions introduced by Kerkyacharian and Picard [20] allow,
in a very natural way, to consider wavelet decompositions in L2(µ): composing any Hilbert basis
of L2 by G provides a Hilbert basis of L2(µ). See [6, 20] for more details.

Let us denote by G` the cumulative distribution function of X` and let (ψjk)j≥−1,k∈Z be a
Hilbert wavelet basis of L2. The wavelet ψ−10 is the father wavelet, and for k ∈ Z, ψ−1k(x) =
ψ−10(x−k). The wavelet ψ00 is the mother wavelet, and for j ≥ 0, k ∈ Z, ψjk(x) = 2j/2ψ00(2jx−
k). In the sequel, we will consider wavelets with compact support. The warped wavelet basis
that we will consider is (ψjk ◦G)j≥−1,k∈Z.

Definition 2.1. Let us define for j ≥ −1, k ∈ Z,

β̂`jk =
1

n

n∑
i=1

Yiψjk(G`(X
i
`)). (2.3)

Then, we define the (block thresholding) estimator of S` as (2.2) with

V̂` =

Jn∑
j=−1

[∑
k∈Z

(
β̂`jk
)2 − w(j)

]
1l∑

k∈Z

(
β̂`jk

)2
≥w(j)

, (2.4)

where w(j) = K
(

2j+log 2
n

)
, Jn :=

[
log2

(√
n
)]

(with [.] denoting the integer part), and K is a

positive constant.

Let us present the idea explaining the estimator proposed in Definition 2.1. Let us introduce
centered random variables η` such that

Y = f(X, ε) = E(Y |X`) + η`. (2.5)

Let g`(x) = E(Y |X` = x) and h`(u) = g` ◦G−1
` (u). h` is a function from [0, 1] 7→ R that belong
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to L2 since Y ∈ L2. Then

h`(u) =
∑
j≥−1

∑
k∈Z

β`jkψjk(u), (2.6)

with β`jk =

∫ 1

0
h`(u)ψjk(u)du =

∫
R
g`(x)ψjk(G`(x))G`(dx).

Notice that the sum in k is finite because the function h` has compact support in [0, 1]. It is
then natural to estimate h`(u) by

ĥ` =
∑
j≥−1

∑
k∈Z

β̂`jkψjk(u). (2.7)

We can then rewrite V` as:

V` = E
(
E2(Y |X`)

)
=

∫
R
G`(dx)

( ∑
j≥−1

∑
k∈Z

β`jkψjk
(
G`(x)

))2

=

∫ 1

0

( ∑
j≥−1

∑
k∈Z

β`jkψjk(u)
)2

du

=
∑
j≥−1

∑
k∈Z

(
β`jk
)2

= ‖h`‖22. (2.8)

Adaptive estimation of ‖h`‖22 has been studied in [21], which provides the block thresholding

estimator V̂` in Definition 2.1. The idea is: 1) to sum the terms
(
β`jk
)2

, for j ≥ 0, by blocks
{(j, k), k ∈ Z} for j ∈ {−1, . . . , Jn} with a penalty w(j) for each block to avoid choosing too
large js, 2) to cut the blocks that do not sufficiently contribute to the sum, in order to obtain
statistical adaptation.

Notice that V̂` can be seen as an estimator of V` resulting from a model selection on the
choice of the blocks {(j, k), k ∈ Z}, j ∈ {−1, . . . , Jn} that are kept, with the penalty function

pen(J ) =
∑
j∈J

w(j), (2.9)

for J ⊂ {−1, . . . , Jn}. Indeed:

V̂` = sup
J⊂{−1,0,...,Jn}

∑
j∈J

[∑
k∈N

(
β̂`jk
)2 − w(j)

]
= sup
J⊂{−1,0,...,Jn}

∑
j∈J

∑
k∈N

(
β̂`jk
)2 − pen(J ). (2.10)

Remark that the definition of the estimator and the penalization depend on a constant K
through the definition of w(j). The value of this constant is chosen in order to obtain oracle
inequalities. In practice, this constant is hard to compute, and can be chosen by a slope heuristic
approach (see e.g. [2]).

2.2 Statistical properties

In this Section, we are interested in the rate of convergence to zero of the mean square error
(MSE) E

(
(S` − Ŝ`)2

)
.
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Lemma 2.2. Consider the generic estimator Ŝ` defined in (2.2), where V̂` is any estimator of
V` = E(E2(Y | X`)). Then there is a constant C and an integer n0 such that for all n ≥ n0,

E
(
(S` − Ŝ`)2

)
≤ C

n
+

4

Var(Y )2
E
[(
V̂` − V`

)2]
. (2.11)

Proof. From (2.1) and (2.2),

E
(
(S` − Ŝ`)2

)
=E
[(V` − E(Y )2

Var(Y )
− V̂` − Ȳ 2

σ̂2
Y

)2]
≤2E

[( E(Y )2

Var(Y )
− Ȳ 2

σ̂2
Y

)2]
+ 2E

[( V`
Var(Y )

− V̂`
σ̂2
Y

)2]
. (2.12)

The first term in the right hand side (r.h.s.) is in C/n for sufficiently large n. For the second
term in the right hand side of (2.12):

E
[( V`

Var(Y )
− V̂`
σ̂2
Y

)2]
≤ 2E

[
V̂ 2
`

( 1

Var(Y )
− 1

σ̂2
Y

)2]
+

2

Var(Y )2
E
[(
V̂` − V`

)2]
. (2.13)

The first term in the r.h.s. is also in C/n, which concludes the proof. �

When V̂` is a Nadaraya-Watson estimator, Loubes et al. [22] established from Lemma 2.2 a
control of the MSE that looks like the result we announce and comment in Corollary 2.6. Their

result is based on (2.11) and a bound for E
[(
V̂` − V`

)2]
given by [22, Th. 1], whose proof is

technical. Here, we consider the estimator V̂` introduced in (2.4) and upper-bound the MSE.
Our proof is much shorter than theirs, due to the nature of the estimators and to the techniques
that we use.

Let us introduce first some additional notation. For J ⊂ {−1, . . . , Jn}, we define the pro-
jection hJ ,` of h on the subspace spanned by {ψjk, with j ∈ J , k ∈ Z} and its estimator

ĥJ ,`:

hJ ,`(u) =
∑
j∈J

∑
k∈Z

β`jkψjk(u) (2.14)

ĥJ ,`(u) =
∑
j∈J

∑
k∈Z

β̂`jkψjk(u). (2.15)

We also introduce the estimator of V` for a fixed subset of resolutions J :

V̂J ,` = ‖ĥJ ,`‖22 =
∑
j∈J

∑
k∈Z

(
β̂`jk
)2
. (2.16)

Note that V̂J ,` is one possible estimator V̂` in Lemma 2.2.

