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Abstract— End-to-end congestion control mechanisms such as those in
TCP are not enough to prevent congestion collapse in the Internet (for
starters, not all applications might be willing to use them), and they must
be supplemented by control mechanisms inside the network. The IRTF
has singled out Random Early Detection (RED) as one queue management
scheme recommended for rapid deployment throughout the Internet. How-
ever, RED is not a thoroughly understood scheme – witness for example how
the recommended parameter settings, or even the various benefits RED is
claimed to provide, have changed over the past few years.

In this paper, we describe simple analytic models for RED, and use these
models to quantify the benefits (or lack thereof) brought about by RED. In
particular, we examine the impact of RED on the loss and delay suffered
by bursty and less bursty traffic (such as TCP and UDP traffic, respec-
tively). We find that (i) RED does eliminate the higher loss bias against
bursty traffic observed with Tail Drop, but not by decreasing the loss rate
of bursty traffic, rather by increasing that of non bursty traffic; (ii) the
number of consecutive packet drops is higher with RED than Tail Drop,
suggesting RED might not help as anticipated with the global synchroniza-
tion of TCP flows; (iii) RED can be used to control the average queueing
delay in routers and hence the end to end delay, but increases the jitter of
non bursty streams. Thus, applications that generate smooth traffic, such
as interactive audio applications, will suffer higher loss rates and require
large playout buffers, thereby negating at least in part the lower mean de-
lay brought about by RED.

I. INTRODUCTION

Buffers are a key component of a packet-switched network,
as they absorb burst arrivals of packets and hence reduce losses.
Larger buffers can absorb larger bursts, but they tend to build
up at high load and increase queueing delays. The traditional
technique for managing delay is to set a maximum length for
each buffer queue, accept packets in the queue until the maxi-
mum length is reached, then drop subsequent incoming packets
until the queue decreases below its maximum value. This buffer
management scheme is referred to as Tail Drop.

End-to-end control mechanisms are used in the Internet to
regulate the amount of traffic in the network and match it to
available capacity, thereby making sure that queue lengths and
loss rates remain reasonable. The most widely used control
mechanism is TCP’s window based mechanism [12]. TCP has
prevented an Internet-wide collapse, however some thorny prob-
lems remain. For example, the mechanism in TCP tends to keep
queue occupancy high, and thus tends to discriminate against
bursty traffic (since bursts of packets arriving at a router won’t
find much free buffer space to squeeze into). Furthermore, TCP

traffic itself is bursty1 [16], [1], which means that a loss event
at a router tends to involve many packets at a time, leading
to reduced throughput and synchronization between TCP con-
nections sharing the ressources of that router. Finally, not all
applications are willing to use control mechanisms; in particu-
lar, many interactive audio (IP telephony) applications send data
at a rate independent of the state of congestion in the network,
and thus grab all the bandwidth of the network when competing
with rate adaptive applications such as those that rely on TCP.
Clearly, the uncontrolled use of such applications again raises
the possibility of Internet-wide congestion collapse.

The difficulties above bring out the necessity to complement
end-to-end control mechanisms with router-based control mech-
anisms that extend beyond the current Tail Drop scheme. The
Internet Research Task Force (IRTF) produced a document, now
an information RFC [3], urging the deployment of router-based
control schemes. Specifically, the document, often referred to
as the “RED manifesto”, singles out the Random Early Detec-
tion (RED) scheme, as the recommended scheme for use in the
Internet.

The RED scheme was initially described and analyzed in [8].
Basically, RED starts dropping packets randomly before the
buffer gets full. Thus, it forces connections to back off before
the buffer fills up and multiple packets are dropped; if connec-
tions ignore packet drops and keep sending at too-high rates,
they keep suffering from high loss rates. RED is claimed to
provide several benefits, in particular 1) decrease the end-to-end
delay for both responsive (TCP) and non necessarily responsive
real-time traffic (UDP), 2) prevent large number of consecutive
packet losses by ensuring available buffer space even with bursty
traffic, and 3) remove the higher loss bias against bursty traf-
fic observed with Tail Drop. Some of these claims have been
validated with simulation studies. However, despite the IRTF
recommendation that RED be widely deployed, RED is not thor-
oughly understood: there is little operational experience of RED
in large scale networks – one of the few published measurement
study is limited in scope because it only considers the router

�The burstiness of TCP traffic can be explained by user behavior, and by char-
acteristics of the TCP closed-loop feedback control mechanism, coupled with
ACK compression [5]. Thus, it appears to be a salient feature of the Internet.
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performance (as opposed to the end-to-end performance) and it
does not clearly describe the measurement settings and the ex-
act information being measured [4] –, it is not quite clear how
to choose RED parameters (and indeed the recommended val-
ues have changed over time), and there is, to our knowledge,
no published analytical model of RED2 that would for example
allow us to quantify the impact of parameters settings on per-
formance, or the impact of different parameters values taken by
different ISPs in a large network.

