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ABSTRACT

Nonnegative Matrix Factorization (NMF) is a powerful tool for de-

composing mixtures of audio signals in the Time-Frequency (TF)

domain. In the source separation framework, the phase recovery for

each extracted component is necessary for synthesizing time-domain

signals. The Complex NMF (CNMF) model aims to jointly estimate

the spectrogram and the phase of the sources, but requires to con-

strain the phase in order to produce satisfactory sounding results.

We propose to incorporate phase constraints based on signal models

within the CNMF framework: a phase unwrapping constraint that

enforces a form of temporal coherence, and a constraint based on the

repetition of audio events, which models the phases of the sources

within onset frames. We also provide an algorithm for estimating the

model parameters. The experimental results highlight the interest of

including such constraints in the CNMF framework for separating

overlapping components in complex audio mixtures.

Index Terms— Nonnegative matrix factorization, phase recov-

ery, phase unwrapping, repeated audio events, source separation

1. INTRODUCTION

A variety of audio signal processing techniques acts in the TF do-

main, exploiting the particular structure of music signals. For in-

stance, the family of techniques based on Nonnegative Matrix Fac-

torization (NMF) [1] is often applied to spectrogram-like represen-

tations, and has proved to provide a successful and promising frame-

work for audio source separation [2].

However, when it comes to resynthesizing time signals, obtain-

ing the phase of the corresponding Short-Time Fourier Transform

(STFT) is necessary, and is still an open issue [3]. In order to produce

perceptually satisfactory sounding signals, it is important to enforce

consistency, i.e. to obtain a complex-valued component that is close

to the STFT of a time signal. In the source separation framework,

a common practice consists in applying Wiener-like filtering [4].

However, this method does generally not lead to consistent compo-

nents. Alternatively, a consistency-based approach is often used for

phase recovery [5]. That is, a complex-valued matrix is iteratively

computed in order to maximize its consistency. A benchmark has

been conducted to assess the potential of source separation methods

with phase recovery in NMF [6]. It points out that consistency-based

approaches provide poor results in terms of audio quality. Besides,

Wiener filtering fails to provide good results when sources overlap in

the TF domain. The High Resolution NMF (HRNMF) model [7] has

shown a great potential because it relies on a signal model, contrary

to consistency-based approaches that exploit a property of the TF
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transform. The Complex NMF (CNMF) model [8], which consists

in factorizing a magnitude spectrogram while reconstructing a phase

field for each source, has also shown promising results, but requires

that the phase be constrained to produce satisfactory results.

Alternatively, phase reconstruction from spectrograms can be

performed using phase models based on signal analysis. For in-

stance, the widely used model of mixtures of sinusoids [9] can

lead to explicit constraints for phase reconstruction that exploit the

relationships between adjacent TF bins. This approach has been

used in the phase vocoder algorithm [10], integrated into a CNMF

framework [11] and applied to speech signal reconstruction [12].

In [13], we proposed to generalize this approach and have provided

a phase unwrapping algorithm that has been applied to an audio

signal restoration task. Thus, modeling the phase of the compo-

nents in the TF domain by means of a signal model appears to be a

promising approach. In addition to this model, one can also exploit

the repetition of audio events to obtain a phase constraint in the TF

domain. A phase reconstruction technique exploiting this property

has been proposed in [14] for estimating the phases of the compo-

nents from the mixture within onset frames. This method has been

applied to audio source separation and has shown some potential,

but the spectrograms of the isolated components were assumed to

be known.

In this paper, we propose to define a mixture model that incor-

porates the aforementioned phase constraints for jointly estimating

both the magnitude and the phase of the components. The mixture

is decomposed into several sources, whose STFTs are structured ac-

cording to the CNMF model. In addition, we include the follow-

ing constraints: a phase unwrapping model that enforces the con-

tinuity of the partials over time frames, and a model based on the

repetition of audio events for estimating the phases of the compo-

nents within onset frames. We incorporate these constraints into the

CNMF model by means of penalty functions in the complete cost

function, and we minimize it in order to derive an estimation al-

gorithm. This method is tested experimentally on various data and

applied to an audio source separation task.

