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A piecewise-polynomial approach to the stability analysis of an-linear
switching controllers in presence of sliding modes with appliation to
pneumatic systems

Omar Ameur, Paolo Massioni,&Bard Scorletti, Xavier Brun and Mohamed Smaoui

Abstract— This paper concerns the stability analysis of non- In [1], the authors have applied the piecewise-affine ap-

linear, switching control laws for pneumatic actuators. A first  proach to prove the stability of the switching non-linear
approach to the problem has been proposed by the authors .qniro| Jaws for pneumatic actuators; nevertheless, ttisfp
in [1], under the hypothesis of a simplified model of friction. . . L Co ’
The approach is based on casting the closed-loop system into IS Va“_d _under a SImpIIfylng _hypOtheS'S for the model of
a piecewise-affine form. However, if a more realistic friction the friction. In fact, the friction has been described as a
model is introduced, the method in [1] proves to be too continuous function of the velocity of the rod (a so-called
conservative, and unfit to deal with the sliding modes that “saturation” shape); however, as indicated by many works
can occur with this new model. This paper proposes a new [2], [8], [28], [6], more accurate models of friction feaeur

method for proving the stability on the system by introducing a . T . -
less conservative class of Lyapunov function, namely piecewise- discontinuities, which can lead to the appearance of glidin

polynomial ones. At the end of the paper, we show how such a modes [11], [10] in the system dynamicsThe approach
method can be successfully applied to our experimental setup. proposed in [1] is not able to deal with discontinuities and
sliding modes, so no conclusion on the stability can be
I. INTRODUCTION drawn with this approach if the realistic model of friction
Friction is a complex phenomenon which plays a kei .taken intg accou'nt'. So, the research' work presgnteq in
role in the dynamic behavior of several industrial system h'S paper aims at giving an answer to t_h_'s problem, €. fmd
theoretical tool able to prove the stability of the switai

For example, in pneumatic cylinders, the presence of t ) . . -
friction may lead to what is called “stick-slip” [17], [5], a aw applied to the cylinder even in the presence of sliding
Lo odes.

phenomenon consisting in jerky mouvements of the rod aft The i read . | hes f

it has come to a rest; such a behaviour is highly undesirable "€ lterature aireéady contains several approaches for

in the industrial applications and it can even lead to limifi€aling with sliding modes in piecewise-affine systems [15]
, [41, [13], [25]. In particular resents an exteosi

eycles 9], [4], [13], [25]. In particular [15] p i

A control law which avoids the occurrence of stick-slipmc the well-known methods presented in [16]. In [9], these

has been proposed recently in [27]. This solution consis{grmer works has been extended in order to cope with the

in a classic feedback linearization, which accounts for thgrgs:ar;)cel of §I|d|r:g r;:‘od% eveg n trl;et?;se Oivsn eqllf'"b_rlll;m
nonlinearities in the pneumatic model, together with aO'Mt Delonging 1o the boundary between two cells. The

appropriate switching law. The controller switches from g?nglztlons ![?] [9]t CS_Tb'?e thef work O_f [ZSL_and thetz WOH.(
position tracking control to a pressure control after the ro0f [22] on the stabilization of piecewise affine systems in

has come to a rest, in order to reduce the pressure diffetp-.e presence of ;hdmg modes. H.qwever, these method are
ence between the two chambers, avoiding an uncontrollggII too conservative for our specific problem, as they rely
' n combinations of piecewise-quadratic Lyapunov funaion

evolution that eventually could make the rod restart. 1 the slidi des h b idered ;
major problem with this solution, which had been otherwisén [4] he sliding modes have been considered as a system
dynamics; the drawback in this case is the need for more

verified as very effective in the practice, was to find a : - .
formal proof O]%’ its stability. So af)first approach to the|nformat|on on the sliding modes. This drawback has been

problem has been given in [1], where the stability analysiE}’Oided in the wprk of [25] but conservgtively using common
of this system with the switched controller has been takle apunov_functions. Alas, as we W'!I see, all .O.f these
by casting the closed-loop system into a piecewise-affin%nproaches are not enough to Qeal with the stability Of. our
(PWA) form [9], [21], [24], [19]. For this class of systems, pheumatic _actuator systems. First of _aII, we have verl_ﬂed
new sufficient conditions for stability have been proposeHﬁIat searching for a piecewise-quadratic Lyapunov funtio