In this paper, we develop simple analytic models for the RED
and Tail Drop buffer management schemes, and use these mod-
els to quantify the benefits (or lack thereof) brought about by
RED. In particular, we examine the impact of RED on the loss
rates, the number of consecutively lost packets, the mean de-
lay, and the delay jitter, suffered by bursty and less bursty traffic
(such as TCP and UDP traffic, respectively). We find that (i)
RED does indeed eliminate the bias against bursty traffic ob-
served with Tail Drop (claim 3 in the previous paragraph); how-
ever it does so not by decreasing the loss probability of bursty
(TCP) traffic, but rather by increasing that of smooth (UDP) traf-
fic; (ii) the number of consecutively lost packets is larger with
RED than with Tail Drop, suggesting that RED might not help
as much as anticipated with the global synchronization of TCP
flows (claim 2 above), (iii) RED is crucial to control the average
queueing delay in routers and hence the end-to-end delay (claim
1 above), but increases the jitter of non bursty (UDP) streams,
and hence their playout buffer requirements, thereby negating at
least in part the gains on the lower mean delay. In addition to
these three main findings, we also show that the often used claim
that the loss rate suffered by a flow in a RED router is propor-
tional to the flow intensity (claim first made in [8]) is true only
if the flow arrival process is Poisson (specifically, it requires the
PASTA property).

The rest of the paper is organized as follows. In Section II,
we describe our basic model, and use it to examine the bias of
Tail Drop against bursty traffic and whether RED eliminates this
bias. In Section III, we examine the number of consecutively
lost packets in both Tail Drop and RED routers. In Section IV,
we compare the average delay and delay jitter in Tail Drop and
RED routers. In Section V, we use simulations to validate the
analytic results obtained with the model, and to further examine
the issue of delay jitter for UDP flow with RED routers. Sec-
tion VI concludes the paper.

II. BIAS AGAINST BURSTY TRAFFIC

In this section, we describe our basic model, and use it to
examine the bias of Tail Drop against bursty traffic and whether
RED eliminates this bias.

We consider a router with a buffer size ofK packets. With the
RED buffer management scheme, incoming packets are dropped
with a probability that is an increasing function d of the average
queue size �k. The average queue size is estimated using an ex-
ponential weighted moving average :

�k � ��� w��k � w k�

�There are specific models such as in [11] that abstract a RED router as a
router in which the loss rate is proportional to input flow intensity; we get back
to such models in Section II.

where w is a fixed (small) parameter and k is the instantaneous
queue size. A typical drop function d is defined by three param-
eters minth, maxth and maxp as follows :

d��k� � � if �k � minth� d��k� � � if �k � maxth�

d��k� �
�k �minth

maxth �minth
�maxp otherwise.

Refer to Figure 1.
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Fig. 1. Drop function of RED

A. A RED router with bursty input traffic

Let us first derive a model of a RED router with a single input
stream of bursty traffic. We assume that packets arrive according
to a batch Poisson process; specifically, bursts (or batches) of B
packets arrive according to a Poisson process of rate �. Note that
this model does not really match empirically derived models of
TCP and other bursty traffic patterns [13], [16], [19]. However,
it is analytically tractable; furthermore, our purpose here is to
compare the relative impact of RED on bursty and less bursty
traffic. We can imagine (and this will be confirmed with simu-
lation in Section V) that the difference between a smooth input
traffic and a batch Poisson process (as examined here) would
be a lower bound to that observed between a smooth input and
an input process with long range dependence. The processing
times of the packets in the router are assumed to be exponen-
tially distributed with mean ���. We define the offered load by
� � B���.

