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Abstract: This paper targets two related color manipulation problems: Color transfer for
modifying an image colors and colorization for adding colors to a greyscale image. Automatic
methods for these two applications propose to modify the input image using a reference that
contains the desired colors. Previous approaches usually do not target both applications and
su�er from two main limitations: possible misleading associations between input and reference
regions and poor spatial coherence around image structures. In this paper, we propose a uni�ed
framework that uses the textural content of the images to guide the color transfer and colorization.
Our method introduces an edge-aware texture descriptor based on region covariance, allowing for
local color transformations. We show that our approach is able to produce results comparable or
better than state-of-the-art methods in both applications.
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Transfert de couleurs et colorisation basés sur des

propriétés texturelles

Résumé : Cet article se concentre sur deux problèmes de manipulation de couleurs liés : le
transfert de couleurs qui modi�e les couleurs d'une image, et la colorisation qui ajoute des couleurs
à une image en niveaux de gris. Les méthodes automatiques pour ces deux applications modi�ent
l'image d'entrée à l'aide d'une image de référence contenant les couleurs désirées. Les approches
précédentes visent rarement les deux problèmes simultanement et sou�rent de deux principales
limitations : les correspondances créées entre les images d'entrée et de référence sont incorrectes
ou approximatives, et une mauvaise cohérence spatiale autour des structures de l'image. Dans
cet article, nous proposons un pipeline uni�ant les deux problèmes, basé sur le contenu texturel
des images pour guider le transfert ou la colorisation. Notre méthode introduit un descripteur
de textures préservant les contours de l'image, basé sur des matrices de covariance, permettant
d'appliquer des transformations de couleurs locales. Nous montrons que notre approche est
capable de produire des résultats comparables ou meilleurs que d'autres méthodes de l'état de
l'art dans les deux applications.

Mots-clés : Transfert de couleurs, colorisation, textures
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1 Introduction

In this paper, we propose a method to automatically apply local color transfer and colorization
between images. Manually colorizing a greyscale image, or tuning colors to obtain a desired
ambiance is challenging, tedious and requires advanced skills. Examplar-based methods o�er an
intuitive alternative by automatically changing colors of an input image according to a reference
image (the examplar) containing the desired colors. The main challenge of these methods is to
accurately match content between the input and reference image.

The �rst color transfer algorithms were based on global approaches reshaping the input image
color histogram to match the histogram of the reference image. While these approaches can be
simple and successful with carefully chosen image pairs, they often mismatch regions in the input
and reference images, and are not suited for the colorization problem when the input image does
not have a color histogram to begin with.

Alternatively, local approaches (soft-)segment an image into several subregions that can be
processed independently. Colors are then added or transferred between similar regions. Those
regions can be either manually provided, or automatically computed based on image descriptors.

Our approach is automatic and relies on regions de�ned as areas of similar textural content.
This choice was driven by the fact that textures can be found everywhere in nature, and thus in
a lot of photographs. Moreover, perceptual studies showed that the early stages of human vision
are composed of several �lters to analyze textures and color variations in our visual �eld [YJ∗93,
Bal06]. This suggests that textures are important when observing images and should be a
pertinent basis for local color transformations. Furthermore, textures can be e�ciently described
by a summary of �rst and second order statistics, and present an attractive middle ground
between low-level descriptors (luminance, chromaticity) that cannot e�ciently describe textured
regions, and high-level descriptors (object and region semantic) that are complex, error-prone
and slow to compute.

To apply color transfer between textured regions, our descriptors are computed on a large
scale to be able to characterize large textures, but they must also preserve image structures.
Existing methods for texture and structure decomposition are not well suited for our application:
edge-aware image descriptors (such as bilateral �ltering) have troubles when analysing highly
contrasted textures and may introduce discontinuities in the color transfer. The alternative
consists in detecting variations of the descriptors themselves (such as region covariance), but in
that case, image edges are smoothed, leading to halos in the transfer.

Our solution to estimate texture properties is based on a texture analysis, followed by an
edge-aware processing to compute edge-aware texture based descriptors. Our contributions can
be summarized as follows:

� A method for computing accurate textural information while preserving image structure.
Texture descriptors are computed based on �rst and second order statistics of the images
luminance, then edge-aware transformations are applied to those descriptors to preserve
the image structure.