The estimators β̂jk and V̂J ,` have natural expressions in term of the empirical process γn(dx)
defined as follows:

Definition 2.3. The empirical measure associated with our problem is:

γn(dx) =
1

n

n∑
i=1

YiδG`(Xi
`)

(dx) (2.17)

where δa(dx) denotes the Dirac mass in a.
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For a measurable function f , γn(f) = 1
n

∑n
i=1 Yif

(
G`(X

i
`)
)
. We also define the centered

integral of f with respect to γn(dx) as:

γ̄n(f) =γn(f)− E
(
γn(f)

)
(2.18)

=
1

n

n∑
i=1

(
Yif
(
G`(X

i
`)
)
− E

[
Yif
(
G`(X

i
`)
)])

.

Using the empirical measure γn(dx), we have:

β̂`jk = γn
(
ψjk
)

= β`jk + γ̄n
(
ψjk
)
.

Let us also introduce the correction term using (2.5), (2.6) and (2.18):

ζn =2γ̄n
(
h`
)

(2.19)

=2
[ 1

n

n∑
i=1

Yih`
(
G`(X

i
`)
)
− E

(
Y1h`

(
G`(X

1
` )
))]

=2
[ 1

n

n∑
i=1

h2
`

(
G`(X

i
`)
)
− ‖h`‖22

]
+

2

n

n∑
i=1

ηi`h`
(
G`(X

i
`)
)
. (2.20)

Theorem 2.4. Let us assume that the random variables Y are bounded by a constant M > 0,
and let us choose a father and a mother wavelets ψ−10 and ψ00 that are continuous with compact
support (and thus bounded). The estimator V̂` defined in (2.4) is almost surely finite, and:

E
[(
V̂` − V` − ζn

)2] ≤ C inf
J⊂{−1,...,Jn}

(
‖h` − hJ ,`‖42 +

Card2(J )

n2

)
+
C ′ log2

2(n)

n3/2
, (2.21)

for constants C and C ′ > 0.

We deduce the following corollary from the estimate obtained above. Let us consider the
Besov space B(α, 2,∞) of functions h =

∑
j≥−1

∑
k∈Z βjkψjk of L2 such that

|h|α,2,∞ :=
∑
j≥0

2jα

√
sup

0<v≤2−j

∫ 1−v

0
|h(u+ v)− h(u)|2du < +∞.

For a h ∈ B(α, 2,∞) and for its projection hJ on Vect{ψjk, j ∈ J = {−1, . . . Jmax}, k ∈ Z}
(with Jmax = maxJ ), we have the following approximation result from [14, Th. 9.4].

Proposition 2.5 (Härdle Kerkyacharian Picard and Tsybakov). Assume that the wavelet func-
tion ψ−10 has compact support and is of class CN for an integer N > 0. Then, if h ∈ B(α, 2,∞)
with α < N + 1,

sup
J⊂N∪{−1}

2αJmax‖h− hJ ‖2 = sup
J⊂N∪{−1}

2αJmax
( ∑
j≥Jmax

∑
k∈Z

β2
jk

)1/2
< +∞. (2.22)

Notice that Theorem 9.4 of [14] requires assumptions that are fulfilled when ψ−10 has compact
support and is smooth enough (see the comment after the Corol. 8.2 of [14]).

Corollary 2.6. If ψ−10 has compact support and is of class CN for an integer N > 0 and if h`
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belongs to a ball of radius R > 0 of B(α, 2,∞) for 0 < α < N + 1, then

sup
h∈B(α,2,∞)

E
[(
V̂` − V`

)2] ≤C(n− 8α
4α+1 +

1

n

)
. (2.23)

As a consequence, we obtain the following elbow effect:
If α ≥ 1

4 , there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ C

n
.

If α < 1
4 , there exists a constant C > 0 such that

E
(
(S` − Ŝ`)2

)
≤ Cn−

8α
4α+1 .

The proof of Theorem 2.4 is postponed to Section 5. Let us remark that in comparison with
the result of Loubes et al. [22], the regularity assumption is on the function h` rather than on
the joint density φ(x, y) of (X`, Y ). The adaptivity of our estimator is then welcomed since the
function h` is a priori unknown. Remark that in application, the joint density φ(x, y) also has
to be estimated and hence has an unknown regularity.

When α < 1/4 and α→ 1/4, the exponent 8α/(4α+ 1)→ 1. In the case when α > 1/4, we
can show from the estimate of Th. 2.4 that:

lim
n→+∞

nE
[(
V̂` − V` − ζn

)2]
= 0, (2.24)

which yields that
√
n
(
V̂` − V` − ζn

)
converges to 0 in L2. Since

√
nζn converges in distribution

to N
(

0, 4Var
(
Y1h`(G`(X

1
` ))
))

by the central limit theorem, we obtain that:

lim
n→+∞

√
n
(
V̂` − V`

)
= N

(
0, 4Var

(
Y1h`(G`(X

1
` ))
))
, (2.25)

in distribution.
The result of Corollary 2.6 is stated for functions h` belonging to B(α, 2,∞), but the gener-

alization to other Besov spaces might be possible.

2.3 Numerical tests on toy models

We start with considering toy models based on the Ishigami function, often chosen as benchmark:

Y = f(X1, X2, X3) = sin(X1) + 7 sin(X2)2 + 0.1 X4
3 sin(X1) (2.26)

where Xi are independent uniform random variables in [−π, π] (see e.g. [15, 26]).

Case 1 – Ishigami model : first, we consider this model with (X1, X2, X3) as input parameters
and compute the associated Sobol indices. For the Ishigami function, all the Sobol sensitivity
indices are known.

S1 = 0.3139, S2 = 0.4424, S3 = 0.

Case 2 – stochastic Ishigami model : following Marrel et al. [23], we consider the case where
(X1, X2) are the input parameters and X3 a nuisance random parameter. The Sobol indices
relative to X1 and X2 have the same values as in the first case.

In each case, we compare the estimator of the Sobol indices of order 1 based on the wavelet
regressions with two other estimators:
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• the Jansen estimator, which is one of the classical estimator found in the literature (see
[19, 25] for Jansen and other estimators). This estimator is based on the mixing of two

samples (X
(1),i
1 , ..., X

(1),i
p , i ∈ {1, . . . n}) and (X

(2),i
1 , ..., X

(2),i
p , i ∈ {1, . . . n}) of i.i.d. p-

uplets distributed as (X1, . . . Xp): for the first order Sobol indices, ∀` ∈ 1, ..., p:

Ŝ` = 1− 1

2n σ̂2
Y

n∑
i=1

(
f(X

(2),i
1 , ..., X(2),i

p )

− f(X
(1),i
1 , ..., X

(1),i
`−1 , X

(2),i
` , X

(1),i
`+1 , . . . , X

(1),i
p )

)2
. (2.27)

• the estimator (2.2) defined with the choice of the Nadaraya-Watson regression estimator
for V̂` (e.g. [34]) instead of the wavelet estimator (2.4):

V̂` =

∑n
j=1 YjKh(Xj

` − x)∑n
j=1Kh(Xj

` − x)
.

