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Abstract. Time-based localization in Wireless Body Area Networks (WBANS),
has attracted growing research interest for the last past years. Nodes positions can
be estimated based on peer-to-peer radio transactions between devices. Indeed,
the accuracy of the localization process could be highly affected by different fac-
tors, such as the WBAN channels where the signal is propagating through, as well
as the nodes mobility that bias the peer-to-peer range estimation, and thus, the
final achieved localization accuracy. The goal of this paper consists in character-
izing the impact of mobility and WBAN channel on the ranging and localization
estimation, based on real mobility traces acquired through a motion capture sys-
tem. More specifically, the ranging error is evaluated over all the WBANSs links
(i.e. on-body, off-body and body-to-body links), while an impulse Radio Ultra-
Wideband (IR-UWB) physical layer, as well as a TDMA-based Medium Access
Control (MAC) are playing on. The simulation results show that the range mea-
surement error can be modeled as a Gaussian distribution. To deal with the gaus-
sianity observation of ranging error and to provide high positioning accuracy, an
adjustable extended Kalman Filter (EKF) is proposed.

Key words: Body Area Networks, Group Navigation, Ultra Wideband, Ranging
error, localization, EKF.

1 Introduction

The field of Wireless Body Area Networks has attracted much interest during the last
years. Recently, these networks are considered for radio-location purposes thanks to
their easy deployment. Unlike some costly and geographically restricted video acqui-
sition system (e.g. Kinect, VICON [1]), WBANs are very suitable to work in non-
controlled indoor environments over large-scale body movements. In this localization
context, several challenges are met, such as the need of high ranging and positioning
accuracy. For those purposes, significant works have addressed the localization and
navigation problem based on ranging estimation algorithms, while making direct and
opportunistic use of the transmitted radio packets over Impulse Radio Ultra Wideband
(IR-UWB) links or even Received Signal Strength Indicators (RSSI) over narrowbands
links. The last solution is rather based on a prior model, which defines the variation
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of the received power as a function of the distance separating the involved devices.
However, several studies show that the RSSI is not accurate enough for extracting the
distances between devices [2]. On the opposite, IR-UWB benefits from high temporal
and fine multipath resolution capabilities, which allow high precision on the estimation
of the Time of Arrival (TOA) of the transmitted signal. Thus, the IR-UWB is promoted
as a relevant physical layer for the localization applications [3]. Based on the TOA es-
timation, several ranging protocols lead for estimating the Round trip - Time of Flight
(RT-TOF) based on n-way (i.e. 2-Way or 3-Way) transactions.

In this paper, we consider a group of mobile WBANSs in navigation application
occupied with a set of wireless devices. The positioning of the on-body nodes consists
in collecting the range measurements either in a centralized manner (at a central node),
or in a distributed scheme (each node collects its range measurements with respect to
its neighborhood devices for its own localization). The range estimation through several
transactions, as well as of the range collection from devices conducts for latency, which
depends on the network size as well as the addressed scheduling [4]. In turn, this latency
triggers ranging error, as the body can change its position and its gesture during this
elapsed time. Besides, another main source of ranging error is related to the involved
WBAN channel, in which the signal may suffer from NLOS propagation effects and
dense multipath situation. These errors source, if not properly mitigated, generally yield
severe degradation of positioning accuracy. The aim of this paper is twofold. Firstly, we
characterize the impact of both mobility and WBAN channel on the ranging error with
respect to on-, off- or inter-body links and, secondly, we propose an improvement of
the final localization precision.

Due to the high difficulty of using radio-location experiments (i.e. lack of IEEE
802.15.6 integrated devices), most works of literature are focused on theoretical studies
using often unrealistic assumptions and inaccurate abstraction of wireless communi-
cations, or focusing on a given layer, ignoring the other network layers. In this paper,
we use a discrete-event simulator, WSNet [5], which takes into account the real time
constraints for maintaining the peer-to-peer ranging transactions along the network and
addresses all the layers. We implemented a complete protocol stack by crossing the
physical up to the application layer dedicated to WBANSs localization applications, par-
ticularly, based on IR-UWB physical layer with OOK modulation as defined by IEEE
802.15.6 and TDMA-based access control layer that mimics the scheduled access of a
group of WBANSs. We use a mobility model resulting from real experiments in which
people movements were logged by a professional motion capture system. We consid-
ered a navigation group scenario composed of three WBANSs. Our simulation results
show that the measurement error range due to the nodes mobility can be modeled by
a Gaussian distribution. To mitigate the effects of this error source and provide high
positioning accuracy, an adjustable extended Kalman Filter (EKF) is proposed. Simula-
tion results are included to show the capability of our improved EKF in increasing the
positioning accuracy.