� A generic framework for local color transfer and colorization between images based on
textural properties.

2 Related Work

In this section, we review previous work on color transfer and colorization, before discussing
several approaches to extract and analyze textures for image manipulation.
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4 Arbelot & Vergne & Hurtut & Thollot

Color Transfer. Color transfer consists in changing the colors of an input image to match
those of a reference image. It was �rst introduced in [RAGS01] as a simple histogram reshaping,
where the mean and variance of each channel are transferred separately, using the decorrelated
Lαβ color space. This rather straightforward method can be surprisingly e�ective with well
chosen input images. A rotation component was added in the matching process by Xiao and
Ma [XM06], allowing the transfer to be done in a correlated color space (such as RGB). Instead
of processing each channel independently, Pitié et al. [PKD07] proposed to tightly match the
3-dimensional histograms using iterative 1-dimensional matchings. While the matching o�ered
by this approach is very good, it is almost "too good" for the color transfer application as it tends
to produce artifacts by forcing the input to have exactly the same number of pixels of each color
as the reference. Finally, a more recent approach based on multiscale histogram reshaping was
proposed in [PR11] where the user can control how tightly the histograms should be matched.
Overall, these global methods are simple, but histogram matchings do not ensure colors to be
transferred between similar regions. When such automatic methods fail, manual segmentations
can be provided to locally transfer between selected regions [DX09,AP10,LSZ12].

In order to automatically apply a local color transfer, Tai et al. [TJT05] proposed to use
mixtures of Gaussians to segment the input images and transfer colors between regions of simi-
lar luminances. A method to color grade videos based on color transfer between sequences was
proposed in [BSPP13]. Their color transformation segments the images using the luminance and
transfer chrominance between detected shadows, midtones and highlight regions. In a similar
vein, Hristova et al. [HLMCB15] partition the images into Gaussian distributed clusters consid-
ering their main features between light and colors. While more accurate than global transfers,
these approaches are still only based on �rst order information to segment the image and do not
take higher order information for region matching between images. Consequently, regions with
di�erent textural properties but similar luminance cannot be distinguished.

Colorization. Colorization deals with the problem of adding colors to a greyscale image. One
of the �rst approaches to tackle this issue relies on user input scribbles being extended via
optimization across regions of similar luminance [LLW04]. This optimization is used with auto-
matically generated scribbles in a lot of example-based colorization methods [ICOL05,GCR∗12,
KCP15]. Because they rely on a luminance-based optimization in their �nal step, these methods
tend to have trouble with highly contrasted textures where the optimization does not propagate
colors properly. More recently, Jin et al. [JCT14] proposed a randomized algorithm to better
match color distributions between user segmented regions.

Closer to our approach, some other methods rely on higher-order information to transfer
the chrominance between pixels containing similar statistics [WAM02, CHS08, BT12, BTP14].
However, they often produce halos due to the window used in the statistics computation. These
methods also rely on an energy minimization which typically makes them slow and hard to use
on large images.

Texture Analysis. Many di�erent descriptors have been used to manipulate images according
to their textural content. Previous automatic colorization methods used SURF, Gabor features,
or the histogram of oriented gradients as base tools for texture analysis [CHS08,GCR∗12,KCP15].
These descriptors are known to be e�cient and discriminative, but also computationally and
memory intensive due to their high number of features. Similarly, the shape-based texture de-
scriptors introduced in [XDG10,XHJF12], although o�ering multiple invariants, are too complex
for an image manipulation application where we expect to compute results in a reasonable time
for relatively large images. The recent approaches proposed in [XYXJ12,CLKL14] precisely sepa-
rate texture from structure using a relative total variation, but their descriptors are not accurate

Inria



Color Transfer and Colorization based on Textural Properties 5

enough to discriminate textures among themselves. Finally, Karacan et al. [KEE13] proposed to
use region covariance as a texture descriptor for image smoothing. Our method also relies on a
variant of this descriptor, as it is compact and e�cient in describing textural properties. One
main drawback is that most of these descriptors tend to be unreliable around image edges and
texture transitions, especially when estimated on large neighborhoods. For that reason, we also
brie�y describe edge-aware �ltering methods that could be used to solve this issue.