based on piecewise-quadratic Lyapunov functions and giv@ too conservative and does not yield any valid solutloq.
in terms of linear matrix inequalities (LMIs). econdly, these former methods are not able to cope with

the presence of a whole equilibrium set (not only a point)
O. Ameur and G. Scorletti are with Laboratoire Aemp, UMR CNRS in a_ sliding mode- ThIS_ pap_er ShPWS how W_e extend the
5005, Ecole Centrale de Lyon, Univergitde Lyon, {omar.ameur,  previous works, introducing piecewise-polynomial Lyapun

gerard.scorletti }@ec-1yon.fr functions.
P. Massioni, X. Brun and M. Sn_”laotlj_i are with Laboratoire Aimp UMR The paper is oraanized as follows. Section Il contains
CNRS 5005, INSA de Lyon, Universéitde Lyon,{paol 0. massi oni , pap ) :

xavi er. brun, nohaned. smaoui }@ nsa-1yon. fr the description of the pneumatic actuator model with the



proposed switching control law. Section Il introduces théNotice the difference with respect to the continuous (“sat-
PWA class of systems and the tools that can be used for theation”) model chosen in [1]. The switching control law
stability analysis in the presence of sliding modes. Sadib proposed in [1], [27] is based on a feedback linearization of
contains the main theoretical result, i.e. a method foripgv the model in (1), which cancels out all the nonlinearities of
stability, whereas Section V shows its application to ost te the system but the ones caused by friction (as we assume
bench model. The conclusions are given in Section VI.  uncertainties in this model, so exact cancellation is impos

ble). Then, the controller switches between the two foltayvi
Il. PNEUMATIC ACTUATOR SYSTEMS

laws.

Y position of the piston rod (m) « Position tracking law (#1)
v velocity (m s1) v
PP, PN pressures in the cylinder chambers (Pa) qmp = ,f(y) [ kS _vpp + ppad — kpep]

. 5 rT LVp(y)
a acceleration (m s°)
Fy stiction friction force (N) _ MVN(y)[ SkrT S?2kv PP PN
k gas polytropic constant dmN = ~ggrT [Mvp(%) dmpP + 31 (_Vp(y) - VN(y))
l length of stroke (m) —32a — jqg + keeq + kyey + kye
M moving load (carriage and rod mass) (kg M Jd ara vy Y y]
4mpP, ¢mn ~ Mass flow rate provided by the servovalves which allows the tracking of a given time-varying

to the cylinder chambers (kg—3)

perfect gas constant (J kg K1) position reference. It results in the following closed-

T .

S area of cylinder bore (f) loop dynamics:

T temperature (K) .

1% volume () €y = Cv

Vb dead volume of cylinder chamber ¢n . 1

by viscous friction coefficient (N m! s—1) €y = eaf — 375 (v) 3)
TABLE | baf = —katap — kvey — kyey, + 52 Fy(v)
NOTATION. .

ep = —/{?PBP

« Pressure control law (#2)

The pneumatic system that we consider is shown in Ve (y)

kS .
Fig. 1. It comprises an actuator in the form of a pneumatic qmP = “grr [Vp(y)”pP +Ppa — kpep]
cylinder (double acting) with a rod connected to a carriage .
Y ( 9 g qmN = VkN,%) [— ijfy) VPN + PNa — knen]

on rails. The actuator is powered by compressed air, with
two servovalves for controlling the flow supplied to both the  which regulated the pressures in the two chambers in
chambers of the cylinder. Two sensors measure the pressures order to avoid stick-slip; this law is active when the
in the chambers. carriage has arrived at the desired position. The resulting
closed-loop dynamics is

guiding rails

A e | €y =Cv
s + s s 1
1 0 12 v €y = €af — 37 F5 (V) @
Fig. 1. Electro-pneumatic actuator. Caf = m (kn —kplep — kneas
ép = —kpep
Based on [1], [27], the physical model of the system inI I of th , b B L g
open loop is given by the following equations: n all of these equations above,; = eq + 37 F(v). .
ey, €y, €q, €p, ey are the errors between states and their
=0 desired values; the constamg, k,, k., kp and ky are
0= L(S(pp — pw) — bov — F5(v)) the state f(_aedbgck gains chosen by a .pole—plac_emgnt on the
M v f 1) feedback-linearized model. The switching criterion is
pN:%(%pNUJ"QmN) #1— #Zivd:()/\|6y|§€1/\|6v‘§€2