This paper is organized as follows. Section 2 presents the nec-

essary background on NMF, CNMF and phase-constrained CNMF.

Section 3 introduces our model and the derived estimation algorithm.

Section 4 describes several experiments that highlight the potential

of this technique. Finally, section 5 draws some concluding remarks

and prospects future directions.

2. BACKGROUND

2.1. Nonnegative Matrix Factorization

The NMF problem is expressed as follows: given a matrix V of

dimensions F × T with nonnegative entries, find a factorization



V ≈ V̂ = WH where W and H are nonnegative matrices of di-

mensions F ×K and K × T . In order to reduce the dimension of

the data, K is chosen such that K(F + T ) ≪ FT . In audio source

separation, V is generally the magnitude or the power spectrogram

of a TF representation X of a mixture signal (most of the time an

STFT). One can interpret W as a dictionary of spectral templates

and H as a matrix of temporal activations.

This factorization is generally obtained by minimizing a cost

function D(V, V̂ ). Popular choices for D are the Euclidean distance

and the Kullback-Leibler [1] or the Itakura-Saito [4] divergence.

Finally, the phase of the complex components must be recov-

ered in order to resynthesize time-domain signals. A common prac-

tice consists in applying Wiener filtering [4], which corresponds to

a soft-masking of the complex-valued STFT of the original mixture.

Thus, the phase of each source is equal to the phase of the mixture.

However, this property is no longer valid when sources overlap in the

TF domain, which motivates alternative methods for reconstructing

the phases of the components [5].

2.2. Complex NMF

CNMF [8] consists in factorizing a magnitude spectrogram while

reconstructing a phase field for each source from the STFTX of the

mixture. The model is, ∀(f, t) ∈ J0;F − 1K × J0;T − 1K1:

X̂(f, t) =
K∑

k=1

W (f, k)H(k, t)eiφk(f,t). (1)

The model parameters are estimated by minimizing the squared

Euclidean distance between the model X̂ and the data X:

D(X, X̂) = ||X − X̂||2 =
∑

f,t

|X(f, t)− X̂(f, t)|2. (2)

A penalty term is generally added to this cost function in order

to promote sparse activations [15]. The CNMF model [8] uses the

following sparsity penalty term:

Cs(H) = 2
∑

k,t

H(k, t)p, (3)

where p is a sparsity parameter chosen between 0 and 2. More details

on the estimation procedure can be found in [16].

2.3. Phase-constrained Complex NMF

Although promising, the Complex NMF model has been shown to

provide poor results in terms of audio source separation quality be-

cause the phase is left unconstrained [6]. In [17], the authors pro-

posed to enforce the consistency of the estimated components, but

this property was shown to be uncorrelated to the sounding quality.

An alternative approach consists in using phase constraints

based on signal modeling. In [11], the authors proposed a temporal

phase evolution constraint in the TF domain, based on the explicit

calculation of the phase of mixtures of sinusoids. Although promis-

ing, this approach is limited to harmonic and stationary signals, and

requires prior knowledge on fundamental frequencies and numbers

of partials. Thus, it is not suitable for blind source separation.

Finally, time invariant parameters can be exploited to constrain

the phase within a complex NMF framework. In [18], the authors

proposed to use the phase offset between partials in order to reduce

1The notation J K denotes an integer interval.

the dimensionality of the data. However, the corresponding estima-

tion algorithm is not able do deal with a mixture of different instru-

mental sources.

3. PROPOSED MODEL

Drawing on previous work [13, 14], we propose to incorporate the

following constraints into a CNMF framework:

• A phase unwrapping constraint, that enforces the continuity

of the partials composing the spectra of the sources over time

frames;

• A phase model based on the repetition of audio events in order

to estimate the phases of the sources within onset frames.

In this paper, we assume that the onset frame indexes are known.

However, we could implement, for instance, the method described

in [19] for estimating onset frames from the activation matrix H .