Edge-aware �lters are crucial to preserve image structures when smoothing, denoising, en-
hancing details, or extracting textural information from images. A well known approach re-
garding that goal is the bilateral �lter [TM98], which e�ciently smoothes images while mostly
preserving luminance edges. However, it tends to locally introduce halos and gradient reversal ar-
tifacts which can modify textural properties. The guided �lter [HST13] o�ers a di�erent approach
by using a linear transform of a guidance image to �lter an image but may also produce halos
around edges. The anisotropic di�usion [PM90] or the unnormalized bilateral �lter [APH∗14]
are more appropriate for our descriptors, since they avoid both halos and gradient reversal when
large scale di�usions are needed.

3 Overview

Input & Reference A. Edge-aware texture descriptors

1. Texture descriptors         2. Gradient descent                 3. Filtering
B. Similarity maps

C1. Local color transfer

             Input                            Reference                            Result

C2. Local colorization

             Input                            Reference                             Result

Figure 1: Pipeline overview. Edge-aware descriptors are �rst computed to accurately describe
the textural content of the input and reference images (A). They are then used to compute
per-pixel distances and allows similar regions to be associated, as shown for the vegetation in
(B). We �nally use these distance maps for both color transfer (C1) and colorization (C2), where
attributed colors depends on pixel similarities.

Our approach for automatically editing image colors based on textural content is summarized
in Figure 1. First, descriptors are computed for the input and reference images in three steps (A):
covariance matrices of several local image features are computed over a coarse scale to roughly
characterize the textural content of each region (A.1). A multi-scale gradient descent then
locally displaces descriptors in order to recover texture edges lost during the coarse scale analysis
(A.2). Finally, an edge-aware �lter is applied to obtain descriptors that accuratly discriminate
homogeneous textural regions while preserving detailed texture transitions (A.3).

RR n° 8834



6 Arbelot & Vergne & Hurtut & Thollot

Our descriptors allow the computation of similarities between pixels. As such, they also
enable soft segmentations of the input and reference images, where smooth and sharp structures
are preserved. This is illustrated in Figure 1 (B), where the vegetation is automatically isolated
in both the input and reference images. Finally, similarity maps locally control the transfer
of colors between images (C1) or colorize regions according to similar textural content (C2).
The remainder of the paper is organized as follows: Descriptors are described in Section 4 and
local color manipulation algorithms are detailed in Section 5. Results and comparisons are then
presented in Section 6 before concluding in Section 7.

4 Edge-aware Texture Descriptors

4.1 Local Texture Descriptors

We want to analyze the textural information surrounding each pixel in both the input and the
reference images. To that end, we chose to use region covariance [TPM06,KEE13] as it is an
e�cient and compact way of describing image regions. Region covariance captures the underlying
texture by computing a small set of second order statistics on speci�c image features such as
the luminance or the gradient. Let us consider a pixel p, described by a d-dimensional feature
vector z(p). The region covariance is de�ned as the following d× d covariance matrix:

Cr(p) =
1

W

∑
q∈Np

r

(z(q)−µµµr)(z(q)−µµµr)Twr(p,q),

where Np
r is a square neighborhood centered on p of size (2r + 1)× (2r + 1) and µµµr is a vector

containing the mean of each feature inside this region. Unlike [TPM06], we add a gaussian
weighting function with standard deviation r/3 that ensures descriptors to be smoothly de�ned

from pixel to pixel: wr(p,q) = exp(−9‖q−p‖2
2r2

) . Note that this weight function should also be
used to compute the mean features µµµr. W is the normalization factor: W =

∑
q∈NP

r
wr(p,q).

We typically use r ∈ [20, 30] and rely on a 5-dimensional feature vector based on luminance
derivatives to capture coarse scale textural content on natural images:

z(p) =

[
L(p)

∂L(p)

∂x

∂L(p)

∂y

∂2L(p)

∂x2
∂2L(p)

∂y2
∂2L(p)

∂x∂y

]
,

where L(p) denotes the luminance of pixel p. In practice, each feature is �rst normalized (i.e.
divided by its standard deviation) to equally contribute to the analysis.