pp = krT (;Sppv n qu) #2— #1: vy 75 ov |€y| > 61.\/ |€v‘ > &9
Ve(y) A rT wheree; and e, are small arbitrary constants. The above
where (see Table | for the notation) the inputs are the twewitching controller has shown no instability both in sim-
mass flow ratesy,,r and ¢,,~, and Vp(y) = Vo + Sy, ulation and on the test bench and has never caused the
Vn(y) = Vo — Sy with V; = Vpp 4 SL. The friction force  occurrence of stick-slip (as shown in Fig. 2). The topic of

Ft(v) is described by the following discontinuous, “relay”the rest of this paper is the formal proof of stability.
model:

— 4F, for v >0 Ill. PROPOSED APPROACH
_ Let us introduce a partition dk™ into NV polyhedral cells
Fy(v)( €[-Fs, +F] forv=0 @ X, with disjoint interior, withi € Z, a set of N valid indices.
=-F, for v < 0. We partitionZ = Zy UZ; (with ZoNZ; = 0) such a9 € X;
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Fig. 2.  Evolution of position with respect to the desired ifos. The

background colors are related to the active control mode (#12h

if i € 7y, otherwise0 ¢ X; if ¢ € Z; (the cells with index
in Z, contain the origin).

Definition 1: we call a dynamical system “piecewise
affine” (PWA) if it has the following dynamics [1], [16],
[12]:

z(t) = Ajx(t) + a; for z(t) € X;,1 €T (5)

where z(t) € R™ denotes the state-space vector. Equiva-

lently, for z(t)” = [z(t)T, 1]

0 {A’? ‘”]x(t) for a(t) € Xi,i € T
—_———

0 O (6)

A;
The domain of each cel; is described by matrices; €
Rl (n+1) sych as:

$€Xi=>Ei§ZO,,

)

and t@ boundaries between two cel§ and X; by
matricesF;; € R"*(+1) such as:

{ I'={(,5) | Xin X; # 0}

= ®)
V@) el, XinX; C{ = | Fyz= 0 }.

We then focus on PWA systems satisfying a set of give

assumptions.

Assumption 1:on any boundary ii® between two neigh-
boring cells X; and X;, a sliding mode may occur (see
figure 3), i.e. forz € X; N Xj, (4,5) € T' we have the
following dynamics (according to Filippov [10]):

Z(t) = (0A; + (1 —0)A;)Z(t), 0< 6 < 1. 9)
Assumption 2:the setE,, D {0} of the equibrium points
for (6) is a subset OUiGI@ X; (notice that the equilibrium

set might also be on a sliding mgde

Assumption 3:we distinguish two cases:

« if the origin is in the interior of a cellX; (for which we
have then thal, = {i}): A; does not have any constant
terms @; = 0); we defined, = A;;

« ifthe origin is in the boundary between celf§ and X,
there exists @, 0 < 6 < 1, for whichfa; + (1 —60)a;
0; we definedy =0 A; + (1 —0) A;.

Moreover, A, may haveh eigenvectors (shared withi;
and 4; in the second case) that hawe as associated
eigenvalue. We callf € R("*tDx" the full-rank matrix of
these eigenvectors4(Z = A;Z = A;Z = 0) (this implies
that the equilibrium set can be larger than the origin alone,
i.e. E., 2 {0}). We then defindl € R("+Dx(n+1=h) a5 the
orthogonal complement of, normalized such aH”1I = 1.

Sliding surface

N
/1

NN
CETI

X=A; X+ a;

\

Fig. 3. Sliding modes.