3.1. Phase unwrapping

Let us consider a source indexed by k ∈ J1;KK which is modeled

as a sum of sinusoids. νk(f) denotes the normalized frequency in

channel f ∈ J0;F−1K. We define the onset domain for each source:

Ωk = {t ∈ J0; T−1K, t is an onset frame index for source k}. (4)

It can be shown [13] that the phase φk of the component Xk
follows the unwrapping equation: ∀f ∈ J0;F − 1K and ∀t /∈ Ωk ,

φk(f, t) = φk(f, t− 1) + 2πSνk(f), (5)

where S is the hop size of the STFT. From (5) we define the unwrap-

ping cost function:

Cu(φ) =
∑

f,k

∑

t/∈Ωk

|X(f, t)|2uk(f, t), (6)

with uk(f, t) = |eiφk(f,t)e−iφk(f,t−1) − e2iπSνk(f)|2. The relative

importance of the constraint is weighted by the terms |X(f, t)|2.

In [11] the frequencies νk(f) were assumed to be known. We

propose here to estimate them with a Quadratic Interpolated FFT

(QIFFT) performed on the spectra Wk. The frequency range is then

decomposed into regions of influence [13] to ensure that the phase in

a given channel is unwrapped with the appropriate frequency.

3.2. Phase constraint based on a model of repeated audio events

Another constraint can be added in order to reconstruct the phase

of the sources within onset frames. Indeed, reconstructing a good

quality onset signal is crucial since it has a significant impact on the

sound quality and because it initializes the recursive equation (5).

We propose to use a phase model based on the repetition of audio

events [14]. The phase of a source within an onset frame is modeled

as the sum of a reference phase and an offset which is linearly de-

pendent on the frequency: ∀k ∈ J1;KK, f ∈ J0;F −1K and t ∈ Ωk ,

φk(f, t) = ψk(f) + λk(t)f. (7)

This model leads to the following cost function:

Cr(φ,ψ, λ) =
∑

f,k

∑

t∈Ωk

|X(f, t)|2rk(f, t), (8)

with rk(f, t) = |eiφk(f,t) − eiψk(f)eiλk(t)f |2.



3.3. CNMF under phase constraints

The aforementioned constraints are incorporated into the CNMF

framework by adding the penalty terms (3), (6) and (8) to the cost

function (2), which leads to the following objective function:

C(θ) = D(X, X̂) + σuCu(φ),+σrCr(φ, ψ, λ) + σsCs(H), (9)

where θ = {W,H, φ,ψ, λ} and the parameters σu, σr and σs are

prior weights which promote the constraints.

The cost function is minimized by means of a coordinate descent

method. We calculate the partial derivative of C with respect to the

parameters {W,H, φ, ψ} and we seek them such that this derivative

is zero. The parameters λ are estimated by means of an adaptation

of the ESPRIT algorithm [20]. Besides, we enforce the nonnegativ-

ity of W and H by a projection onto nonnegative orthants, and we

add some normalization. Thus, the convergence of the algorithm is

not theoretically guaranteed, however it was observed in our experi-

ments. Algorithm 1 describes the estimation procedure. We use the

following notations: ∀k ∈ J1;KK,

µk ∈ C
F×1

, µk(f) = e2iπSνk(f),

Λk ∈ C
F×T

, Λk(f, t) = 1k(t)e
ifλk(t),

Ψk ∈ C
F×1

, Ψk(f) = eiψk(f),

Φk ∈ C
F×T

, Φk(f, t) = eiφk(f,t),

and let α ∈ C
F×T , α(f, t) = 1. The indicator function of Ωk is:

1k ∈ C
1×T

, 1k(t) =

{
1 if t ∈ Ωk
0 else.

and the indicator function of the complementary set is 1̃k = 1−1k.

ℜ denotes the real part, vand(z) (resp. diagv(v)) denotes the Van-

dermonde matrix2 (resp. the diagonal matrix) made up with the en-

tries of vector v and diagm(M) denotes the column vector made

up with the diagonal entries of matrix M . z↓ (resp. z↑) denotes

the vector or matrix obtained by removing the last (resp. the first)

entry from vector or matrix z. M0→ denotes the concatenation of a

column vector whose entries are zeros and the matrix obtained by re-

moving the last column fromM . Finally, .T (resp. . and .H ) denotes

the transpose (resp. the conjugate and the Hermitian transpose), and

⊙ (resp. .
.

and .⊙) denotes the element-wise matrix multiplication

(resp. division and power).