The rest of the paper is organized as follows. Next Section reviews related work.
Section 3 describes the system model and gives the problem statement. In Section 4,
we evaluate and characterize the ranging error obtained under realistic body mobility.
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Section 5, then, presents the core cooperative EKF, as well as our optimization approach
and their localization performances. Finally, Section 6 concludes the paper.

2 Related Work

In the context of ranging estimation, [6] presents the issues of ranging error, position
update latency and calculation algorithms under mobility. The authors are limited to
the impact of MAC allocation resources on the capacity of the tracking system for
Wireless Sensor Networks scenarios. In [7], the authors modeled the ranging error in
terms of TOA estimation with real IR-UWB channel measurements in order to perform
better localization algorithms but without any focus on the statistics of ranging error.
[8] realizes a realistic measurement setup to achieve accurate positioning of WBAN
nodes and compare the results with a Vicon system. The study, however, requires special
attention on the ranging accuracy, i.e., characteristics of the on-body ranging error.

In the context of localization estimation, various positioning algorithms have been
developed in the past few years. [9] has used the Non Linear Least Squares (NLLS)
algorithm, which consists in minimizing a global quadratic cost function using the Gra-
dient descent method incorporating the peer-to-peer range measurements. In [4], the
problem of scheduling strategies at MAC layer is addressed to enable an Individual
Motion Capture application with IR-UWB systems. The authors show that an effective
scheduling scheme leads to estimate the nodes position one by one. The study, how-
ever, does not take into account the impact of channel noise on the position estimation.
[10] and [11] adapt a centralized classical Multidimensional Scaling (MDS) for on-
body motion capture applications and pose estimation. In [11], the authors introduce
additional constraints relying on the prior knowledge of minimal and maximal feasible
distances related to the body dimensions (and thus some kinds of geographical limi-
tations). In [12] the centralized Maximum Likelihood estimator has been considered,
introducing other constraints relying on the actual positions of on-body mobile nodes.
More recently, the problem of cooperative localization based on the extended Kalman
filtering (EKF) has been developed which incorporates the cooperative peer-to-peer
range measurements with the on-body nodes as well as the anchors [13]. The existing
contributions do not exploit the potential information of the lower layers. In this pa-
per, we investigate the robustness of the cooperative EKF in delivering high positioning
accuracy for group navigation purposes while exploiting cross layer information, i.e.,
channel and nodes mobility.

3 System model and Problem Formulation

3.1 System model and assumptions

We consider a group of mobile WBANSs and a set of fixed anchors (reference nodes)
placed at known positions (position has been hard-coded into each anchor) with re-
spect to a global 3D coordinate system. Each WBAN is defined by a set of on-body
wireless devices, which are called on-body nodes. These on-body nodes are attached to
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the human body that evolves in an indoor and outdoor environment. The positions of
all these on-body nodes are unknown and must be estimated relatively to the anchors.
Since we assume a mesh topology network, we distinguish three kinds of links: either
belonging to one single body network (on-body links), between distinct equipped users
at reasonably short transmission ranges (inter-WBAN links), or even with respect to
fixed elements of infrastructure (off-body links), as depicted in Figure 1. In this pa-
per, all anchors and on-body nodes use an IR-UWB physical layer and operate with a
single-channel frequency. In order to avoid the interference between communications, a
TDMA-based MAC layer is used by all the nodes. We assume that the nodes positions
are mapped into a stable Cartesian Local Coordinate System (LCS), which is defined by
the fixed anchors and can be easily referenced to any Global Coordinate System (GCS).
All the on-body nodes are then located in this coordinate system using peer-to-peer
range measurements with the anchors or even between them, by performing TOA and
3-Way Ranging (3-WR) handshake protocol transactions. We refer to non-cooperative
localization (resp. cooperative localization) when a node perform the 3-WR with the
anchors only (resp. with the anchors and the other on-body nodes).