This provides the estimator:

Ŝ` =

1
n

∑n
i=1

(∑n
j=1 YjKh(Xj

`−X
i
`)∑n

j=1Kh(Xj
`−X

i
`)

)2
− Ȳ 2

σ̂2
Y

. (2.28)

Notice that the estimations using Jansen estimators require (p + 1)n calls to f , which is in
many real cases the most expensive numerically. To enable comparisons, we compute the non-
parametric estimators of the S`’s from samples of size (p + 1)n. We used n = 10,000. To
obtain Monte-Carlo approximations of the estimators’ distributions, we performed 1,000 repli-
cations from which we estimate the bias and MSE for each estimator. For the wavelet (resp.
Nadaraya-Watson) estimator, we choose the constant K (resp. window h) by a leave-one-out
cross validation procedure [34, Section 1.4]. For the wavelet estimator, we use the Daubechies 4
wavelet basis when implementing the wavelet estimator.

Case 1 The results are presented in Table 1. When comparing the MSE, the performances
of the Jansen estimators are overall lower than the non-parametric estimators, but the bias is
usually smaller. For X1 and X2, the Nadaraya-Watson and wavelet estimators have comparable
performances, but for X3 the Nadaraya-Watson estimator performs better. This is due to the
fact that the window h for this variable can be chosen large since the function to estimate is flat
(see Figure 1).

Table 1: Estimates of the bias and MSE for the parameters X1, X2 and X3 in the Ishigmami
function, for 1,000 replications and n = 10,000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)2] E[Ŝ2 − S2] E[(Ŝ2 − S2)2 E[Ŝ3 − S3] E[(Ŝ3 − S3)2]

Jansen 9,90E-04 1,80E-04 3,20E-05 1,00E-04 8,60E-04 5,60E-04
Nadaraya-Watson −1,00E-03 1,30E-05 −9,90E-03 1,10E-04 −1,20E-05 1,10E-07
Wavelets −1,10E-03 4,00E-05 1,30E-03 6,60E-05 3,90E-03 2,20E-05

Case 2 The results are presented in Table 2. As for Case 1, we see that in term of MSE,
the non-parametric estimators overperform again the Jansen estimators. For X1, the Nadaraya-
Watson and wavelet estimators have comparable statistics, but the wavelet estimator is the best
for X2.
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Figure 1: Example of regression obtained using Nadaraya-Watson and wavelets with n(p+ 1) = 40, 000

simulations for the Ishigami function. The conditional expectation of Y knowing X1 (resp. X2 and X3)

is represented in line 1 (resp. 2 and 3).
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Table 2: Estimates of the bias and MSE for the parameters X1 and X2 in the Ishigmami function,
when X3 is considered as a pertubation parameter, for 1,000 replications and n = 10,000

Method E[Ŝ1 − S1] E[(Ŝ1 − S1)2] E[Ŝ2 − S2] E[(Ŝ2 − S2)2

Jansen −5,60E-04 2,00E-04 −7,80E-04 1,80E-04
Nadaraya-Watson −1,80E-03 1,70E-05 −1,40E-02 2,00E-04
Wavelets −7,00E-04 5,60E-05 1,90E-03 8,70E-05
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Figure 2: MSE for the estimators using Nadaraya-Watson (dots) and wavelets (dash-dots) in the case

of the stochastic Ishigami model (Case 2) for n = 10, 000: for X1 (left) and X2 (right). The MSE with

Nadaraya-Watson estimators are plotted as functions of the window h (bottom axis) and the MSE with

wavelets are plotted as function of the constant K (top axis).

Both non-parametric estimators depend on a tuning parameter: the window h for Nadaraya-
Watson and the constant K for the wavelets. In Figure 2, the MSE are plotted as functions
of the window h (for the estimator with Nadaraya-Watson) and of the constant K (for our
estimator with wavelets). The performances of the wavelet estimator are much more stable with
respect to the values of K on the stochastic Ishigami model (Case 2).

To conclude these simulations on the stochastic Ishigami model, we plotted on logarithmic
scales the MSE as function of the sample size n: see Figure 3. It is seen that the wavelet
estimator is better than the Jansen estimator. For the wavelet estimator, the slope estimated
with ordinary least squares equals to −1.15 for X1 and −1.12 for X2. This is in accordance with
the value of −1 predicted by Corollary 2.6.

These results suggest that the proposed non-parametric estimator constitute an interesting
alternative to the Jansen estimator, showing less variability and potentially requiring a lower
number of simulations of the model, even in the deterministic setting of Case 1.

3 Sobol indices for epidemiological problems

We now consider two stochastic individual-based models of epidemiology in continuous time.
In both cases, the population is of size N and divided into compartments. Input parameters
are the rates describing the times that individuals stay in each compartment. These rates are
usually estimated from epidemiological studies or clinical trials, but there can be uncertainty
on their values due to various reasons. The restricted size of the sample in these studies brings
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Figure 3: MSE for the Jansen estimators (plain), non-parametric estimator with Nadaraya-Watson

(dots) and estimator with wavelets (dash-dots) in the case of the stochastic Ishigami model (Case 2) are

represented as functions of n, which varies between 100 and 10, 000. Left: for X1. Right: for X2. The

graphs are plotted in logarithmic scales.

uncertainty on the estimates, which are given with uncertainty intervals (classically, a 95%
confidence interval). Different studies can provide different estimates for the same parameters.
The study populations can be subject to selection biases. In the case of clinical trials where
the efficacy of a treatment is estimated, the estimates can be optimistic compared with what
will be the effectiveness in real-life, due to the protocol of the trials. It is important to quantify
how these uncertainties on the input parameters can impact the results and the conclusion of
an epidemiological modelling study.

3.1 SIR model and ODE metamodels

In the first model, we consider the usual SIR model, with three compartments: susceptibles,
infectious and removed (e.g. [1, 4, 11]). We denote by SNt , INt and RNt the respective sizes of
the corresponding sub-populations at time t ≥ 0, with SNt + INt +RNt = N . At the population
level, infections occur at the rate λ

N S
N
t I

N
t and removals at the rate µINt . The idea is that to

each pair of susceptible-infectious individuals a random independent clock with parameter λ/N
is attached and to each infectious individual an independent clock with parameter µ is attached.

The input parameters are the rates λ and µ. The outpout parameter is the final size of the
epidemic, i.e. at a time T > 0 where INT = 0, Y = (INT +RNT )/N .

It is possible to describe the evolution of (SNt /N, I
N
t /N,R

N
t /N)t≥0 by a stochastic differential

equation (SDE) driven by Poisson point measures (see e.g. [33]) and it is known that when
N → +∞, this stochastic process converges in D(R+,R3) to the unique solution (st, it, rt)t≥0 of
the following system of ordinary differential equations (e.g. [1, 4, 11, 33]):

ds
dt = −λstit
di
dt = λstit − µit
dr
dt = µit.

(3.1)

The fluctuations associated with this convergence have also been established. The limiting
equations provide a natural deterministic approximating meta-model (recall [23]) for which

12



(a) (b)

Figure 4: Estimations of the first order Sobol indices, using Jansen estimators on the meta-model with

n = 10, 000 and the non-parametric estimations based on Nadaraya-Watson and wavelet regressions. (a):

the distributions of the estimators of Sλ and Sµ is approximated by Monte-carlo simulations. (b): the

distributions of E(Y | λ) and E(Y | µ) are approximated by Monte-Carlo simulations.

sensitivity indices can be computed.
For the numerical experiment, we consider a close population of 1200 individuals, starting

with S1200
0 = 1190, I1200

0 = 10 and R1200
0 = 0. The parameters distributions are uniformly

distributed with λ/N ∈ [1/15000, 3/15000] and µ ∈ [1/15, 3/15]. Here the randomness associated
with the Poisson point measures is treated as the nuisance random factor in (1.2).

