Policy gradient learning for a humanoid soccer robot

Abstract : In humanoid robotic soccer, many factors, both at low-level (e.g., vision and motion control) and at high-level (e.g., behaviors and game strategies), determine the quality of the robot performance. In particular, the speed of individual robots, the precision of the trajectory, and the stability of the walking gaits, have a high impact on the success of a team. Consequently, humanoid soccer robots require fine tuning, especially for the basic behaviors. In recent years, machine learning techniques have been used to find optimal parameter sets for various humanoid robot behaviors. However, a drawback of learning techniques is time consumption: a practical learning method for robotic applications must be effective with a small amount of data. In this article, we compare two learning methods for humanoid walking gaits based on the Policy Gradient algorithm. We demonstrate that an extension of the classic Policy Gradient algorithm that takes into account parameter relevance allows for better solutions when only a few experiments are available. The results of our experimental work show the effectiveness of the policy gradient learning method, as well as its higher convergence rate, when the relevance of parameters is taken into account during learning.
Document type :
Journal articles
Complete list of metadatas

Cited literature [32 references]  Display  Hide  Download

Contributor : Andrea Cherubini <>
Submitted on : Monday, December 21, 2015 - 3:21:56 PM
Last modification on : Friday, April 12, 2019 - 5:20:03 PM
Long-term archiving on : Saturday, April 29, 2017 - 11:44:06 PM


Files produced by the author(s)



Andrea Cherubini, F Giannone, L Iocchi, M Lombardo, G Oriolo. Policy gradient learning for a humanoid soccer robot. Robotics and Autonomous Systems, Elsevier, 2009, ⟨10.1016/j.robot.2009.03.006⟩. ⟨hal-01247228⟩



Record views


Files downloads