Fig. 1. Typical deployment scenario of group of WBANS in navigation application. There are
three kinds of links: on-body links (green color), inter-body links (black color) and off-body links
(blue color). The on-body nodes (red color) must be positioned relatively to the fixed anchors.

3.2 Mobility Model derived from captured traces

In this paper, we use a real mobility traces obtained from a measurement campaign con-
ducted in the CORMORAN project. A Vicon optical motion capture system provides us
the motion of people in a 13mx8m area. This system records all the markers positions
thanks to 16 cameras surrounding the scene, and produces a C3D motion capture file
containing all markers positions over time. Figure 1 illustrates this process, showing an
image from the real scene with three persons in random navigation with the presence
of four fixed anchors. Two subjects are equipped with four radios devices each, while
the third subject is equipped with three devices (due to the limited number of devices).
The devices are placed at the chest left, the chest right, the shoulder and the back. We
equipped each wireless device with a marker in order to record its exact position along-
side in addition to the movements of each subject.
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3.3 Ranging Measurement and mobility problem

The peer-to-peer range information is derived from RT-TOF estimation, which relies
on 3-WR handshake protocol transactions and unitary TOA estimates for each in-
volved packet [14]. The classical exchange for 3-WR is based on three guaranteed
packets to evaluate the TOF between two nodes 4 and j. Node i starts by sending its
request packet inside the assigned packet at time Tj0. Once this packet is received
by node j at time T}, node j sends its first response back to the requester node
1 inside its own dedicated packet at time ZIN’jl, after a known delay. Node ¢ will re-

ceive this packet at time T;1. To resolve the problem of clock drift, the responding
node j transmits a second response packet at time T)j,. This packet will be received

by node ¢ at time ig. The resulting estimated TOF can be expressed as follows:

TOF = Y[(Ti — Tio) — (Tj1 — Tjo)] — 3[(Tia — Ti1) — (sz - le)}

The node 7 can thus estimate its distance to node j as : dU = TOFU * ¢, where ¢

denotes the speed of radio waves , i.e. ¢ = 3%108m,/s. Once all the distances separating
the on-body nodes with the anchors and/or with the other on-body nodes are extracted,
the on-body nodes positions can be estimated using a localization algorithm.
Given that these procedures have to be realized for each couple of devices, the traf-
fic sent over the wireless medium quickly increases with the number of devices, using
a classical peer-to-peer transaction handshake (P2P). To reduce the volume of control
traffic, [15] has proposed a procedure called Aggregate-and-Broadcast (A&B). They
propose to mutualize control packets by letting each node initiates specific ranging
transactions by broadcasting a request packet to all the other nodes, instead of querying
each node separately. Each concerned nodes then aggregate its response and broadcasts
a packet, which can play different roles (i.e. response 1, or even response 2). An in-
termediate solution, peer-to-peer ranging with request broadcasting (P2P-Broadcast),
consists in broadcasting requests and transmitting responses one by one.

Another problem is the mobility of the nodes. In fact, as the on-body nodes are
moving, it is straightforward that the distance between the nodes i and j can change
between the beginning and the end of the 3-WR (between Tm and ﬂg) as well as
the end of collecting all distances estimation. Therefore, the accuracy of the ranging
estimation can be reduced. Besides, another main source of ranging error is related to
the involved WBAN channel. Quantifying the ranging error due to the on-body nodes
mobility is very beneficial for the phase of the resolution of the localization problem.

3.4 WBAN Simulation Environment

WSNET is a discrete-event simulator providing an advanced and complete simulation
environment to evaluate networking protocols and wireless systems. Thanks to its mod-
ularity and its flexibility, WSNET offers the opportunity for developing and integrating
our own modules and protocols, which could be in compliance with our WBAN con-
text. At the radio layer stage, we implemented an IEEE 802.15.6 PHY UWB with OOK
modulation and data rate of 0.4875 Mbps. In order to reduce the TDMA-frame duration,
we evolved a dynamic slotted TDMA approach, where the duration of each slot depends
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on the size of the transmitted packet. To perform a ranging estimation, we added the 3-
WR protocol with the possibility of using the A&B or P2P or P2P-B procedure. Finally,
we used mobility traces acquired as explained in the subsection 3.2.