We compute the Jansen estimators of Sλ and Sµ for the deterministic meta-model (3.1),
with n = 30,000 simulations (n(p+ 1) = 90,000 calls to the function f) and choose these results
as benchmark. For the estimators of Sλ and Sµ in the SDE, we compute the Jansen estimators
with n = 10,000 (i.e. n(p + 1) = 30,000 calls to the function f), and the estimators based on
Nadaraya-Watson and on wavelet regressions with n = 30,000 simulations.

Let us comment on the results. The comparison of the different estimation methods is
presented in Fig. 4. Since the variances in the meta-model and in the stochastic model differ,
we start with comparing the distributions of E(Y | λ) and E(Y | µ) that are centered around the
same value, independently of whether the meta-model or the stochastic model is used (Fig. 4(b)).
These distributions are obtained from 1,000 Monte-carlo simulations. Because theoretical values
are not available, we take the meta-model as a benchmark. We see that the wavelet estimator
performs well for both λ and µ while Nadaraya-Watson regression estimator exhibit biases for
λ. Jansen estimator on the stochastic model exhibit biases for both λ and µ.

We try to comment on the biases that are observed. When looking at Fig. 5, the simulations
can give very noisy Y ’s: extinctions of the epidemics can be seen in very short time in simulations,
due to the initial randomness of the trajectories. This produces distributions for Y ’s that are
not unimodal or with peaks at 0, which makes the estimation of E(Y | λ) or E(Y | µ) more
difficult. The wavelet estimator seems to cope well with this situation.

In a second time, we focus on the estimation of the Sobol indices for the stochastic model
with the SDE (we leave out the deterministic meta-model for the reasons mentioned above).
The smoothed distributions of the estimators of Sλ and Sµ, for 1,000 Monte-Carlo replications,
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Figure 5: Prevalence (Y ) simulated from the n(p + 1) = 30, 000 simulations of λ and µ, for the SIR

model.

are presented in Fig. 4(a); the means and standard deviations of these distributions are given
in Table 3. Although there is no theoretical values for Sλ and Sµ, we can see (Table 3) that
the estimators of the Sobol indices with non-parametric regressions all give similar estimates in
expectation for µ. For λ, there are some discrepancies seen on Fig. 4(a) and Table 3.

Table 3: Estimators of the Sobol indices for λ and µ and their standard deviations using
n =10,000 Monte-Carlo replications of the stochastic SIR model.

Jansen Nadaraya-Watson Wavelet

Ŝλ 0.39 0.38 0.40
s.d. (9.2e-3) (4.3e-3) (1.4e-2)

Ŝµ 0.44 0.42 0.42
s.d. (9.0e-3) (4.4e-3) (1.2e-2)

3.2 Application to the spread of HVC among drug users

Chronic Hepatitis C virus (HCV) is a major cause of liver failure in the world, responsible of
approximately 500,000 deaths annually [35]. HCV is a bloodborne disease, and the transmission
remains high in people who inject drugs (PWID) due to injecting equipment sharing [32]. Until
recently, the main approaches to decrease HCV transmission among PWID in high income coun-
tries relied on injection prevention and on risk reduction measures (access to sterile equipment,
opioid substitution therapies, etc.). The arrival of highly effective antiviral treatments offers the
opportunity to use the treatment as a mean to prevent HCV transmission, by treating infected
PWID before they transmit the infection [13].

In this context, a stochastic, individual-based dynamic model was used to assess the impact
of the treatment on HCV transmission in PWID in Paris area [8]. This model included HCV
transmission on a random graph modelling PWID social network, the cascade of care of chronic
hepatitis C and the progression of the liver disease. A brief description of the model for HCV
infection and cascade of care is available in Fig. 6, for a detailed description and the values and
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Figure 6: Diagram flow of infection and cascade of care modelling for HCV infection among PWID.

Greek letters refer to rates, pr and pSV R to probabilities and Ta and Tt to (deterministic) time before

leaving the compartment. β depends on the status of the PWID with respect to the risk reduction measures

(access to sterile injecting equipment, access to substitution therapies). ni denotes the number of infected

injecting partners of the PWID. δ depends on the status of the PWID with respect to injection: active or

inactive injector (i.e. before or after the cessation of injection). The liver disease progression is quantified

by a score (score Metavir for the fibrosis progression) between F0 and F4 (cirrhosis). “Complications”

refers to the two cirrhosis complications: decompensated cirrhosis and hepatocellular carcinoma

uncertainty intervals of the parameters, the reader can refer to [8]. These parameters are the
input of our model and we assume for them uniform distributions on their uncertainty intervals.
Here, Y is the prevalence after 10 years of simulation.

The parameter values used in this analysis were mainly provided by epidemiological studies
and were subject to uncertainty. This kind of model requires high computing time, and thus the
sensitivity analysis using Monte-Carlo estimators of Sobol indices is difficult, due to the number
of simulations needed. Therefore, we focused on the seven main ones: infection rate per partner,
transition rate F0/F1 > F2/F3, rate of linkage to care and LFTU, average time to diagnosis,
average time to cessation, relative risk of infection (1st year), mortality among active PWID.
Other parameters contributions to the variance was considered as negligible and we considered
these parameters as noise in our estimates.

We estimate Sobol indices using the wavelet non-parametric estimator. We used n = 10,000
simulations of the model. We obtained unrealistic results using leave-one-out cross validation
procedure to select the value of K in the estimators proposed in 2.1. However, keeping values
β̂`jk with j < 3 produce realistic estimates. Thus, we kept all these coefficients to produce the
estimates.

For comparison, we also represented the sensitivity using a Tornado diagram, classically
used in Epidemiology. To build the Tornado diagram, we first fix all the parameters but one to
their values used in the analysis and we let the free parameter vary in an uncertainty interval.
For each set of parameters thus obtained, the output Y is computed. Then, the parameters
are sorted by decreasing variations of Y , and the deviation from the main analysis results is
represented in a bar plot. We can compare the orders of the input parameters given by the
Sobol indices and by the Tornado diagram.

The results are presented in Figure 7. Since the Sobol indices can be interpreted as the
contribution of each parameter to the variance of Y , we can thus see that a large part of the
variance of Y is explained by the infection rate per infected partner alone, with a Sobol index
of 0.6, and by the transition rate from a fibrosis score of F0/F1 to a score of F2/F3, with a
Sobol index of 0.55. Next comes the linkage to care/loss to follow-up rate. The rankings of the
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Figure 7: Tornado diagram (above): the variable Y is plotted in abcissa and the vertical line corresponds

to the expectation of Y for the estimated parameters. We let each input variable vary separately between

a lower bound and an upper bound, that are indicated left and right of each horizontal bar. The bars of

the Tornado diagram are the corresponding values obtained for Y . Sobol indices (below): Sobol indices

have been estimated using the wavelet estimators. Parameters have been sorted by decreasing values of

their Sobol indices. What can be compared is the order of the various input variables in each method.