B

Poisson
Drop

Router

Fig. 2. Model of RED router with bursty input traffic

The number of packets buffered in the queue defines a
Markov chain, the stationary distribution of which can be easily
computed. We denote by � this stationary distribution. Using
the PASTA property, we obtain the drop probability of a packet
in a Tail Drop router:

PTD � ��K� � ��K � ��
B � �

B
� � � �� ��K �B � ��

�

B
�

We now consider a RED router, and we make the assumption for
now that the drop rate d�k� depends on the instantaneous queue
size k rather than on the average queue size �k (i.e. we assume
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w � �). Note that there is no reason for choosing maxth � K
in this case, hence we let maxth � K. We use the following
approximation:

Approximation 1: The RED router uses the same drop prob-
ability d�k� on all packets in the same burst, where k is the in-
stantaneous queue size at the time the first packet in the burst
arrives at the router.

Note that in reality the difference between the drop probabil-
ity of the first packet of the burst d�k� and the drop probability
of any other packet of the burst cannot exceed:

�d�k� � d�k �B � ��� d�k��

Thus, the approximation above provides a lower bound on the
drop rate. Furthermore, it is accurate (�d�k� is small) when the
drop function is sufficiently smooth (namely for small values of
minth and high values of maxp) and the burst size B is not too
large compared to the buffer size K. Now, using the PASTA
property again, we approximate the drop probability of a packet
in a RED router by:

PRED � ��K� � ��K � ��d�K � �� � � � �� ����d����

Note that the stationary distribution � in this case is different
from that obtained with Tail Drop.

Example 1: Consider a buffer size of K � �� packets, with
RED parameters minth � 	�, maxth � �� and maxp � �.
Figure 3 shows the drop probability of an incoming packet as a
function of offered load for different burst sizes, obtained by
previous analysis (with Approximation 1) and by simulation
(without Approximation 1). The figure clearly shows that the
approximation is very accurate, even for large values of the burst
size.
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Fig. 3. Drop probability vs. offered load for different values of the burst size.

Note that the drop probability is always higher with RED than
with Tail Drop (this is a sample-path property). For large of-
fered load (which may represent transient congestion periods),
the drop probability is very close to that suffered by a Poisson
traffic in a Tail Drop router, which is given by the loss probabil-
ity for the M�M���K queue:

PM�M���K � ��
�� �K

�� �K��
�

We conclude that whatever the burst size,

PRED � PTD � ��
�

�
� o

�
�

�

�
when � �� �� (1)

B. A RED router with bursty and smooth input traffic

We consider now a router with two input flows, one bursty
with batch Poisson arrivals as above and batch size B (we take
B � 
 in the numerical examples below), the other a smoother
(non batch) Poisson stream. We denote by ��b� and ��s� the load
of the bursty and the smooth traffic, and by � � ��b� � ��s� the
total offered load.

B

Poisson

Poisson

Bursty Traffic

Smooth Traffic

Router

Fig. 4. Model of RED router with a mix of bursty and smooth traffic

Let � be the stationary distribution of the total number of
packets in the queue. Using the PASTA property, we obtain the
drop probability of a packet for the bursty flow and the smooth
flow in a Tail Drop router:

PTD�b� � ��K� � ��K � ��
B � �

B
� � � �� ��K �B � ��

�

B

and
PTD�s� � ��K��

Clearly PTD�b� � PTD�s�, meaning that there is a bias against
bursty traffic with Tail Drop. On the other hand, we obtain for
the RED router (using the same approximation as earlier)

PRED�b� �
KX
k��

��k�d�k� � PRED�s��

meaning that there is no bias against bursty traffic with RED.
In fact, RED distributes the drops among both types of traffic.
Noting that

PTD �
��b�

�
PTD�b� �

��s�

�
PTD�s��

we obtain in view of (1) for high values of the offered load,

PRED�b� � PRED�s� �
��b�

�
PTD�b� �

��s�

�
PTD�s�� (2)

C. Including queue size averaging in the model

We have so far assumed that the drop probability in the RED
router only depends on the instantaneous queue size. Adding
queue size averaging increases the complexity of the model (as it
increases the memory needed to keep track of past queue sizes).
A key observation, however, is that when the weight w of the
moving average scheme is small (which is the case in practice),
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the estimated average queue size �k varies slowly, so that con-
secutive packets belonging to the same burst are likely to exper-
iment the same drop probability d��k�. As a result, the Approxi-
mation 1 used in previous analysis is still valid in this case. Even
more, it is acurate whatever the drop function, and in particular
for the RED parameters recommended in [8].