4 Ranging Error Due to Mobility problem: Quantification and
Distribution

This Section aims to evaluate the impact of nodes mobility on the ranging estimation.
The Root Mean Square Error (RMSE), computed as the absolute difference of measured
and real distances, is quantified under realistic navigation scenarios. All simulation re-
sults are obtained over 20 independent trial runs. Over each run of 100s, the number of
ranging updates between each pair of nodes is about 1300 times.

4.1 Preliminary Study: Determining Elements of mobility

To study the impact of the on-body nodes speed, we deployed 11 nodes in a single body
as follows: one at the head, two at the torso, one at the back, one by hand, one by foot,
one at the knee and one by elbow. Figures 2(a) illustrates the evolution of the cumu-
lative distribution function (CDF) of the range RMSE of three different on-body links.
As expected, the ranging error is more affected when the nodes mobility is considered
as fast, confirming the importance of the mobility in the ranging action.

Figure 2(b) shows that the ranging accuracy also depends on the involved handshake
transaction protocol. Indeed, we can observe an important gap between the perfor-
mances of A&B and P2P or P2P broadcast, while the performances between P2P and
P2P-Broadcast are closer. These results show that a higher ranging accuracy can be pro-
vided by grouping response packets rather than requests, which can be explained by the
effect of reducing the required time for performing the 3WR over all nodes.

In the rest of this paper, we consider the group navigation scenario depicted in
Figure 1 with A&B protocol. Figure 2(c) illustrate the CDF of ranging error according
to three kinds of links, on-, off- and inter-body links. It shows that the on-body ranging
error is relatively negligible with respect to that of inter-body and off-body links. This
observation refers to the fact that the nodes mobility is bounded at the body scale,
but unbounded at the large scale where the body-to-body and the off-body links are
involved. This observation is very important for cooperative context, since it leads to
promote and enhance the use of on-body cooperation.

4.2 Ranging Error Distribution due to nodes mobility

The distribution of the ranging errors of the different kinds of links (on-, off- and inter-
body) can be approximated using an empirical statistics analysis. For this purpose, we
firstly plotted the histogram and the empirical distribution of all ranging errors mea-
sured during 20 independent simulations of 100s each one. Figure 3 shows that the
histogram and the empirical distribution closely follow a Normal distribution. The the-
oretical Normal distribution of each set of links is thus plotted with the mean value and
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Fig. 2. CDFs of Root Mean Square Error (RMSE) of ranging errors. The impact of mobility on
the ranging error depends on nodes speed, handshake transaction protocol and type of links.

the standard deviation of data. In accordance with the Figure 3 and table 4.2, the on-
body links presents the smallest standard deviation, while the off-body links have the
biggest. If we compare the empirical distribution and the theoretical distribution, we
observe that the ranging measured errors due to the nodes mobility fits with a Normal
distribution model with the specific parameters presented in table 4.2. These results are
very important to improve the localization accuracy, and could be taken into account
by the positioning algorithms. Moreover, normality distribution is usually assumed as
a model for the ranging error in localization algorithms, like Extended Filter Kalman
(EKF).

Distribution of positioni Distribution of inter-body Distribution of oft-body

Positoning Error (m) Ranging Eror (m) Ranging Eror (m)

(a) On-body ranging error (b) Inter-body ranging error (¢c) Off-body ranging error
distribution distribution distribution

Fig. 3. Distribution of ranging error for on-body, inter-body and off-body links

[On-body links|inter-body links[Off-body links|
[ N(0, 0.0042) [ N(0, 0.0343) [ N(0, 0.0433) |

Table 1. Standard deviation of Ranging error due to nodes mobility
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4.3 Impact of channel noise on Ranging Error