As explained in [HCS∗09, KEE13], region covariances only describe second-order statistics,
which can be a limitation when describing textural content. Moreover, computing distances
between covariance matrices is expensive because they do not lie in a Euclidean space. We thus
follow the solution proposed by Karacan et al. [KEE13] who use the Cholesky decomposition
to transform covariance matrices into vectors that can be easily compared and enriched with
�rst-order statistics. Our descriptor is then represented by:

SSSr =
(
L1
r · · · Ldr µµµr

)
, (1)

where Lir is the ith column of the lower triangular matrix Lr obtained with the Cholesky de-
composition Cr = LrL

T
r at scale r and µµµr are the �rst-order mean features in the corresponding

region.
Visualizations of our descriptors are shown in Figure 2 where we can see that their values

are similar when computed on the same types of regions. This suggests that our descriptor

Inria



Color Transfer and Colorization based on Textural Properties 7

Figure 2: Texture descriptors. Patches taken from several regions of the image in Figure 1
(top) and their respective descriptors computed for the central pixel of the window (bottom).
Patches from similar regions have similar descriptors.

(a) Input (b) SSS6 (c) SSS21

Figure 3: Descriptors. Small scales lead to noisy descriptors (b). Large scales lead to more
homogeneous descriptors and smooth sharp texture transitions. For visualization clarity, only
the �rst element of SSSr is shown (i.e. the �rst value of L1

r) but the rest of the set presents the
same behavior.

RR n° 8834



8 Arbelot & Vergne & Hurtut & Thollot

(a) Descriptor SSS21 (b) Standard descent (c) Multiscale descent

Figure 4: Gradient descent illustration. (a) A zoom in the sky/trees transition of the image
shown in Figure 3. (b) A gradient descent guided by the variance of the coarse scale descriptor
tends to sharpen edges (top), but may mistakenly assign descriptors to the wrong side of the
edges: The red sky pixel (bottom) is considered as part of the trees here. (c) A gradient descent
gradually performed at multiple scales (from �ne to coarse) better preserves complex texture
transitions. The red pixel is now successfully assigned to the sky.

successfully discriminates di�erent textural regions. Figure 3 shows how descriptors are a�ected
by the scale r. Small scales (b) preserve edges but tend to produce noisy descriptors. Conversely,
larger scales successfully describe uniform regions but fail to accurately preserve sharp texture
transitions that often occur inside images. This is shown in (c), where the sharp transition
between trees and sky is blurred when computing the descriptor with a large neighborhood. This
phenomenon is perfectly normal since, on these particular pixels, both tree and sky features are
mixed to compute the descriptor, which then tend to represent this transition as a third texture.
However, this is problematic for our color manipulation applications, where such descriptors
will produce halos around edges. Note that we cannot integrate luminance edges in the weight
function wr (as in the bilateral �lter for instance). Indeed, this would prevent highly contrasted
textures to be accurately captured since such textures would be fragmented into multiple pieces.
For our purpose, we need both constraints to be satis�ed: homogeneous descriptors inside regions
and sharp texture edges preserved.

4.2 Multiscale Gradient Descent

To prevent texture transitions from being blurred, we propose to use a multiscale gradient descent
algorithm to give these regions valid descriptors. Intuitively this multiscale gradient descent
locally propagates relevant descriptor values (occurring inside homogeneous textural regions) to
replace irrelevant ones (occurring around region borders). In order to do so, we use the variance
of the descriptors to guide a gradient descent as this variance is low on homogeneous regions
and high around texture edges. This gradient descent will then replace descriptors with high
variance by those contained in uniform regions. Formally, the variance of a pixel p is computed

Inria



Color Transfer and Colorization based on Textural Properties 9

as follows:

Vr(p) = ‖
1

W

∑
q∈Np

r

(SSSr(q)− νννr)(SSSr(q)− νννr)Twr(p,q)‖, (2)

where SSSr(p) is the descriptor at pixel p and νννr is the weighted average of the descriptors over
the neighborhood Np

r .
The gradient descent displaces the descriptors on either side of the variance (e.g. texture

edges) and consequently tends to sharpen descriptor edges. Figure 5 (top) shows the pseudo-
code of the gradient descent, where the returned map contains the coordinates of the descriptor
that should be used for each pixel. The resulting displacement is shown in the top row of
Figure 4, where initial descriptors (a) are displaced toward homogeneous regions by following
the gradient of the variance (b). The result obviously depends on the scale at which descriptors
are computed. On large scales, complex texture transitions are smoothed out and consequently,
some descriptors might be incorrectly attributed to di�erent regions. This is illustrated in the
bottom row of Figure 4, where the red pixel located in the sky (a) is mistakenly associated with
the descriptor of a tree (b) after the gradient descent pass. Our solution to preserve complex
texture changes with large scale descriptors is to use a multiscale gradient descent, where the
scale of both descriptor and variance are gradually increased to guide the gradient descent of the
initial (coarse scale) descriptor.