4. EXPERIMENTAL EVALUATION

4.1. Protocol and datasets

We perform audio source separation on several datasets. First, we

synthesize 30 mixtures of two harmonic signals (K = 2) which con-

sist of damped sinusoids whose amplitude, origin phase, frequency

and damping coefficients are randomly-defined. For the tests on re-

alistic data, we consider 30 mixtures of two piano notes (K = 2)

selected randomly from the MAPS database [21]. In both datasets,

sources overlap in the TF domain. Each source is activated alone

successively, and then both are played simultaneously.

The data is sampled at Fs = 11025 Hz. The STFT is calculated

with a 512 sample-long modified Hann window (as defined in [5])

with 75% overlap. In order to measure the quality of the source

2If z ∈ C1×T , then M = vand(z) ∈ CF×T . This Vandermonde matrix

is definied as follows: ∀(f, t) ∈ J0;F −1K× J0; T −1K, M(f, t) = z(t)f .

Algorithm 1 CNMF under phase constraints

Inputs:

X , K, σr, σu, σs
Initialization ∀k ∈ J1;KK:

Wk, Hk, Φk , Λk , Ψk, 1k, 1k,

X̂k = (WkHk)⊙ Φk , Bk = X −
∑
l 6=k X̂

l.

while stopping criteria not met do

for k = 1 to K do

Compute µk
QIFFT on Wk [13].

Compute Ψk

Ψk =
diagm((Φk ⊙X⊙2)(Λk)

H)

|diagm((Φk ⊙X⊙2)(Λk)H)|
.

Compute Λk

Λk = vand

(
(Ψk,↓ ⊙Ψk,↑)

H(|Xk,↓| ⊙ |Xk,↑| ⊙ Φk,↓ ⊙ Φk,↑)

|(Ψk,↓ ⊙Ψk,↑)H(|Xk,↓| ⊙ |Xk,↑| ⊙ Φk,↓ ⊙ Φk,↑)|

)
.

Λk = Λkdiagv(1k).
Compute Φk
ρk = σr(Ψk1k)⊙ Λk + σu(µk1̃k)⊙ Φk,0→.

Φk =
Bk ⊙ (WkHk) + (WkHk)

⊙2 ⊙ ρk
|Bk ⊙ (WkHk) + (WkHk)⊙2 ⊙ ρk|

.

Update X̂k
X̂k = (WkHk)⊙Φk ,

Bk = X −
∑
l 6=k X̂

l,

βk = ℜ(Bk ⊙ Φk).
Compute W

Wk =
βk(Hk)

T

α((Hk)⊙2)T
.

Project W onto nonnegative orthant

Compute H

Hk =
(Wk)

Tβk
pσs(Hk)⊙p−2 + ((Wk)⊙2)Tα

.

Project H onto nonnegative orthant

Normalize W and H
Update X̂k
X̂k = (WkHk)⊙Φk ,

Bk = X −
∑
l 6=k X̂

l.

end for

end while

Outputs:

X̂k , Wk, Hk, Φk , Λk , Ψk, µk .

separation, we use the BSS EVAL toolbox [22] which computes var-

ious energy ratios: the Signal to Distortion, Interference and Artifact

Ratios (SDR, SIR and SAR).

We test various methods: NMF-W consists of 30 iterations of

NMF with Kullback-Leibler divergence (KLNMF) multiplicative

update rules combined with Wiener filtering [4]; CNMF consists

of 10 iterations of the sparse CNMF algorithm without phase con-

straint [8]; Finally, CNMF-φ consists of 10 iterations of Algo-

rithm 1. For both CNMF methods, W , H and φ are initialized with

30 iterations of NMF-W and the other parameters are initialized

randomly.