WBAN Channel Abstraction In 3-WR, it is supposed that the receiver is able to
detect accurately the pulse corresponding to the direct transmission between the nodes.
However, depending on the person position, the channel might be multipath, inducing
the use of the wrong path. However, modeling accurately the channel is computationally
intensive. We therefore abstracted the channel by applying an error model directly to
the range estimates. This error model, defined and characterized in [7] derives from
UWB on-body and off-body channel measurements carried out in a pedestrian walking
scenario. It supposes the use of an IEEE 802.15.6 mandatory band centered around
4G H z with a bandwidth of 500M H z. We assume that the ranging error is added to
each distance at time stamp ¢, as follows:

dij(t) = diz(t) + niz (1)

where d;;(t) and d;;(t) are respectively the measured and the real distance between
nodes ¢ and j at time ¢, n;;(¢) is a centered Gaussian random variable with a standard
deviation o,,.

[On-body links|inter-body links[Off-body links|
[ N0 [ N©03 [ N©03) |

Table 2. Ranging error law due to the channel noise

Quantification of Ranging Error with/without channel noise We evaluate the aver-
age RMSE of ranging error in the case of ideal and noisy channel model for each set of
links (on-, off- and inter-body). In the first case, Figure 4(a) shows a slow variation of
the RMSE, especially, for the off- and inter-body links, while the on-body links presents
a quasi-constant evolution with a mean value of 0.6 cm on RMSE. This slow variation
of RMSE, can be explained by the limited variation of the on-body nodes mobility. We
can also observe that the off-Body links are the most affected by the nodes mobility
with a mean value of 3.6 cm. Now by adding a noisy channel model (table 4.3), Figure
4(b) shows a fast variation of the average RMSE for each kind of links. We can observe
that the impact of the channel on the ranging estimation is much higher than the im-
pact of mobility (approximately multiplied by 10), thus the ranging error variation is
dominated by the channel variation.

5 Improvement of Extended Kalman Filter based on Ranging
Error Due to Mobility

In the last section, the ranging error due to nodes mobility is quantified and shown to
follow a Gaussian distribution. To mitigate the effects of this error source and hence
increase the positioning accuracy, we focus in this section to improve the performance
of EKF algorithm by including the mobility standard deviations over all links.
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Fig. 4. Average RMSE of the all estimated distances for on-body, off-body and interinter-body
links.

5.1 Extended Kalman Filter Formulation with Full cooperative mode

We assume that positioning measurements are realized every TDMA superframe dura-
tion, 7', and we will denote by {X;(k)};c(y. . the set of the (unknown) 3D positions
of the n on-body nodes at time ¢t = k.7 Let us also represent by {Xi}ie{(n+1).4.(n+m)}

the set of the 3D positions of the m anchors. Now let us denote by d; (k) the value of the
range measured at time ¢t = k.T between one on-body node ¢ € {1...n} and another
on-body node or anchor, j € {1...m + n}. We regroup all the range measurements
at step k in a vector d(k) = [{{d;(k)}j=nt1mtm}ti=1n} {{dij(k)}j=1:m}i=1:n}];
which has a dynamic length depending on the number of available range measurements.

The TOA-based range measurements are defined as a non-linear functions of the
on-body nodes’ coordinates, thus we consider applying the well-know EKF solution
[16], with the following state-space and observation models:

)

S(k)=A.S(k—1)+u(k)
d(k) = h(S(k)) + n(k)
where S(k) = [X{'(k) Vi'(k) XT (k) VE(k)...XT (k) V,I'(k)]T denotes the 6n
dimensional state-space vector at step k, that regroups the three-dimensional positions
and velocities of nodes. h(.) is a function that materializes the non-linear relationship
between the observed measurements and the state vector variables. The state transition
matrix A, assuming locally linear movements in first approximation, is given by:

e (e (1) (31))

where I, denotes the n-dimensional identity matrix and ® is the Kronecker product.
Hence A accounts for some a priori information bridging the occupied positions at
two consecutive steps k and k + 1. u(k) is the state-space noise vector, whose covari-
ance matrix is Q. n(k) is the observation noise vector, whose covariance matrix X (k).
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Note that the latter can be adjusted dynamically over time depending on the availability
and/or quality of the measurements. The implementation of this cooperative EKF fol-
lows a classical sequence of operations which involves the initialization, the prediction
and the corrections phases as follows.