Figure 5 (bottom) shows the pseudo-code of the proposed multi-scale gradient descent process.
The idea is to iteratively apply gradient descents, from �ne to coarse scales, in order to displace
pixels into homogeneous regions while preserving complex texture edges. At small scales, the
descent accurately preserves edges, but quickly falls into local minima. Increasing scales let
slowly select pixels away from the detailed edges, ensuring that the descriptors are consistent.
In practice, the number of iterations used for a given scale is set to the size of the neighborhood
(small and large scales may respectively lead to small and large displacements). Note that, even
if small scale descriptors are needed to compute the variance, the resulting new coordinates only
modify the coarse scale descriptor. The resulting displacement is shown in Figure 4 (c). The
obtained descriptor (top) better preserves complex texture transitions. The red pixel (bottom)
now successfully takes descriptor values of a homogeneous region inside the sky.

4.3 Unnormalized Bilateral Filtering

Gradient descent ensures the precise capture of textural properties around each pixel, even near
texture edges. Yet, descriptors might still contain some variations that do not appear in the
original image. They might happen around U-shaped texture transitions (as in the left part
of Figure 4 (c)) or when a region cannot be properly de�ned by its textural content (such as
a �ne edge on a uniform background). This has to be prevented since any variations in the
descriptors might lead to color changes during transfer or colorization. In a last step, we thus
smooth the descriptor using an edge-aware �lter to perfectly �t to the image structure. To
that end, we adapt the unnormalized bilateral �lter [APH∗14], such that it iteratively smoothes
the descriptor according to luminance variations. This �lter is simple, e�cient, and does not
introduce too much halos near edges. However, any other edge-aware �lter could have been
used [TM98,HST13,PM90]. Formally, we use the unnormalized bilateral �lter as follows:

SSSubf (p) = SSS(p) +
∑

q∈Np

Gσs(q− p)Gσl(L(q)− L(p))(SSS(q)−SSS(p))√
2πσ2

s

, (3)

where Gσ(x) = exp(−‖x‖
2

2σ2 ) is a standard gaussian kernel. σs and σl respectively control the
in�uence of spatial distances and luminance variations. In practice, we iteratively apply Equa-
tion 3 with rather small values of σs and σl (typically 2 and 0.05) in order to accurately di�use

RR n° 8834



10 Arbelot & Vergne & Hurtut & Thollot

Gradient descent

1: Input: coordinate map M , variance map V , number of steps n
2: for all pixels p do

3: for i = 1 to n do
4: M(p)←M(p) +∇V (M(p))
5: end for

6: end for

7: Return M

Multiscale gradient descent

1: Initialize M with pixel coordinates
2: Compute SSSrmax

using Equation. 1
3: for r = 1 to rmax do
4: Compute Vr using Equation. 2
5: M ← Gradient descent(M,Vr, r)
6: end for

7: for all pixels p do

8: SSSrmax
(p)←SSSrmax

(M(p))
9: end for

Figure 5: Multiscale gradient descent algorithm.

descriptors on large neighborhoods. Figure 6 shows the e�ect of the �lter on a problematic
region, where the descriptors do not precisely follow edges around the palm tree (a). The unnor-
malized bilateral �lter accurately brings back the leave edges, as shown in (b). The last image
(c) shows the e�ect of the �lter when applied on the original descriptor (i.e. without gradient
descent). In that case, halos are propagated inside regions and create unreliable descriptors.
The supplemental material also contains an example illustrating how each step a�ects the color
transfer result.

5 Local Color Manipulation

Now that we have obtained reliable descriptors, we propose to use them for color manipulations
by de�ning transfer functions that only rely on similar pixels between the input and reference
images.