Example 2: Consider a buffer of size K � �� and RED
parameters minth � ��, maxth � 
�, maxp � ��� and
w � ����	. Figures 5 and 6 show the drop probability as a
function of the fraction of bursty traffic in the input traffic, ob-
tained using the analytic expressions above (continuous line for
RED, dashed for Tail Drop), and using simulations (done with
queue size averaging, and without Approximation 1). Figure
5 shows that, with an offered load of � � 	, the drop prob-
ability is the same for both types of traffic with RED, namely
PRED�s� � PRED�b� � ���, and it is equal to the average drop
probability with Tail Drop, as predicted by equations (1) and (2).

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

D
ro

p 
Pr

ob
ab

ili
ty

Fraction of Bursty Traffic (%)

Tail Drop analysis
Tail Drop simulation (bursty traffic)
Tail Drop simulation (smooth traffic)
RED analysis
RED simulation (bursty traffic)
RED simulation (smooth traffic)

Fig. 5. Drop probability vs. fraction of bursty traffic for an offered load of � � �

We conclude that RED avoids the bias against bursty traffic,
and that this results in a significant decrease of the drop rate suf-
fered by bursty traffic only when the fraction of bursty traffic is
small (see Figure 5). Otherwise, the main effect of RED is to in-
crease the drop probability of smooth traffic, without improving
the drop probability of bursty traffic. In practice, if we replace
”bursty” with ”TCP” and ”smooth” with ”interactive UDP au-
dio” for example, and if we note that TCP makes up the vast
majority of Internet traffic, the result above means that the over-
all loss rate suffered by TCP connections when going from Tail
Drop to RED will not change much, but that the loss rate suf-
fered by UDP/IP telephony applications (whether they are rate
adaptive or not) will increase significantly. In all cases, the drop
rate (namely the number of packets dropped per unit of time)
of a flow going through a RED router does not depend of the
burstiness of this flow, but only on the load it generates (refer to
Equation (2) above).

D. An important observation about PASTA

It is important to note that the analysis above heavily relies
on the PASTA property of Poisson processes. In general, it is
not true that the stationary distribution of the number of pack-
ets k buffered in the queue immediately before the arrival of a
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Fig. 6. Drop probability vs. offered load for small (10% – top) and large (90%
– bottom) fraction of bursty traffic

burst of packets (that is under the Palm probability [2]) coin-
cides with �, the continuous-time stationary distribution of k.
This means that the claim made in [8], and used in recent mod-
els of additive increase and multiplicative decrease congestion
control schemes in a RED environment (e.g. [11]), namely the
loss rate of a flow in a RED router is proportional to the intensity
of the flow, is valid only for Poisson flows. However, it is not
valid for other types of flows found in practice such as periodic
flows, or flows with heavy-tailed characteristics. For example,
Figure 7 shows the drop probabilities obtained in a RED router
with both a bursty input traffic with Pareto inter-arrival times be-
tween bursts and a Poisson input traffic. The Pareto coefficient
in the figure is ��� and the RED parameters are those of Example
2. Unlike what we saw earlier in the case of the batch Poisson
arrival process, the drop probability for the Pareto traffic is dif-
ferent from the drop probability for smooth traffic even for the
RED router. Thus, it is important to be aware of, and careful
about, strong traffic assumptions one might making when mod-
eling RED routers as in [11].

III. SYNCHRONIZATION OF TCP FLOWS

The combination of a TCP mechanism which keeps queue
occupancy high, of bursty TCP traffic, and of the Tail Drop bias
against bursty traffic, means that loss events at a router tend to
involve many packets. If these packets belong to different TCP
connections, these connections then experience losses at about
the same time, decrease their rates/windows in synchrony, and
then tend to stay synchronized. This phenomenom, referred to
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Fig. 7. Drop probability for RED and Tail Drop vs. offered load for bursty
(batch arrivals and Pareto distributed interarrivals) and smooth (Poisson)
traffic, and a high fraction of bursty traffic (90%).

as the synchronization of multiple TCP connections, has been
observed in simulation [20], however it is hard to observe in the
operational Internet.

In any case, one claim made by the RED designers is that,
since RED spreads out packet drops, it will help break the syn-
chronization pattern which (is thought to) occurs with Tail Drop.
To investigate this claim, we examine in this section the impact
of RED on the distribution of the number of consecutive packet
losses in a loss event at a router. We consider the same model as
before, except that the traffic is now simply a Poisson process of
intensity �, so that the offered load is equal to � � ���.