The objective now is to find a set of conditions ensuring
the asymptotic convergence of the system stdte to the
set of equilibrium pointsE,,, notwithstanding the presence
of sliding modes on the boundaries. First of all, we have
to upgrade the methods in [1] in order to cope with sliding
modes. Secondarily, in order to reduce conservatism to the
minimum, we need to go beyond the classical piecewise-
quadratic Lyapunov functions. For this reason, we will make
use of Lyapunov function of higher degree, i.e. piecewise-
polynomial Lyapunov functions, and given by the expression

V(z)=Vi(z)forz e X;,i €T (10)

such thatV;(x) is a polynomial inn variables with degree

%m given by:

Vi(z) = x(2)" Pix(z)
where P, = PI' € R°*¢, and x(z) € R**! is the vector

of all the monomials of degree less than or equabitdhat

11)

can be made from the elements af p = (m+n). For
m
example,

x(x) = [z1, 22, ..

e 2T, .

<3 Tpy T1X2, LILZ,y - - -3 L1y, L2TZ, - - -

, T 1}T.
(12)

- m m
NS RN LA 7 S

As seen in [23], the choice of’;, is not unique for a
given polynomial V;(z); there exist a number of linear
independent matrice®, = QL € Rr** (defined up to a
scalar factor), for which

x(@)TQ x(x)=0forv=1,...: (13)



with Lemma 2:for the system in (6), the convergencemoto
2 E.q (which coincides with the convergence gfin (15) to
. <<m+n) + (m +n)> - (n+ 2m>. (14) E.,) fort > 0, t — +oo is assured under the following
2 2m conditions:
This implies thatV;(z) = x(z)"Pix(z) = x(z)T (P + 1) the Lyapunov function is continuous, i.e. it satisfies
S Qur(v)x(x) for any real scalars (). This is due (19); o N o
to the fact that some monomials ¥ can be obtained as 2) the Lyapunov function is positive outside.,, i.e.
i i 2 . — ~ ~
?rog;iuitsx of 1dlf“ferent elements iy, e.g.z7 = x1 - 11 Vi(x(2) > 0 for x(x) € Xi/Eugsi € T; (20)
A 1
Following the procedure of the “power transformation” 3) the derivative of the Lyapunov function is negative

m m

[30], [29], we can obtain the dynamics af(z(t)) = x(t), outside F,, i.e.
with which we will be able to compute the time derivative ) o
of the Lyapunov function. Namely, the dynamics will still be Vilx(z)) <0for x(z) € X;/Eeq,i €T (21)

PWA, i.e. we will have even in the case of sliding-mode dynamics;

x(t) = z‘LX(t) forye X;,ieZ (15) 4) the derivative of the Lyapunov function is null fﬂq,
- i.e.
with a new description of the cellX;, thanks to matrices . ~ ~
E; € RliX? such as Vi(x(z)) =0 for x(z) € Bey N X;,i € Zg.  (22)
reX;=xE¢€ X; (16) With this we are ready to introduce our main theoretical
xX€eX;,=Ex>0, result.

and a new definition for the matrices defining the boundaries,

_ ) ’ 5 IV. MAIN RESULT
with matricesF;; € R™** such as

Given the previous considerations and using the S-
V(i,j) €T, X;NnX; C {X\Fij)z = 0} (17) procedure [3], we can arrive at the following theorem, which
reveals that the Lyapunov function can be computed through
For the new system in (15), Assumptions 1, 2, 3 still hold:z | optimization.
1) sliding modes may occur, with dynamics: Theorem 3:Let us assume that the system in (6) satisfies
. - ~ Assumptions 1, 2 and 3. Let, be the matrices describing
X(t) = (‘9‘41’ + (1 9)‘43') X(1),0<0<1 (18) o dynamics of the vectoy of degreem deriving fromz,
as in (15), withX;, E FZ], Z, 11, A, as previously defined.
If there exist

o P, =PI e Rr*r foriel;