4.2. Influence of the weight parameters

The first experiment analyzes the influence of the unwrapping

and repetition parameters σu and σr on the performance of the
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Fig. 1: Influence of the parameters σu and σr on the source

separation quality. The dark red color corresponds to the greatest

values of the SDR, SIR and SAR. Results on synthetic sinusoids

(top) and piano notes (bottom).
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Fig. 2: Influence of the parameter σu on the separation quality for

the two datasets, with σr = 0.2.

source separation based on the CNMF under phase constraints

method. The sparsity parameters are set at p = 1 and σs =
||X||2K−(1−p/2)10−5, which are commonly used values in the

literature [8]. We run the CNMF-φ procedure with various values

of σr and σu. We then compute the SDR, SIR and SAR and average

the results over each dataset. Results are presented in figure 1. We

remark that σr does not have a great influence on the quality of the

separation. However, the quality significantly drops for values of σr
and σu higher than 1. We thus set σr = 0.2 and investigate more

precisely the influence of σu, as presented in figure 2. We remark

that small values of σu (≈ 0.05) lead to the best results for synthetic

data. However, values in the neighborhood of 0.2 seem to lead to

the most stable results for real piano notes. Thus, we will use the

values (σu, σr) = (0.2, 0.2) in the next tests in order to guarantee

as much robustness as possible in our experimental results.

4.3. Source separation

As a first example, we consider a mixture of two piano notes that

overlap in the TF domain (E2 and B2). Each note is played alone

successively, and then both are played simultaneously. We perform

source separation with the methods described in the protocol. We

then look at the reconstructed component corresponding to the note

B2 in the 58-th frequency channel between 2 s and 2.3 s, i.e. when

overlap between partials of the two piano notes occurs. Results pre-

sented in figure 3 show that our method accurately reconstructs the

piano partial in this frequency channel. Both the real part and the

magnitude of the components are well reconstructed with our tech-

nique, while the other methods lead to unsatisfactory results.

Finally, we perform source separation on the two datasets and
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Fig. 3: Reconstruction of a B2 piano note partial from a mixture

made up of two piano notes (E2 and B2) with different methods.

Data Method SDR SIR SAR

Synthetic sinsuoids
NMF-W 12.1 17.5 14.1
CNMF 12.0 14.6 16.1

CNMF-φ 14.0 20.7 15.4

Piano notes
NMF-W 12.9 23.3 14.5
CNMF 13.5 20.0 14.8

CNMF-φ 14.0 24.0 14.6

Table 1: Average source separation performance (SDR, SIR and

SAR in dB) for various methods and data.

average the source separation scores over the mixtures. We present

the results in Table 1. Our method outperforms the Wiener filter-

ing technique in terms of interference rejection. A slight increase

in SDR is also observed on both datasets, while the CNMF tech-

nique leads to the best performance in terms of artifact rejection. An

informal perceptive evaluation of the source separation quality sug-

gests that the performance measurement employed in these tests may

not be able to capture some properties of the separated signals. In

particular, the beating phenomenon cannot be suppressed when the

phase is retrieved with Wiener filtering, which significantly impacts

the sounding quality of the reconstructed signal, while our technique

dramatically attenuates this phenomenon. In order to assess the po-

tential of this method, we provide on our webpage [23] some audio

examples, as well as the MATLAB code related to this work.

5. CONCLUSION

The model introduced in this paper is a promising tool for separat-

ing overlapping components in complex mixtures of audio signals

in the TF domain. Incorporating phase constraints within a com-

plex NMF framework leads to satisfactory sounding results. Those

constraints are based on signal modeling, which appears to be a

suitable approach for exploiting the phase coherence properties that

intrinsically lie within audio signals because of their physical na-

ture. Promising results have been obtained for the source separation

task, and significantly better results than with the traditional uncon-

strained complex NMF have been reached.

Further experiments should though be conducted on realistic

music pieces, in order to assess the potential of the method for prac-

tical applications. In addition, further research could focus on the

formulation of the problem itself. Indeed, incorporating the phase

constraints as penalty terms in the cost function leads to an increase

of the amount of local minima, and requires the tuning of the hyper

parameters σr and σu. Finally, such constraints could be refined,

and completed with other properties, such as the modeling of onset

phases or the use of time-invariant parameters [18].
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Télécom ParisTech, Paris, France, July 2010.
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