A. Tail Drop

Assume that a drop occurs at time t � � in a Tail Drop
router. Since the exponential distribution is memoryless, the
next incoming packet is dropped if and only if its arrival time
is smaller than the service time of a packet. Thus when a packet
is dropped, the next packet is dropped with probability p, where

p �

Z
�

�

���� e��x�e��x dx �
�

�� �
�

As a result, the number of consecutive drops in a Tail Drop
router NTD satisfies

�n � �� P �NTD � n� � pn�

Using the expression

p �
�

�� �
�

we conclude that the mean and the variance of the number of
consecutive drops in a Tail Drop router are respectively given
by

E�NTD� � �� � and var�NTD� � ���� ��� (3)

B. RED with instantaneous queue size

As in Section II, we first consider the case where the drop
rate d�k� depends on the instantaneous queue size k, and we let
maxth � K in this case. We use the following approximation:

Approximation 2: Consecutively dropped packets are dropped
with the same probability.

Note that in reality when a packet is dropped with probabil-
ity d�k�, the next packet is dropped with probability d�l�, where
l � k depends on the number of packets served between both ar-
rivals. Thus the approximation above provides an upper bound
on the number of consecutive drops. Furthermore, it is accurate
(i.e. the difference d�k�� d�l� is small) when the drop function
is sufficiently smooth (namely for small values of minth and
high values of maxp) and the offered load is high. Denoting by
���jdrop� the stationary distribution of the number of packets
in the queue, conditionally to the fact that a drop occured, and
assuming that ��Kjdrop� is negligeable, the number of consec-
utive drops in a RED router NRED satisfies

�n � �� P �NRED � n� �

K��X
k��

��kjdrop� d�k�n�

By Bayes’ formula,

��kjdrop� �
��k�

P �drop�
d�k��

We conclude that

�n � �� P �NRED � n� �

K��X
k��

��k�d�k�n��

K��X
k��

��k�d�k�

� (4)

Figure 8 compares the analytic result above with simulation for
an offered load of � � 	 and RED parameters as in Example 1.
We observe a very good fit.
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Fig. 8. Distribution of the number of consecutive drops for an offered load of
� � �

Equation (4) allows us in particular to evaluate the mean and
the variance of the number of consecutive drops in a RED router.
We obtain

E�NRED� � � �

K��X
k��

��k�
d�k��

�� d�k�

K��X
k��

��k�d�k�

�
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and

var�NRED� �

K��X
k��

��k�

�
d�k�

�� d�k�

��

K��X
k��

��k�d�k�

�

Table I shows the results obtained for a Tail Drop router and a
RED router, when the offered load is � � 	. We conclude that
RED effectively spreads out packet losses, and thus may avoid
the synchronization of TCP flows.

mean variance
Tail Drop 3 6
RED 2.3 4.1

TABLE I

MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN

OFFERED LOAD OF � � �

C. RED with average queue size

As mentionned earlier, the model becomes much more com-
plex when RED uses the average queue size instead of the in-
stantaneous queue size to compute the drop probability of a
packet. But, here again, the key observation is that when the
parameter w is small, the estimated average queue size �k varies
slowly, so that consecutive packets are likely to experiment the
same drop probability d��k�. As a result, Approximation 2 is
still valid in this case. In fact, it is acurate whatever the drop
function, and in particular when maxth � K, provided that the
offered load is high. It follows then from (4) that the distribution
of the number of consecutive drops satisfies

�n � �� P �NRED � n� �

K��X
k�maxth

��k�

K��X
k��

��k�d�k�

� ��

Hence, when the parameter w tends to 0, the number of consec-
utive drops becomes infinite with a positive probability ! The
interpretation of this result is that, under high load, the aver-
age queue size slowly oscillates around the value maxth, result-
ing in long (infinite when w tends to 0) periods of consecutive
drops (when �k � maxth), and long (infinite when w tends to
0) periods of random drops (when �k � maxth). This is illus-
trated by the simulation results of Figure 9 and Table II, obtained
for an offered load of � � 	 and the same RED parameters as
those of Example 2 (except that w takes the values ���, ���� and
�����). The results show that RED dramatically increases the
mean number of consecutive drops as well as the variance of the
number of consecutive drops, in particular whenw is close to its
recommended value ����	 [8]. This means that deploying RED
might in fact contribute to the synchronization of TCP flows,
which is exactly the opposite of one of its initial objectives.
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mean variance
Tail Drop 3.0 6.0
RED w � ��� 5.9 40
RED w � ���� 7.7 170
RED w � ����� 7.2 190