2) there exists an equilibrium sﬁ,q\x €Eyex=0;
XE€FEeg©& 1€ Euy; By C Uiez, X

3) again we distinguish two cases: U = UL, W, = WT ¢ RixT and T T RE: all
« if the origin is in the interior of a ceIJX“ A, does Wlth_non negative entries fare T; v
not have any constant termﬁo A; . Uy = UT U’ . U’T RExT: T, 7., eRl all with
« if the origin is in the boundary between cell§; non negzgtlve entrles foit 5|(4, ]> ET:
andX there exist &, 0 < § < 1, for which the . Ly, € RO for i, j|(i, j’) cr
?frlsg;njtélfrms disappear; we defidg = 0 A; + . ?('V.)"?g(y)ﬁiu(y)’nj( V), (v) ER, fori,j € T,v =
Moreover, A, has . eigenvectors (shared with; suc’h th;it
and 4; in the second case) that haVeas associated
eigenvalue. We calZ ¢ R7*" the full-rank matrix  P; = P, + EL LT + Li; Fy; + H(ry;) for (i,j) € T (23)
of these e|genvectorsA()Z A Z = A7 = 0) L .
1 € Re*(e=h) is the orthogonal complement df, { WrATRZ=0 . . €7, (24)
with TITI = 1. EiZ =0
V(x) in (10) is a candidate Lyapunov function for theand the following LMIs hold
system in (6). In order to ensure its continuity on the A _ ~ o
boundary between two cell&; and X;, (i,j) € T, the 7 (P; + H(r}) = Ni(T}) — Ef W; E;)IL = 0
following condition has to be satisfied: 0T (AT P, + PA; + H(7)') + Ny(T;) + EFU,E)TT < 0

Vilx) = Vi(x) Yx(@) € Xi N X;. (19) fori € Zo

As a direct consequence of LaSalle’s theorem ([18] page | P; + H(7) — Ni(T}) — EIW;E; = 0
128), the conditions that the candidate Lyapunov function ATP + PA; + H(r 1Y+ Ny(T7) + ElTULEL <0
must satisfy in order to prove the convergence to the equi- foric I,
librium are in the following lemma. (26)

(25)



7 (AT P; + P A +H(ri;) + Ni(Tij) + N (T55) The conditions (27) and (28) concern possible sliding
+EFUGE; + ETU’ E)HI <0 modes on the boundary between two cells. Indeed, multiply-
N7 (ATP, + PA; + H(7!) + Ni(T;i) + N;(T%) ing the second expression in (28) Bynd the second in (26)

R T ! I by 1 — # and summing, we get (thanks to the S-procedure,
+ETUE; + ETULE)T < 0

as seen above
for (i € Zo,j € Ip) € T ) ) R R ~
; @7)  x(=)"((0A] +(1—0)AT )P+ Pi(0A;+(1—6) A;))x(z) <0
A P; + P; A+ H(7]

;) + Ni(Tij) + N;(T7;)
+EIU;E; + ETUJ, E 0
)+

for anyy € X,;NX;, which ensures that the derivativegfis
negative for any possible sliding mode dynamics. Similarly
Ni(T;i) + N;(T};)  (28)  one can get the complementary expression

x(@)T (AT +(1-0)AT) P+ P; (0 A;+(1-0) A;))x(z) < 0

ATP, + PA; + H(7|
ETU B, +ETU’ E; =<0
for (i ¢IoVJ¢Io)6F

from the first in (28). Condition (27) concerns a sliding mode

with 0 containing the equilibrium set, the inequalities can beseno
Ni(T) = {ﬂE} +[0 EIT] with the same reasoning as for (28) and (25).
E So we have shown that the conditions required by the
and theorem imply (19), (20), (21) and (22), satisfying the hy-
L potheses of Lemma 2, which proves the theorem statement.
= Z T(V)Ql/ [ |

Remark 4:besides the linear matrix inequalities (LMIS) in

then the trajectories(t) of the system (6) converge asymp-(25), (26) and (28), Theorem 3 features some linear matrix

totically to the equilibrium sef’.,, with Lyapunov function equalities (LMESs) as well, (24) and (23). Such LMEs can be

(10). resolved by an appropriate parameterization of the ineblve

Proof:  consider the Lyapunov function candidatematrices (for example, the most recent versions of Yalmip

V(x(x)) defined by (10). [20] can execute this function atomatically when introdhggi
To prove (23) and (24), we use the same approach as equality constraints).