LTFU=loss to follow-up, HCC=Hepatocellular carcinoma, M=Male, F=Female. “Cessation” refers to

the cessation of the injections. “F0/F1 > F2/F3” refers to the transition rate from a fibrosis score F0

or F1 to a fibrosis score F2 or F3 (and similarly for other rates).

input parameters obtained by the Sobol indices and the Tornado diagram (obtained in [8]) are in
accordance for the main parameters. For the Tornado diagram, the most sensitive parameters
(the infection rate per infected injecting partner, the transition rate from a fibrosis score of
F0/F1 to a score of F2/F3 and the combination of the linkage to care/loss to follow-up rate)
were also varied together to estimate the impact of the uncertainty about the linkage to care of
PWID. The Tornado diagram, which explores a much smaller region of the parameter space by
the way it is constructed, detects more noisy contributions for the other factors. This appears, in
the Tornado, in the group of parameters having similar Sobol indices (average time to diagnosis
and cessation, relative risk of infection, mortality, F2/F3>F4).

4 Conclusion

Sensitivity analysis is a key step in modelling studies, in particular in epidemiology. Models
often have a high number of parameters, which are often seen as degrees of freedom to test
scenarii and take into account several interplaying phenomena and factors. The computation
of Sobol indices can indicate, among a long list of input parameters, which ones can have an
important impact on the outputs. The classical estimators, like the Jansen estimator, require a
large amount of requests to the function f that generates the output from the inputs. The reason
is that the Sobol indices are approximated, in these cases, by quantities involving imbricated
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sums where parameters vary one by one.
The literature on sensitivity analysis focuses on outputs that depend deterministically on

the inputs. When there is randomness, it is natural to propose new approximations based on
non-parametric estimations that require a lower number of calls to f since information brought
by simulations with close input parameters can also be used. No meta-model is requested.
Numerical study on toy models show that these estimators can be used in deterministic settings
too.

Independently and at the same time as us [7], Soĺıs [29, 30] introduced an estimator of the
Sobol indices of order 1 based on Nadaraya-Watson regressions. We hence focus in this paper on
an estimator of the Sobol indices based on wavelet decompositions. For both of them, an elbow
effect is proved: under sufficient regularities, convergence rates of order 1/

√
n can be achieved.

On numerical toy examples, we obtained a better MSE with the wavelet estimators than with the
Jansen estimator of same complexity. The non-parametric estimators allow a better exploration
of the parameter space: for each simulation, the whole set of input parameters is drawn afresh.
Compared with the Nadaraya-Watson estimator, the wavelet estimator is adaptative, which
means that the unknown regularity of the model underlying the data does not need to be known
to calibrate the estimator. On simulations, our estimator behaves similarly with Nadaraya-
Watson estimator. When well-calibrated they can overcome some smoothing biases that can
appear when the output is very noisy, which is the case in epidemic scenarii where there can be
either large outbreaks or quick extinction due to stochasticity, for example.

Notice also that our proofs in the present paper are much shorter than the proofs needed
to study the estimator based on Nadaraya-Watson regression. First, the wavelet estimator is
a projection estimator and the difficulties related with the fact that there is a fraction in the
Nadaraya-Watson estimator disappear. Second, we use elegant techniques (developed indepen-
dently from sensitivity analysis) on empirical processes and concentration inequalities due to
Castellan [5] to adapt the results of Laurent and Massard in the Gaussian case [21].

This first order index S` corresponds to the sensitivity of the model to X` alone. Higher
order indices can also be defined using ANOVA decomposition: considering (`, `′) ∈ {1, . . . , p},
we can define the second order sensitivity, corresponding to the sensitivity of the model to the
interaction between X` and X`′ index by

S``′ =
Var
(
E[Y | X`, X`′ ]

)
Var(Y )

− S` − S`′ (4.1)

We can also define the total sensitivity indices by

ST` =
∑

L⊂{1,...,p} | `∈L

SL. (4.2)

These indices allow to assess 1) the sensitivity of the model to each parameter taken separately
and 2) the possible interactions, which are quantified by the difference between the total order
and the first order index for each parameter. Estimation of higher order indices using non-
parametric techniques would be an interesting subject for further researches.

5 Proofs

5.1 Proof of Theorem 2.4

We follow the scheme of the proof of Theorem 1 in [21]. The main difficulty here is that we are
not in a Gaussian framework and that we use the empirical process γ̄n, which introduces much
technical difficulties.
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In the sequel, C denotes a constant that can vary from line to line.
Using Lemma 2.2, we concentrate on the MSE E

(
(V̂` − V`)2

)
. First, we will prove that:

E
[(
V̂` − V` − ζn

)2]
≤ inf
J⊂{−1,...,Jn}

E
[(
− V̂J ,` + pen(J ) + V` + ζn

)2

+

]
+
C log2

2(n)

n3/2
, (5.1)

where V̂J ,` has been defined in (2.16). The penalization term associated to a subset J ⊂
{−1, . . . Jn} has been defined in (2.9). Then, considering the first term in the r.h.s. of (5.1), we
prove:

E
[(
− V̂J ,` + pen(J ) + V` + ζn

)2

+

]
≤ C

(
‖h` − hJ ,`‖42 +

Card2(J )

n2

)
(5.2)

Step 1:
From (2.10), and letting AJ = V̂J ,` − pen(J )− V` − ζn, we have:

V̂` − V` − ζn = sup
J⊂{−1,...,Jn}

AJ .

Since
sup
J
AJ = sup

J

(
AJ
)

+
1l{supJ AJ≥0} − inf

J

(
AJ
)
− 1l{supJ AJ<0},

we obtain by taking the absolute values that∣∣∣ sup
J
AJ

∣∣∣ ≤ max
[

sup
J

(
AJ
)

+
, inf
J

(
AJ
)
−

]
.

This provides that

E
(

sup
J
A2
J

)
≤

∑
J⊂{−1,...,Jn}

E
((
AJ
)2

+

)
+ inf
J⊂{−1,...,Jn}

E
((
AJ
)2
−

)
≤

∑
J⊂{−1,...,Jn}

E
((
AJ
)2

+

)
+ inf
J⊂{−1,...,Jn}

E
((
− V̂J ,` + pen(J ) + V` + ζn

)2
+

)
. (5.3)

The second term corresponds to what appears in (5.1) and will be treated in Step 4 to obtain
(5.2). Let us consider the first term of the r.h.s.