TABLE II

MEAN AND VARIANCE OF THE NUMBER OF CONSECUTIVE DROPS FOR AN

OFFERED LOAD OF � � �

IV. QUEUEING DELAY

We next compare the delay through a router with both the
RED and Tail Drop management schemes. We use the same
model as in previous section, where the input traffic is a Poisson
process of intensity �, to evaluate the queueing delay (equiva-
lently the queue size) in the router.

A. Tail Drop

The stationary distribution of the queue size in a Tail Drop
router is simply given by

�k � �� � � � �K� �TD�k� �
�k��� ��

�� �K��
�

B. RED with instantaneous queue size

As we did earlier, we assume here that the drop rate d�k�
depends on the instantaneous queue size k, and we let maxth �
K. Then the number of packets in the queue is a birth-death
process, the stationary distribution of which is simply given by

�k � �� � � � �K� �RED�k� �

�k
k��Y
l��

��� d�l��

KX
k��

�k
k��Y
l��

��� d�l��

� (5)

As illustrated by Figure 10 and Table III (for an offered load of
� � 	 and the RED parameters of Example 1), RED reduces the
mean delay, but increases the delay variance significantly.
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Fig. 10. Distribution of the queue size for an offered load of � � �

mean variance
Tail Drop 39.0 2.0
RED 29.0 10.0

TABLE III

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

� � �

Consider then the case of a UDP-based IP telephony applica-
tion, which sends smooth traffic (typically on/off periodic traf-
fic when silence detection is used). We saw in Section II that
that application would loose many more packets with RED than
with Tail Drop. We see here that the average delay suffered
by the UDP packets would be much lower than with Tail Drop
(depending on the choice of maxth), which is a key benefit in
telephony applications. However, the delay variance (computed
from Equation 5) is such that the end to end delay, including the
playout delay at the destination, does not reflect the gain RED
brought to the mean delay. We can then expect the audio quality
perceived at the destination to be mediocre at best.

C. RED with average queue size

Consider now the case when the drop rate computed by RED
is a function of the average queue size. As mentionned earlier,
provided that the parameter w is small and the offered load is
high, the estimated average queue size (and hence the stationary
instantaneous queue size) will slowly oscillate around the value
maxth. Thus, although RED reduces the mean delay, RED also
adds jitter in the delay, and so as much as the parameter w is
small. This is illustrated in Figure 11 and Table IV, for an of-
fered load of � � 	 and the RED parameters of Example 2.

mean variance
Tail Drop 39.0 2.0
RED 29.9 38.7

TABLE IV

MEAN AND VARIANCE OF THE QUEUE SIZE FOR AN OFFERED LOAD OF

� � �
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Fig. 11. Distribution of the queue size for an offered load of � � �

V. SIMULATION

In Sections II and III, we derived analytic expressions of var-
ious measures of interest to evaluate RED. While the analytic
approach is important to quantify relationships between param-
eters and performance measures, it must be complemented with
simulation or experiments to validate the hypotheses made dur-
ing the analysis, and to explore phenomena not amenable to
tractable analysis.

In this section, we focus on simulation results. We obtained
these with ns [9].

A. Validating the analytic results

In a first set of simulations, we verify that the main conclu-
sions of our analysis are valid. We use a simple network setup
with many sources si send TCP and UDP traffic to destinations
di via a RED or Tail Drop router, as shown in Figure 12.

s0

router routers2

s1

sn

d0

d1

d2

dn

Fig. 12. Network topology for the simulation studies

The TCP sources use the NewReno algorithm, the UDP
sources send CBR traffic. We use different propagation delays
for the links between the sources and the router, so as to have
a range of round trip delays. In practice, the round trip delays
vary between 120ms and 220ms. In the first router we choose
the buffer management scheme to be RED or Tail Drop. In our
simulations, we have over 100 TCP connections sending packets
from the sources to the destinations. We also have UDP connec-
tions sending at a constant rate which, summed over all UDP
sources, equals 10% of the bottleneck link speed. The bottle-
neck in our setup is the link between the two routers, with a
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bandwidth of 10Mb/s. We measure in the first router the drop
rates of both UDP and TCP traffic, and the delay of UDP pack-
ets; we also compute the total goodput of the TCP connections.