[12], [1]. So, for x(z) € X, N Xj, we haveF”X( x) = Corollary 5: Theorem 1 in [1] is a special case of our
0; replacing this into (23), multiplying on the right by Theorem 3, for the order of polynomial Lyapunov function
x(z) and on the left byx(z)T, and remembering that 2 (m = 1) and without sliding modes on the boundaries
x(@)TH(r)x(x) = 0 for any 7, we gety(z)TPjx(z) = between cells.

x(z)T P;x(x), that is (19), i.e. (23) implies continuity of the  Remark 6: The condition (23) which ensures the continu-

Lyapunov function on the boundaries. ity of the polynomial Lyapunov function, is adapted from
Let us now consider (24) and (25). Based on Assumghe one developed in [1] which is equivalent to the one in

tion 3, we can always write a decomposition fpfx), of [12]. So by this relation, all possible piecewise polynomia

the kind x(z) = Z¢ + T¢, with x(z) € X;,i € Zy. As  continuous functions are parameterized.

AoZ = 0 for x(z) € E., (ie. x(x ) = Z¢), then the first Remark 7:We can remark that conditions (28) which

in (24) implies (22). Forx(z) ¢ E., instead, when the ensure the convergence of the sliding modes are less con-

active dynamics is4; (i € Z,), we haveV( (x)) = (Z§ + servative than the ones imposed in [9] which requires the

IO T (AT Py + P A;) (ZE +T1¢) = ¢TTIT (AT P+ P,AT)IIC  convex combination of the Lyapunov matrices.

thanks to (24). Notice also that the second in (24) implies th Remark 8:The first conditions in (25) and (26) can be

E;x > 0= E,IIC > 0. Then, thanks to the S- procedure, thenterpreted as a “sum of squares” property (SOS) [14], [23],

second in (25) implied’ (x(z)) < 0 for x(z ) & E.,, which  [7], in fact we look for a positive definite polynomiaf; (x)

is the first in (21), as we have” HTETU E,JIC > 0 (true as a square product of a positive definite matrix times a

thanks to (16) and (24)),7TIT N; (T’)Hg > 0 (true thanks vector of monomialsy. The terms inH(r) reduce the

to (16) and (24)) and(x)T H(7{)x(z) = 0 (true thanks to conservatism of the expressions.

(13)). In a similar way, the first expression in (25) natuyrall

implies the first expression in (20) for the cells witke Zj.
Subsequently, again thanks to the S-procedure, theAs shown in [1], and according to (3) and (4), the

first expression in (26) implies thay(z)” P;x(x) > 0 dynamical behavior of the pneumatic system described in
when X(:C)TEiTWiEix(m) > 0 (true thanks to (16) if Section Il can then be cast into the form of a PWA system

x(z) € X;), x(x)TN;(T})x(x) > 0 (true thanks to (16)) as in (6). Concerning the parameters of the test bench, we

x(@)TH(t!)x(z) = 0 (true thanks to (13)), which in turn have M = 17 kg, F, = 40 N, S = 7.27 - 1074 m?,

implies thatV;(x(z)) > 0 for x(z) € X; i.e. the second & = 0.1 m/s,e; = 0.005 m ande, = 0.01 m/s. Through

expression in (20) for the cells withe Z;. Similarly, the a pole placement, according to the system specifications,

second expression in (26) ensures the second expressionwi have sett, = 50 s73, k, = 71 s72, k, = 51.4 s7 1,

(22). kp =10 s7! andky = 10 st

V. APPLICATION TO THE PNEUMATIC ACTUATOR



The switchings of the system (due to the friction model
and to the control law) divide the state-space into a set of
eight cells (see Fig. 4): two cell&¥y; and X, including the
origin (0 is on the boundary between these two cells), and
six external cellsXy, X5, X2, Xos, X3 and Xs,, two by
two symmetrical with respect to the origin.

The discontinuity of the friction model or, = 0
can generate a sliding phenomenon on the corresponding
boundary. So, to prove convergence of these sliding modes,
we have to consider all cells associated to this boundary.
For the stability analysis, whereas in the above properties
we consider only the following cellsXy, Xo2, X1, X2 and .
X3. The conditions imposed on these cells will necessary
be verified by symmetry for the other ones.