Prediction Phase:

S(klk—1) = A.S(k—1]k—1)
M(klk—1) =AMk —1]k—1).AT+Q’

where S(k|k — 1) is the predicted state at step k based on the latest available state

estimate at step k — 1 S(k — 1|k — 1), starting with the initial guess S(0[0). M(k|k —1)

is the corresponding prediction Minimum Mean Squared Error (MMSE) matrix.
Correction Phase:

K(k) = M(k|k — 1).H" (k (E (k). M(k|k — 1).HT(]€)>71 ,
where K (k) is the filter gain and H(%) is the Jacobian observation matrix:
On(S(k))

Oh(S(k))

H(k) - as(k) |S(k) S(klk—1)

{ S(klk) = S(klk — 1) + K(k). (a(k) —h (S(k\kz - 1)))
M(k|k) = (Ton — K(k).H(k)) .M(k|k — 1) ’

where S(k|k) is the final state estimate at step k based on the current prediction S (k| —
1) and observation d(k), and M (k|k) is the related estimation MMSE matrix.

5.2 Adjusted EKF

The last EKF version, takes only into account the range measurement error generated by
the channel. However, as the nodes mobility affects the ranging estimation and hence
the positioning accuracy, we propose to compensate this ranging errors by adjusting
the marginal diagonal elements of the measurement noise covariance matrix X'(k) =
[64:(k)]. More specifically, our proposal consists in adjusting the covariance matrix,
while taking into account the mobility effects over each of on-, off- and body-to-body
links. Thus, the mobility standard deviations over all links (i.e. Gon, Goff and G;,¢) are
incorporated by the system after the correction phase as follows:

(Gen(k) + Gon)?, on —body links
a'll(k) = (6- (k) + Uv7zt)2, inter — bOd’y lznks 5
(Gen (k) + Uoff) ) of f —body links

where o, is the standard deviation of the ranging error due to the channel component.
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5.3 On-body node’s estimation with full-Cooperative EKF

In Section 4, we have shown that the ranging errors follow a Gaussian distribution,
where each kind of WBAN links (on-, off-, and inter-body links) is characterized by
its proper standard deviation. In this subsection, we evaluate the resulting gain from the
improvement of Kalman filter, while involving the effects of mobility over all links. Us-
ing a full cooperative scenario (on-, off- and inter-body links), Figure 5 shows the CDF
of the RMSE resulting from the use of the conventional and the adjusted (improved)
EKF. This last figure shows that our proposal permits to improve the localization ac-
curacy, where the average goes from 0.487m to 0.442m (improvement with a rate of
9.1%). The positive effect of our proposal is also seen by averaging the resulting RMSE
of nodes attached to each body. This fact is represented in Figure 6, where the blue bars
(resp. red bars) represents the average nodes RMSE over each body, while using the
conventional EKF (adjusted EKF). As shown, our proposal improves the localization
performances over all the incorporated body in our group of mobile WBAN with a gain
of, respectively, 9.88%, 9.28% and 11.22%.

Il Conventional EKF with full cooperative
[ Adjusted EKF with full cooperative

CDF

Average RMSE (m) per Body

Conventional EKF with full cooperative
—— Adjusted EKF with full cooperative

L5

o5 1 2
RMSE (m) Body ID

Fig. 5. CDFs of estimated on-body node’s Fig. 6. Average RMSE of the estimated nodes
RMSE for full-cooperative multi-user naviga- positions per body with full cooperative EKF
tion scenario with and without ranging error mitigation

6 Conclusion

This paper focused on nodes localization problem for group of WBANS, based on peer-
to-peer range measurements fed through impulse Radio-Ultra Wideband and time of
arrival estimation. We firstly quantified and characterized the error of on-, off- and inter-
body distances estimations, based on real mobility model. Based on extensive measure-
ment, our results showed that the ranging errors can be modeled as a Gaussian distri-
bution. To deal with the gaussianity observation of ranging error and to provide high
positioning accuracy, we secondly proposed an adjustable cooperative EKF algorithm.
Our simulation results showed an improvement between 9% and 11% of localization
accuracy.
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