M. Borden, C. Verhoosel, M. Scott, T. Hughes, and C. Landis, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.77-95, 2012.
DOI : 10.1016/j.cma.2012.01.008

M. Hofacker and C. Miehe, Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, International Journal of Fracture, vol.42, issue.220, pp.113-129, 2012.
DOI : 10.1007/s10704-012-9753-8

A. Schlüter, A. Willenbücher, C. Kuhn, and R. Müller, Phase Field Approximation of Dynamic Brittle Fracture, PAMM, vol.14, issue.1, pp.1141-1161, 2014.
DOI : 10.1002/pamm.201410059

C. Miehe, L. Schänzel, and H. Ulmer, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.449-485, 2015.
DOI : 10.1016/j.cma.2014.11.016

C. Miehe, M. Hofacker, L. Schänzel, and F. Aldakheel, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic???plastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.486-522, 2015.
DOI : 10.1016/j.cma.2014.11.017

B. Bourdin, G. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1007/s10659-007-9107-3

URL : https://hal.archives-ouvertes.fr/hal-00551079

E. Bouchbinder, T. Goldman, and J. Fineberg, The dynamics of rapid fracture: instabilities, nonlinearities and length scales, Reports on Progress in Physics, vol.77, issue.4, pp.46-501, 2014.
DOI : 10.1088/0034-4885/77/4/046501

T. Dally and K. Weinberg, The phase-field approach as a tool for experimental validations in fracture mechanics, Continuum Mechanics and Thermodynamics, vol.96, issue.3, pp.1-10, 2015.
DOI : 10.1007/s00161-015-0443-4

G. Lancioni and G. Royer-carfagni, The Variational Approach to Fracture Mechanics. A??Practical Application to the French Panth??on in Paris, Journal of Elasticity, vol.36, issue.1-2, pp.1-30, 2009.
DOI : 10.1007/s10659-009-9189-1

F. Freddi and G. Royer-carfagni, Regularized variational theories of fracture: A unified approach, Journal of the Mechanics and Physics of Solids, vol.58, issue.8, pp.1154-1174, 2010.
DOI : 10.1016/j.jmps.2010.02.010

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture, International Journal of Damage Mechanics, vol.30, issue.4, pp.618-652, 2011.
DOI : 10.1016/0029-5493(92)90094-C

URL : https://hal.archives-ouvertes.fr/hal-00549530

P. Sicsic and J. Marigo, From Gradient Damage Laws to Griffith???s Theory of Crack Propagation, Journal of Elasticity, vol.59, issue.6, pp.55-74, 2013.
DOI : 10.1007/s10659-012-9410-5

T. Li, J. Marigo, D. Guilbaud, and S. Potapov, Variational Approach to Dynamic Brittle Fracture via Gradient Damage Models, Applied Mechanics and Materials, vol.784, pp.334-341, 2015.
DOI : 10.4028/www.scientific.net/AMM.784.334

URL : https://hal.archives-ouvertes.fr/hal-01225237

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995

K. Pham and J. Marigo, From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Continuum Mechanics and Thermodynamics, vol.30, issue.6, pp.2-4147, 2013.
DOI : 10.1007/s00161-011-0228-3

URL : https://hal.archives-ouvertes.fr/hal-00647860

J. Simo and K. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Computer Methods in Applied Mechanics and Engineering, vol.46, issue.2, pp.201-215, 1984.
DOI : 10.1016/0045-7825(84)90062-8

G. Piero, G. Lancioni, and R. March, A variational model for fracture mechanics: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2513-2537, 2007.
DOI : 10.1016/j.jmps.2007.04.011

H. Xiao, O. Bruhns, and A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate, Acta Mechanica, vol.98, issue.1-4, pp.1-489, 1997.
DOI : 10.1007/BF01213020

H. Xiao and L. Chen, Hencky's elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta Mechanica, vol.457, issue.1-4, pp.1-451, 2002.
DOI : 10.1007/BF01182154

A. Mesgarnejad, B. Bourdin, and M. Khonsari, Validation simulations for the variational approach to fracture, Computer Methods in Applied Mechanics and Engineering, vol.290, pp.420-437, 2015.
DOI : 10.1016/j.cma.2014.10.052

C. Kuhn, A. Schlüter, and R. Müller, On degradation functions in phase field fracture models, Computational Materials Science, vol.108, 2015.
DOI : 10.1016/j.commatsci.2015.05.034

B. Bourdin, G. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.
DOI : 10.1016/S0022-5096(99)00028-9

E. Lorentz and K. Kazymyrenko, Application of a nonlocal damage law to model concrete fracture, Computational Modelling of Concrete Structures, pp.209-217, 2014.
DOI : 10.1201/b16645-23

M. Ambati, T. Gerasimov, and L. De-lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Computational Mechanics, vol.14, issue.3???4, pp.383-405, 2015.
DOI : 10.1007/s00466-014-1109-y

H. Amor, J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.57, issue.8, pp.1209-1229, 2009.
DOI : 10.1016/j.jmps.2009.04.011

C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.45-48, pp.45-482765, 2010.
DOI : 10.1016/j.cma.2010.04.011

S. May, J. Vignollet, and R. De-borst, A numerical assessment of phase-field models for brittle and cohesive fracture: ??-Convergence and stress oscillations, European Journal of Mechanics - A/Solids, vol.52, pp.72-84, 2015.
DOI : 10.1016/j.euromechsol.2015.02.002

P. Ciarlet and J. Ne?as, Injectivity and self-contact in nonlinear elasticity, Archive for Rational Mechanics and Analysis, vol.34, issue.18, pp.171-188, 1987.
DOI : 10.1007/BF00250807

M. Strobl and T. Seelig, On the treatment of crack boundary conditions in phase field models of dynamic fracture, Fourth International Conference on Computational Modeling of Fracture and Failure of Materials and Structures (CFRAC), 2015.