From (2.9), we have:

pen(J ) =
∑
j∈J

w(j) =
K

n

∑
j∈J

(2j + log 2) = pen1(J ) + pen2(J ), (5.4)

with

pen1(J ) =
K

n

∑
j∈J

2j (5.5)

pen2(J ) =pen(J )− pen1(J ) =
K

n
Card(J ) log 2. (5.6)

18



Using this, we start by rewriting

AJ =V̂J ,` − pen(J )− V` − ζn
=‖ĥJ ,`‖22 − pen(J )− ‖h`‖22 − ζn
=
(
‖ĥJ ,` − hJ ,`‖22 + ‖hJ ,`‖22 + 2〈ĥJ ,` − hJ ,`, hJ ,`〉

)
−
(
‖h` − hJ ,`‖22 + ‖hJ ,`‖22 + 2〈h` − hJ ,`, hJ ,`〉

)
− ζn − pen(J )

=‖ĥJ ,` − hJ ,`‖22 − pen1(J ) + 2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J ), (5.7)

since 〈h`−hJ ,`, hJ ,`〉 = 0 by definition of hJ ,` as projection of h` on the subspace generated by
{ψjk, j ∈ J , k ∈ Z}.

Thus:

E
((
AJ
)2

+

)
≤ 2E

((
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

)2)
+ 2E

((
2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )

)2)
. (5.8)

The first term in the r.h.s. is treated in Step 2, and the second term in Step 3. After summation
over J ⊂ {−1, . . . , Jn}, this provides an upper bound for the first term in the r.h.s. of (5.3)
which provides (5.1).

Step 2: Upper bound of the first term in the r.h.s. of (5.8)

Reformulation of ‖ĥJ ,` − hJ ,`‖22

The first term in the r.h.s. of (5.7) is the approximation error of hJ by ĥJ ,` and equals

‖ĥJ ,` − hJ ,`‖22 =
∑
j∈J

∑
k∈Z

(
β̂jk − βjk

)2
=
∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)2
.

To control it, let us introduce, for coefficients a = (ajk, −1 ≤ j ≤ Jn, k ∈ Z), the set

F1,J =
{
f =

∑
j∈J

∑
k∈Z

ajkψjk, ajk ∈ Q, ‖a‖2 ≤ 1
}
,

which is countable and dense in the unit ball of L2([0, 1]). Thus,(∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)2)1/2

= sup
‖a‖2≤1

∣∣∣∑
j∈J

∑
k∈Z

ajkγ̄n
(
ψjk
)∣∣∣

= sup
‖a‖2≤1

∣∣∣γ̄n(∑
j∈J

∑
k∈Z

ajkψjk

)∣∣∣
= sup
f∈F1,J

∣∣γ̄n(f)
∣∣ := χn(J ). (5.9)

Let us introduce, for ρ > 0,

ΩJ (ρ) =
{
∀j ∈ J ,

∑
k∈Z

∣∣γ̄n(ψjk)
∣∣ ≤ ρ2−j/2

}
. (5.10)

Then, to upper bound the first term in (5.8), we can write:

E
((
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

)2) ≤ 2A1(J ) + 2A2(J ) (5.11)
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where, for χn(J ) defined in (5.9),

A1(J ) = E
((
χ2
n(J )1lΩJ (ρ) − pen1(J )

)2)
,

and A2(J ) = E
(
χ4
n(J )1lΩcJ (ρ)

)
. (5.12)

The upper bounds of A1(J ) and A2(J ) make the object of the remainder of Step 2. We use
ideas developed in [5].

Upper bound for A1(J )

To upper bound A1(J ), we use the identity

A1(J ) =

∫ +∞

0
2t P

(
χ2
n(J )1lΩJ (ρ) − pen1(J ) > t

)
dt, (5.13)

and look for deviation inequalities of χ2
n(J )1lΩJ (ρ). Then, estimates of the probability of Ωc

J (ρ)
are studied to control A2(J ).

Recall that χn(J ) (resp. ΩJ (ρ)) has been defined in (5.9) (resp. (5.10)). The supremum in
(5.9) is obtained for

ājk =
γ̄n(ψjk)

χn(J )
. (5.14)

On the set ΩJ (ρ)∩ {χn(J ) > z}, for a constant z > 0 that shall be fixed in the sequel, we have
for all j ∈ J , ∑

k∈Z

∣∣ājk∣∣ =

∑
k∈Z

∣∣γ̄n(ψjk)
∣∣

χn(J )
≤ ρ2−j/2

z
.

As a consequence, on the set ΩJ (ρ) ∩ {χn(J ) > z}, we can restrict the research of the optima
to the set

ΛJ =
{
f =

∑
j∈J

∑
k∈Z

ajkψjk ∈ F1,J ,

and ajk = 0 if j /∈ J ,
∑
k∈Z

∣∣ajk∣∣ ≤ ρ2−j/2

z
if j ∈ J

}
, (5.15)

which is countable.

We can then use Talagrand inequality (see [24, p.170]) to obtain that for all η > 0 and x > 0,

P
(

sup
f∈ΛJ

∣∣γ̄n(f)
∣∣ ≥ (1 + η)E

(
sup
f∈ΛJ

∣∣γ̄n(f)
∣∣)+

√
2νnx+

(1

3
+

1

η

)
bnx
)
≤ e−x, (5.16)

where the quantities νn and bn can be chosen respectively as νn = M2/n and bn = 2M‖ψ‖∞ρCard(J )/nz.
Indeed, νn is an upper bound of:

1

n
sup
f∈ΛJ

Var
(
Y1f

(
G`(X

1
` )
))
≤ M2

n
sup
f∈ΛJ

‖f‖22 ≤
M2

n
, (5.17)

where the last inequality comes from the definition of ΛJ and F1,J .
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As for the term bn, it is an upper bound of:

1

n
sup
f∈ΛJ

sup
(u,y)∈[0,1]×[−M,M ]

∣∣∣yf(u)− E
(
Y1f

(
G`(X

1
` )
))∣∣∣

≤ 2M

n

∑
j∈J

∑
k∈Z
|ajk|2j/2‖ψ‖∞ ≤

2M‖ψ‖∞
n

∑
j∈J

ρ2−j/2

z
2j/2 =

2M‖ψ‖∞ρ Card(J )

n z
, (5.18)

if f =
∑

j∈J
∑

k∈Z ajkψjk. For the expectation appearing in the probability in the r.h.s. of
(5.16), we have:

E
(

sup
f∈ΛJ

∣∣γ̄n(f)
∣∣) ≤ E

(
χn(J )

)
≤
√
E
(
χ2
n(J )

)
=

√∑
j∈J

∑
k∈Z

E
(
γ̄2
n(ψjk)

)
=

√∑
j∈J

∑
k∈Z

1

n
Var
(
Y1ψjk(G`(X

1
` ))
)

≤
√∑
j∈J

∑
k∈Z

1

n
E
(
Y 2

1 ψ
2
jk(G`(X

1
` ))
)

≤ M√
n

√√√√∑
j∈J

∑
k∈Z

∫ 1

0
ψ2
jk(u)du ≤ M√

n

√
C ′
∑
j∈J

2j (5.19)

by the fact that the wavelets ψjk have compact supports and satisfy ‖ψjk‖22 = 1. The constant
C ′ in (5.19) is the number of wavelets (ψ0k)k∈Z that intersect [0, 1]. Thus for a given j ≥ 0, the
number of wavelets (ψjk)k∈Z that instersect [0, 1] is of order 2jC ′.

