A Novelty Search-based Test Data Generator for Object-oriented Programs

Mohamed Boussaa 1 Olivier Barais 1 Gerson Sunyé 2, 3 Benoit Baudry 1
1 DiverSe - Diversity-centric Software Engineering
Inria Rennes – Bretagne Atlantique , IRISA-D4 - LANGAGE ET GÉNIE LOGICIEL
2 ATLANMOD - Modeling Technologies for Software Production, Operation, and Evolution
LINA - Laboratoire d'Informatique de Nantes Atlantique, Département informatique - EMN, Inria Rennes – Bretagne Atlantique
Abstract : In search-based structural testing, meta-heuristic search techniques have been frequently used to automate test data generation. In this paper, we introduce the use of novelty search algorithm to the test data generation problem based on statement-covered criterion. In this approach, we seek to explore the search space by considering diversity as the unique objective function to be optimized. In fact, instead of having a fitness-based selection, we select test cases based on a novelty score showing how different they are compared to all other solutions evaluated so far.
Type de document :
Communication dans un congrès
GECCO 2015, Jul 2015, Madrid, Spain. ACM, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp.1359--1360, 2015, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. 〈http://www.sigevo.org/gecco-2015/〉. 〈10.1145/2739482.2764716〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01248177
Contributeur : Olivier Barais <>
Soumis le : jeudi 24 décembre 2015 - 12:14:30
Dernière modification le : mercredi 2 août 2017 - 10:10:11

Fichier

p1359-boussaa.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mohamed Boussaa, Olivier Barais, Gerson Sunyé, Benoit Baudry. A Novelty Search-based Test Data Generator for Object-oriented Programs. GECCO 2015, Jul 2015, Madrid, Spain. ACM, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp.1359--1360, 2015, Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. 〈http://www.sigevo.org/gecco-2015/〉. 〈10.1145/2739482.2764716〉. 〈hal-01248177〉

Partager

Métriques

Consultations de
la notice

689

Téléchargements du document

125