B. Bourdin, C. Larsen, and C. Richardson, A time-discrete model for dynamic fracture based on crack regularization, International Journal of Fracture, vol.14, issue.1, pp.133-143, 2011.
DOI : 10.1007/s10704-010-9562-x

C. Larsen, C. Ortner, and E. Süli, EXISTENCE OF SOLUTIONS TO A REGULARIZED MODEL OF DYNAMIC FRACTURE, Mathematical Models and Methods in Applied Sciences, vol.20, issue.07, pp.1021-1048, 2010.
DOI : 10.1142/S0218202510004520

A. Simone, H. Askes, R. Peerlings, and L. Sluys, Interpolation requirements for implicit gradient-enhanced continuum damage models, Communications in Numerical Methods in Engineering, vol.8, issue.7, pp.563-572, 2003.
DOI : 10.1002/cnm.597

N. Newmark, A method of computation for structural dynamics, Journal of the Engineering Mechanics Division, vol.85, issue.3, pp.67-94, 1959.

S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune et al., PETSc Users Manual, 2015.

J. Moré and G. Toraldo, On the Solution of Large Quadratic Programming Problems with Bound Constraints, SIAM Journal on Optimization, vol.1, issue.1, pp.93-113, 1991.
DOI : 10.1137/0801008

S. Benson, L. Mcinnes, and J. Moré, A case study in the performance and scalability of optimization algorithms, ACM Transactions on Mathematical Software, vol.27, issue.3, pp.361-376, 2001.
DOI : 10.1145/502800.502805

T. Li and C. Maurini, FEniCS (Dynamic) Gradient Damage. https://bitbucket.org/litianyi/ dynamic-gradient-damage, 2015.

A. Logg, K. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, 2012.
DOI : 10.1007/978-3-642-23099-8

M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the mumford-shah functional, Numerical Functional Analysis and Optimization, vol.17, issue.9-10, pp.9-10957, 1999.
DOI : 10.1515/crll.1995.458.1

E. Lorentz and V. Godard, Gradient damage models: Toward full-scale computations, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.21-221927, 2011.
DOI : 10.1016/j.cma.2010.06.025

J. Delmas and J. Lefèbvre, Notice d'utilisation du cluster de calcul Aster5

J. Vignollet, S. May, R. De-borst, and C. Verhoosel, Phase-field models for brittle and cohesive fracture, Meccanica, vol.96, issue.9, pp.2587-2601, 2014.
DOI : 10.1007/s11012-013-9862-0

K. Pham and J. Marigo, Stability of Homogeneous States with Gradient Damage Models: Size Effects and Shape Effects in the Three-Dimensional Setting, Journal of Elasticity, vol.30, issue.13, pp.63-93, 2013.
DOI : 10.1007/s10659-012-9382-5

URL : https://hal.archives-ouvertes.fr/hal-00655488

J. Kalthoff, Modes of dynamic shear failure in solids, International Journal of Fracture, vol.101, issue.1/2, pp.1-31, 2000.
DOI : 10.1023/A:1007647800529

W. Scherzinger and C. Dohrmann, A robust algorithm for finding the eigenvalues and eigenvectors of 3??3 symmetric matrices, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.45-484007, 2008.
DOI : 10.1016/j.cma.2008.03.031

M. Hossain, C. Hsueh, B. Bourdin, and K. Bhattacharya, Effective toughness of heterogeneous media, Journal of the Mechanics and Physics of Solids, vol.71, pp.15-32, 2014.
DOI : 10.1016/j.jmps.2014.06.002

K. Moreau, N. Moës, D. Picart, and L. Stainier, Explicit dynamics with a non-local damage model using the thick level set approach, International Journal for Numerical Methods in Engineering, vol.45, issue.4, pp.3-4808, 2015.
DOI : 10.1002/nme.4824

URL : https://hal.archives-ouvertes.fr/hal-01154791

J. Fineberg and M. Marder, Instability in dynamic fracture, Physics Reports, vol.313, issue.1-2, pp.1-108, 1999.
DOI : 10.1016/S0370-1573(98)00085-4

H. Schardin, Velocity effects in fracture, 1959.

D. Haboussa, D. Grégoire, T. Elguedj, H. Maigre, and A. Combescure, X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations, International Journal for Numerical Methods in Engineering, vol.44, issue.3, pp.4-5618, 2011.
DOI : 10.1002/nme.3128

URL : https://hal.archives-ouvertes.fr/hal-00581554

D. Grégoire, H. Maigre, J. Réthoré, and A. Combescure, Dynamic crack propagation under mixed-mode loading ??? Comparison between experiments and X-FEM simulations, International Journal of Solids and Structures, vol.44, issue.20, pp.6517-6534, 2007.
DOI : 10.1016/j.ijsolstr.2007.02.044

P. Ciarlet, Mathematical elasticity: Three-dimensional elasticity, 1993.