Because we have on ΩJ (ρ) ∩ {χn(J ) > z} that χn(J ) = supf∈AJ
∣∣γ̄n(f)

∣∣, we deduce that

supf∈AJ
∣∣γ̄n(f)

∣∣ ≥ χn(J )1lΩJ (ρ)∩{χn(J>z}. Then, Equations (5.16)-(5.19) become:

P
(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1 + η)M

√
C ′
∑

j∈J 2j

n
+

√
2M2x

n

+
(1

3
+

1

η

)2M‖ψ‖∞ρ Card(J )

n z
x
)
≤ e−x.

Choosing z =
√

2x
n

(
1
3 + 1

η

)
‖ψ‖∞, we obtain:

P
(
χn(J )1lΩJ (ρ)∩{χn(J )>z} ≥ (1 + η)M

√
C ′
∑

j∈J 2j

n
+ (1 + ρCard(J ))M

√
2x

n

)
≤ e−x.

For the choice of ρ =
(

1
3 + 1

η

)
‖ψ‖∞, the r.h.s. in the probability above is larger than z =

√
2x
n

(
1
3 +

1
η

)
‖ψ‖∞, and we can get rid of the constraint {χn(J ) > z}. Finally, choosing x = xJ + ξ, with

xJ = log
(∑
j∈J

2j
)
, (5.20)
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we obtain by using (a+ b)2 ≤ 2a2 + 2b2 that:

P
(
χ2
n(J )1lΩJ (ρ) −

2

n

[
(1 + η)2M2C ′

∑
j∈J

2j + 2(1 + ρCard(J ))2M2xJ

]
≥ hJ (ξ)

)
≤ e−xJ e−ξ,

where

hJ (ξ) =
4(1 + ρCard(J ))2M2

n
ξ. (5.21)

The square bracket in the l.h.s. inside the probability can be upper bounded by npen1(J ) =
K
∑

j∈J 2j , for an appropriate constant K that does not depend on J . Indeed, denoting by

Jmax = maxJ , we have that Card2(J ) ≤ J2
max while

∑
j∈J 2j ≥ 2Jmax . Since 2j ≥ j2 for all

interger j 6= 3, the result follows. Then:

P
(
χ2
n(J )1lΩJ (ρ) − pen1

(
J
)
≥ hJ (ξ)

)
≤ e−xJ e−ξ. (5.22)

From (5.13) and (5.22),

A1(J ) ≤
∫ +∞

0
2te−xJ e−h

−1
J (t)dt,

with

h−1
J (t) =

nt

4(1 + ρCard(J ))2M2
.

Thus:

A1(J ) ≤
∫ +∞

0
2te−xJ exp

(
− nt

4(1 + ρCard(J ))2M2

)
dt

≤32(1 + ρCard(J ))4M4

n2
e−xJ ≤ CCard4(J )e−xJ

n2

≤CCard2(J )

n2
, (5.23)

using (
∑

j∈J 2j)−1 ≤ C/Card2(J ).
From the choice of xJ (5.20), we have:∑

J⊂{−1,...,Jn}

Card2(J ) ≤ C2JnJ2
n ≤ C

√
n log2

2(n),

by choice of Jn = log2

(√
n
)
. From this and (5.23), we deduce that:

∑
J⊂{−1,...,Jn}

A1(J ) ≤ C log2
2(n)

n3/2
. (5.24)

Upper bound of A2(J )

For the term A2(J ) of (5.11), we have, for (j, k) such that j 6= −1:

|γ̄n(ψjk)| ≤M2j/2‖ψ‖∞ +M2−j/2
∫
R
|ψ(u)|du.
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Thus, for a constant C that depends only on the choice of ψ−10 and ψ00:

A2(J ) ≤
[
C
∑
j∈J

(
M2j/2‖ψ‖∞ +M2−j/2

∫
R
|ψ(u)|du

)2]2
× P

(
Ωc
J (ρ)

)
. (5.25)

Since:

n∑
i=1

E
[(Yiψjk(G`(Xi

`)
)
− E

(
Y1ψjk(G`(X

1
` ))
)

n

)2]
=

Var
(
Y1ψjk(G`(X

1
` ))
)

n
≤ M2

n
,

∣∣∣Yiψjk(G`(Xi
`)
)
− E

(
Y1ψjk(G`(X

1
` ))
)

n

∣∣∣ ≤ 2M2j/2‖ψ‖∞
n

a.s.

then we have by Bernstein’s inequality (e.g. [24]):

P
(∣∣γ̄n(ψjk)

∣∣ ≥ ρ2−j/2
)
≤ 2 exp

(
− nρ22−j

2
(
M2 + 2M‖ψ‖∞ρ

)).
As a consequence, recalling that Jmax = maxJ , we have∑

J⊂{−1,...Jn}

A2(J ) ≤
∑

J⊂{−1,...Jn}

22JmaxP
(
∃(j, k) ∈ J × Z,

∣∣γ̄n(ψjk)
∣∣ ≥ ρ2−j/2

)
≤C

∑
J⊂{−1,...Jn}

23Jmax exp
(
− nρ22−Jmax

2
(
M2 + 2M‖ψ‖∞ρ

)), (5.26)

which is smaller than C/n3/2 for sufficiently large n, as Jmax ≤ Jn = log2(
√
n).

Step 3: Upper bound of the second term in the r.h.s. of (5.8)

For the second term in the r.h.s. of (5.8),

2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )

=2
∑
j∈J

∑
k∈Z

γ̄n
(
ψjk
)
β`jk − ‖h` − hJ ,`‖22 − 2γ̄n

(
h`
)
− pen2(J )

=2γ̄n

(∑
j∈J

∑
k∈Z

β`jkψjk

)
− ‖h` − hJ ,`‖22 − 2γ̄n

(
h`
)
− pen2(J )

=2γ̄n
(
hJ ,` − h`

)
− ‖h` − hJ ,`‖22 − pen2(J ) (5.27)

≤
( γ̄n(hJ ,` − h`)
‖h` − hJ ,`‖2

)2
− pen2(J ) = γ̄2

n

( hJ ,` − h`
‖h` − hJ ,`‖2

)
− pen2(J ), (5.28)

by using the identity 2ab− b2 ≤ a2. Setting ϕJ =
hJ ,`−h`
‖h`−hJ ,`‖2 and using Bernstein’s formula (see

[24, p.25]), we have for all x > 0:

P
(
γ̄n
(
ϕJ
)
≥
√

2M2

n
x+

2M‖ϕJ ‖∞
n

x
)
≤ e−x. (5.29)

Setting x = xJ + ξ with now
xJ = Card(J ) log 2, (5.30)

23



and using that (a+ b)2 ≤ 2a2 + 2b2, we obtain that

P
(
γ̄2
n

(
ϕJ
)
−
[4M2

n
xJ +

16M2‖ϕJ ‖2∞
n2

x2
J

]
≥ rn(ξ)

)
≤ e−xJ e−ξ, (5.31)

where and

rn(ξ) =
16M2‖ϕJ ‖2∞ξ2

n2
+

4M2ξ

n
.