We have already compared earlier in the paper our analytic
model with simulations that did not make assumptions (such as
Assumption 1 and Assumption 2) used in the models, and we
did observe good correlation. We now investigate how well our
model, which models TCP connections as a bursty open-loop
traffic source, ties in with reality, or at least with our simulation
setup, in which TCP connections are closed-loop rate controlled
connections. To do so, we compare the total TCP goodput and
the loss rates for TCP and UDP traffic obtained with simulation.
Refer to Table V.

UDP loss rate TCP loss rate Goodput
Tail Drop 0.051 0.102 5.55 (Mb/s)
RED 0.083 0.102 5.56 (Mb/s)

TABLE V

LOSS RATES AND GOODPUT FOR RED AND TAIL DROP

We observe that the loss probability for TCP (bursty) traffic
does not change between RED and Tail Drop. Furthermore, the
loss rate for UDP (smooth) traffic increases significantly when
going from Tail Drop to RED. Both these results match those
obtained with the analysis in Section II. The first result also fur-
ther suggests that TCP synchronization might not happen at all
in practice. We also note that, unlike what is sometimes claimed,
the total TCP goodput does not increase with RED.
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Fig. 13. Queueing delay for RED and Tail Drop with buffer size of 40 (top) and
150 packets (bottom)

We now compare the delay properties derived with the model
with those obtained with the simulations. Figure 13 shows the
evolutions with time, as the simulation progresses, of the de-
lay in the router with RED and Tail Drop, when the buffer size
is equal to 40 packets and 150 packets, respectively. With Tail
Drop, and given the high load in the router, the buffer occupancy
quickly increases then remains close to its maximum value.
Note that with 100 TCP flows and different round trip delays, we
do not observe system-wide synchronization patterns that would
indicate large scale TCP synchronization. The situation is quite
different with RED. The queue builds up quickly; RED starts
dropping packets when the average queue size reaches minth,
then drops all packets when the average queue size reaches
maxth. The drop rate decreases when the average queue drops
below maxth, traffic picks up, the average queue tends toward
maxth and eventually exceeds it, and the cycle resumes (refer to
our earlier discussion in Section III). Thus, as expected, the av-
erage queue stays close to maxth, and the RED router behaves
essentially like a Tail Drop router with buffer size maxth [6],
[15]. However the instantaneous queue size varies heavily with
time, more so than a Tail Drop queue does in the same situation.
Again, this shows good correlation with our analytic results.

B. Impact of the number of flows

Finally, we use simulation to examine an issue we did not
consider in our analysis, namely the impact of the number of
TCP flows on performance.
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Fig. 14. Goodput of the TCP connections and UDP loss rate as a function of
the number of active flows in the router for a buffer size of 40 packets
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Figures 14 shows the evolutions of the total TCP goodput (top
graph), and the UDP loss rate (bottom graph) as a function of the
number of TCP flows. We first observe that using RED or Tail
Drop does not change much the total TCP goodput, indepen-
dent of the number of flows. When the number of flows is large
(and therefore the load in the router is sustained and high), RED
performs slightly better, but only at the cost of dropping many
more UDP packets than Tail Drop would. Again, this ties in
well with our analysis. We also observe that RED drops more
UDP packets than Tail Drop independent of the number of flows,
and that the drop rate keeps still increasing even as goodput re-
mains steady when the number of flows increases. Furthermore,
the goodput does not increase significantly when more than 75
flows are active in the network. In addition, Tail Drop performs
better when only few flows are active.

We now examine how the number of flows impacts the router
performance (as opposed to the end to end performance dis-
cussed above). To do this, we plot in Figures 15 the evolutions of
the actual queue size during an experiment with different num-
bers of active flows in the network. We set up the network as
described before but used a large buffer of 200 packets. For the
RED router, we set minth � ��, maxth � ���, maxp � ���
and the averaging parameter w � ����	. When the number of
flows is small the Tail Drop queue router is rarely empty, while
the RED actual queue size oscillates heavily and is more often
idle. When the number of flows is higher, the router is never
idle for RED nor for Tail Drop. This means that we should
not expect much difference in throughput for the two dropping
schemes; this in turn confirms our earlier observation when we
saw a larger throughput with Tail Drop than with RED. Note
that, in any case, we observe a much more pronounced oscil-
lation of the actual queue size with RED then with Tail Drop.
This reflects our observations earlier in this section on large de-
lay variance with RED.