The piecewise polynomial function chosen in our case is
of degree2m = 4. So, the power of monomials is = 2.
We can construct the vector(x) according to (12), where
x in this case has the following form: = [z, z2, v3, 24]7.
So, x(x) = [x1, z2, X3, T4, T1X2, T1X3, T1T4, ToL3, Tolyg,
r374, 23, 23, 23, 23, 1]7T. } }

We can then construct the dynamids and the cellsX;.
As we study the convergence of the stateztg, we consider
a static setpoint, i.eyy constant andy; = 0, ag = 0 (which
impliese, = v, e, = a).

sliding surface
€y

//
Xo | X °
ng XS
Xo2 | Xoz €y

Xls

Fig. 4. The sections of the cells; with respect to the:, ande, axes.

We analyse each cell in detail.

e The central cell Xy .

In this cell the control law is #2, and the friction is
Ff(v) = +F;. The cell is active for

ley| <er
0<v<ey
asx € Xo1 = x(x)

eX
s o_[0 1 000000000
=10 -1 0 000 00O0O0O

o o
o o
oS o

Notice that this matrixE,; describes only two of the
four half-spaces defining the cell; the other two half-
space constraints (corresponding to two rows of the
matrix) have been discarded in order to accommodate
the condition in (24), i.eEy Z = 0. Discarding lines

in this way (which corresponds to having a bigger set
for which the inequalityEy; x > 0 holds thanXm) is
allowed thanks to the definition of the matrics, for
which y € X; = E;x > 0 but not viceversa, see (16).
The matrix Ay, as well as those concerning the other
cells are not shown due to space constraints.

The central cell Xq»

In this cell the control law is #2, the friction B (v) =
—F. The cell is active for

|ey|§51
—E2 SUSO

for which we define

Em:{o-looooooooooooo
0 1 00 0O0O0O0O0O0O0O0O0O0 &

The cell X;

In this cell the control law is #1, the friction By (v) =

+Fs. The cell is active for

€y > €1
OSUSEQ

for which we define

) 1 0 000000000000 —&

Ey=[0 -1000000000000 e
001 00000000O00O0O0O0 O

The cell X,

In this cell the control law is #1, the friction By (v) =

—F. The cell is active for

€y>€1
—g9 <v <0

for which we define

B 1 0 00 O0O0OO0O0OOO0OO0OO0O0O0 —5
Ey=(0 1 0000 O0O0O0O0O0O0O0O0 e
0 -1 000O0OO0OOO0OOOOOO0O O

The cell X3
In this cell the control law is #1, the friction B (v) =
+Fs. The cell is active for

V> €9
for which we define
=[0 1000000000000 —&]

The cells X, X5, and X3, The conditions described
above are also valid for the other cell§,, X, and
X35, which are symmetrical with respect to the origin
to the cellsX;, X, and X3 respectively; just replacg

by —x.

Using Yalpim [20] and SeDuMi [26] under Matlab, The-
o1, we define orem 3 has been successfully applied by considering that
0 sliding modes may occur on the boundary corresponding to
s e, = 0. The equilibrium is on the boundary betwe&p, and



Xo2, for which we haved, = 3 Ag;+3 Ago. The level curves (6]
of the piecewise-polynomial Lyapunov function found have
been plotted in Fig. 5. We can see that the level curves d
not have a simple ellipsoidal shape; this implies that a Emp
common quadratic Lyapunov function (i.e., the same matrix[8]
P for all the cells) is not sufficient to obtain such shapes.
Moreover, we have verified that our test fails for the case of
m = 1, which justifies the need of a piecewise-polynomial [°]
function instead of a piecewise-quadratic one.

[10]

[11]

[12]

(13]

eylm|

[14]

[15]
[16]

02

0015 ~0.01 0015

[17]

Fig. 5. Lyapunov function level curves on tlife,, e,) plane.

[18]

VI. CONCLUSIONS [19]

In this paper, we present some sufficient conditions for
finding piecewise-polynomial Lyapunov functions for PWA
systems with sliding modes and equilibrium sets greaté%o]
than the mere origin, and potentially on a sliding mode.
We have applied this analysis to an electropneumatic syste#il
in closed-loop with a switching control law modeled as a
PWA system with sliding modes due to presence of friction,
for which our former work [1] was not applicable. Thel22]
new extended conditions successfully foundl-gh degree
piecewise-polynomial Lyapunov function through a convex
optimization problem in terms of linear matrix inequalitie [23]

The ideas in this paper can be extended to include tl'f§4
study of performance or to robust analysis, as a topic of
future research. [25]
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