Let us consider the square bracket in (5.31). Recall (5.30). Because Card(J ) ≤ Jn = log2

(√
n),

xJ /n converges to zero when n → +∞ and it is possible to choose a constant K and n0

sufficiently large such that for all n ≥ n0,

pen2(J ) ≥ 4M2

n
xJ +

16M2‖ϕJ ‖2∞
n2

x2
J , (5.32)

where we recall that pen2(J ) has been defined in (5.5). Then, this yields

P
(
γ̄2
n

(
ϕJ
)
− pen2(J ) ≥ rn(ξ)

)
≤ e−xJ e−ξ. (5.33)

From this, we deduce that

E
((

2〈ĥJ ,` − hJ ,`, hJ ,`〉 − ‖h` − hJ ,`‖22 − ζn − pen2(J )
)2

+

)
≤E
([
γ̄2
n

(
ϕJ
)
− pen2(J )

]2)
=

∫ +∞

0
2t P

(
γ̄2
n

(
ϕJ
)
− pen2(J ) > t

)
dt

≤Ce−xJ
∫ +∞

0
t exp

(
− n

8‖ϕJ ‖2∞

(√
1 +

4t‖ϕJ ‖2∞
M2

− 1
))
dt ≤ Ce−xJ

n2
. (5.34)

The last inequality comes from the behaviour of the integrand when t is close to 0.
From the choice of xJ (5.30), we have:

1

n2

∑
J⊂{−1,...,Jn}

e−xJ =
1

n2

∑
J⊂{−1,...,Jn}

2−Card(J )

≤ C

n2

Jn+2∑
k=0

2−k
(

k

Jn + 2

)
=
C

n2

(3

2

)Jn+2
≤ C

n3/2
. (5.35)

Gathering the results of Steps 1 to 3, we have by (5.11) and (5.8) that the first term in the
r.h.s. of (5.3) is smaller than C log2

2(n)/n3/2. This proves (5.1).

Step 4:

Let us now consider the term E
[(
− V̂J ,` + pen(J ) +V` + ζn

)2

+

]
in (5.1). From (5.7) and (5.27):

E
[(
− V̂J ,` + pen(J ) + V` + ζn

)2
+

]
=E
((
‖h` − hJ ,`‖22 − ‖ĥJ ,` − hJ ,`‖22 + 2γ̄n

(
h` − hJ ,`

)
+ pen(J )

)2
+

)
≤4
(
‖h` − hJ ,`‖42 + 4E

(
γ̄2
n

(
h` − hJ ,`

))
+ E

([
‖ĥJ ,` − hJ ,`‖22 − pen1(J )

]2

+

)
+ pen2

2(J )
)
.

(5.36)
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For the second term in the r.h.s. of (5.36), we have:

E
(
γ̄2
n

(
h` − hJ ,`

))
=Var

(
γ̄n
(
h` − hJ ,`

))
≤ 1

n
E
(
Y 2

1

(
h`(G`(X

1
` ))− hJ ,`(G`(X1

` ))
)2)

≤
M2‖h` − hJ ,`‖22

n
≤ C

( 1

n2
+ ‖h` − hJ ,`‖42

)
(5.37)

by using that 2ab ≤ a2 + b2 for the last inequality.
The third term in the r.h.s. of (5.36) has been treated in (5.11) previously. We es-

tablished an upper bound in Card2(J )/n2 (see (5.23)). For the fourth term, pen2
2(J ) =

K2 log2(2)Card2(J )/n2 from (5.5). Gathering these results, we obtain (5.2) and then (2.21).

5.2 Proof of Corollary 2.6

Plugging (5.2) in (5.1), and using that

E
(
ζ2
n

)
=

2

n
Var
(
Y1h`

(
G`(X

1
` )
))
≤ 2M2‖h`‖22

n
, (5.38)

we obtain:

E
[(
V̂` − V`

)2] ≤ C[ inf
J⊂{−1,...,Jn}

(
‖h` − hJ ,`‖42 +

Card2(J )

n2

)
+

1 + ‖h`‖22
n

]
. (5.39)

If h` ∈ B(α, 2,∞), then from Proposition 2.5, we have for J = {−1, . . . , Jmax} that ‖h` −
hJ ,`‖42 ≤ 2−4α Jmax . Also, we have seen that Card2(J ) ≤ C2Jmax . Thus, for subsets J of the
form considered, the infimum is attained when choosing Jmax = 2

4α+1 log2(n). In this case, the

infimum in (5.39) is upper bounded by n−8α/(4α+1).
For h` in a ball of radius R, ‖h`‖22 ≤ R2, and we can find an upper bound that does not

depend on h. Because the last term in (5.39) is in 1/n, the elbow effect is obtained by comparing
the order of the first term in the r.h.s. (n−8α/(4α+1)) with 1/n when α varies. �

A Sobol indices

The Sobol indices are based on the following decomposition for f (see Sobol [28]). We recall the
formulas here, with the notation Xp+1 for the random variable ε:

Y =f(X1, . . . , Xp, ε)

=f0 +

p+1∑
`=1

f`(X`) +
∑

1≤`1<`2≤p+1

f`1`2(X`1 , X`2) + · · ·+ f1,...,p+1(X1, . . . , Xp, ε) (A.1)

where

f0 = E[Y ], f`(X`) = E[Y |X`]− E[Y ],

f`1`2(X`1 , X`2) = E[Y |X`1 , X`2 ]− E[Y |X`1 ]− E[Y |X`2 ]− E[Y ], . . .

Then, the variance of Y can be written as:

Var(Y ) =

p+1∑
`=1

V` +
∑

1≤`1<`2≤p+1

V`1`2 + · · ·+ V1...p+1 (A.2)
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where

V` = Var(E[Y |X`]), V`1`2 = Var(E[Y |X`1 , X`2 ])− V`1 − V`2 , . . .

V1...p+1 = Var(Y )−
p+1∑
`=1

V` −
∑

1≤`1<`2≤p+1

V`1`2 − · · · −
∑

1≤`1<···<`p≤p+1

V`1...`p (A.3)

The first order indices are then defined as:

S` = V`/Var(Y ) = Var(E[Y |X`])/Var(Y ) (A.4)

S` corresponds to the part of the variance that can be explained by the variance of Y due to the
variable X` alone. In the same manner, we define the second order indices, third order indices,
etc. by dividing the variance terms by Var(Y ).
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[22] J.-M. Loubes, C. Marteau, and M. Soĺıs. Rates of convergence in conditional covariance matrix estimation.
2014. arXiv:1310.8244.

[23] A. Marrel, B. Iooss, S. Da Veiga, and M. Ribatet. Global sensitivity analysis of stochastic computer models
with joint metamodels. Statistics and Computing, 22(3):833–847, 2012.

[24] P. Massart. Concentration Inequalities and Model Selection, volume 1896 of Lecture Notes in Mathematics.
Jean Picard, Berlin Heidelberg, Springer Edition, 2007. Ecole d’Eté de Probabilités de Saint-Flour XXXIII-
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