VI. CONCLUSION

We have shown in the paper that (i) RED does eliminate the
higher loss bias against bursty traffic observed with Tail Drop,
but not by decreasing the loss rate of bursty traffic, rather by in-
creasing that of non bursty traffic; (ii) the number of consecutive
packet drops is higher with RED than Tail Drop, indicating that
RED might contribute to, rather than solve, the global synchro-
nization of TCP flows; (iii) the lower mean delay brought about
by RED is compensated by a large delay variance for smooth
traffic, which would be detrimental to interactive applications
such as IP telephony.

Our results indicate that the benefits of RED are not as clear
cut as claimed in [8]. Rather, they do point at a definite need to
obtain a thorough analytic (quantitative) understanding of RED,
together with clear operational supporting evidence, to weight
the benefits that a large scale deployment of RED would bring.
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Fig. 15. Evolutions of the instantaneous queue size for RED and Tail Drop with
25, 50, 75, and 100 active TCP flows



10

REFERENCES

[1] P. Abry, P. Flandrin, M. Taqqu, D. Veitch, “Wavelets for the analysis, es-
timation, and synthesis of scaling data”, in Self-Similar Network Traffic
Analysis and Performance Evaluation, K. Park and W. Willinger (eds),
1999.

[2] F. Baccelli and P. Bremaud, Elements of Queueing Theory, Springer-
Verlag, 1994.

[3] B. Braden et al, “Recommendations on Queue Management and Conges-
tion Avoidance in the Internet”, RFC2309, April 1998.

[4] S. Doran, Interface Graphs, http://adm.ebone.net/s̃md/red-1.html.
[5] A. Feldman, A. Gilbert, P. Huang, W. Willinger, “Dynamics of IP traffic:

A study of the role of variability and the impact of control”, to appear in
ACM Sigcomm’99, Cambridge, MA, Aug. 1999.

[6] W. Feng, “BLUE: A New Class of Active Queue Management Algo-
rithms”, Department of EECS, Network Systems Department University
of Michigan, 1999.

[7] W. Feng et al., “A self-configuring RED gateway”, IEEE Infocom ’99, San
Francisco, CA, April 1999.

[8] S. Floyd and V. Jacobson, “Random Early Detection gateways for conges-
tion avoidance”, IEEE/ACM Trans. on Networking, vol. 1, pp. 397–413,
1993.

[9] S. Floyd, NS network simulator, www-mash.cs.berkeley.edu/ns/
[10] S. Floyd, K. Fall, “Promoting the use of end-to-end congestion control in

the Internet”, to appear in IEEE/ACM Trans. Networking, Aug. 1999.
[11] P. Hurley, J.Y. Le Boudec, P. Thiran, “A Note on the Fairness of Additive

Increase and Multiplicative Decrease”, Proc. ITC 16, Edinburgh, UK, June
1999.

[12] V. Jacobson, “Congestion avoidance and control”, Proc. ACM Sig-
comm’88, Stanford, CA, Aug. 1988.

[13] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the Self-Similar
Nature of Ethernet Traffic”, IEEE/ACM Transactions on Networking, vol.
2, no. 1, pp. 1-15, February 1994.

[14] D. Lin, R. Morris, “Dynamics of Random Early Detection”, Proc. ACM
Sigcomm’97, Cannes, France, Sept. 1997.

[15] T. J. Ott, T.V. Lakshman, L. Wong, “SRED: Stabilized RED”, Proc. IEEE
Infocom’99, San Francisco, CA, March 1999.

[16] V. Paxson, S. Floyd, “Wide area traffic: the failure of Poisson modeling”,
IEEE/ACM Trans. Networking, vol. 3, June 1995.

[17] RED page, www.aciri.org/floyd/red.html
[18] Stevens, W., ”TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms”, RFC 2001, January 1997.
[19] D. Veitch, J. Andren, M. Hilding, “Understanding end to end Internet traf-

fic dynamics”, IEEE Globecom’98, Melbourne, AU, 1998.
[20] L. Zhang, D. D. Clark, “Oscillating behavior of network traffic: A case

study simulation”, Internetworking: Research and Experience, vol. 1, no.
2, pp. 101-112, Dec. 1990.