5.1 Pixel similarity

We de�ne a similarity measure based on the L2 Euclidean distance between two descriptors:

Dσd
(p,q) = exp

(
−‖SSS(p)−SSS(q)‖2

2σ2
d

)
, (4)

where SSS(p) and SSS(q) are the descriptors at locations p and q and σd is the standard deviation
that controls how close descriptors should be to contribute to the similarity measure. Note that
other metrics could have been used as detailed in [HCS∗09, KEE13], but we did not �nd any
signi�cant di�erences for our purpose. Examples of similarity measures are shown in Figure 7,

Inria



Color Transfer and Colorization based on Textural Properties 11

Input (a) (b) (c)

Figure 6: Unnormalized bilateral �lter. (a) The descriptor obtained from the image after
gradient descent. (b) The unnormalized bilateral �lter accurately propagates descriptors and
follows luminance edges. (c) Without the multiscale gradient descent, halos are propagated
inside regions and descriptors are altered. In these examples, we used 2000 iterations with
σs = 2 and σl = 0.05.

(a) (b) (c) (d)

Figure 7: Similarity maps. (a) Input image luminance. The green, yellow and red pixels
are compared with all pixels using Equation 4 to obtain the corresponding similarity maps (b),
(c) and (d). The similarity measure allows the three regions to be accurately discriminated.
Similarities were computed with σd = 1 in these examples.

where pixels (b), (c) and (d) are compared with all the other pixels of the input image (a). We
can observe that trees, sky and grass regions are accurately selected and distinguished in the
results.

5.2 Color Transfer

The main idea for transferring colors between images is to rely on local histogram matchings
between input and reference images, where both sets of color points are de�ned by their texture
similarities. The matching process is based on a translation and scaling of the distribution
in a decorrelated color space, as originally proposed by Reinhard et al. [RAGS01]. Input and
reference images are therefore �rst transformed into the uncorrelated and perceptually uniform
CIE-Lab color space before being processed. The following transfer function is then applied on
each channel c ∈ {L, a, b} separately:

Tσd
(p) =

stdref (p)

stdin(p)

(
cin(p)− µin(p)

)
+ µref (p), (5)

RR n° 8834



12 Arbelot & Vergne & Hurtut & Thollot

Input/reference σd = 1 σd = 2 σd = 4

Input/reference σd = 0.2 σd = 1 σd = 2

Figure 8: Impact of σd on transfer functions. Top: color transfer example. When increasing
σd, more and more pixels are considered as similar, resulting in a transfer close to a basic global
histogram matching. Bottom: colorization example. As colors are obtained from the weighted
average of similar pixels in the reference image, increasing σd tends to produce a monochrome
result.

where superscripts �in�, �ref � denote the input and reference images respectively. �µ�, �std� are
the weighted mean and standard deviations respectively, computed as follows, according to the
similarities of the pixel p of the input image:

µimg(p) =
1

W

∑
q

cimg(q)Dσd
(pin,qimg)

stdimg(p) =

√
1

W

∑
q

(cimg(q)− µimg(p))2Dσd
(pin,qimg),

where img ∈ {in, ref} and W is the normalization factor: W =
∑

qDσd(p
in,qimg). A color

transfer example is shown in Figure 8 (top) where we can observe the e�ect of the σd parameter.
When σd is small, colors are transferred only between highly similar regions, such as the sea or
the clouds of the input and reference images here. Wider and wider regions are considered when
increasing σd, leading to results closer to the global matching of [RAGS01].

5.3 Colorization

Histogram matching techniques cannot be used directly for colorizing images that do not contain
chrominance channels. In this case, we simply assign the mean chrominance of the reference

Inria



Color Transfer and Colorization based on Textural Properties 13

τ = 0, 20min τ = 0.001, 40s τ = 0.01, 10s τ = 0.1, <1s

Figure 9: Optimization impact. Color transfer results for increasing τ values for 512 × 512
images. The lower τ , the higher the speed-up and the probability of quantization artifacts. In
this example, τ = 0.1 allows a real-time transfer which can be used for e�cient results exploration
despite the visual artifacts.

image to each input pixel, weighted by our similarity measure:

Cσd
(p) =

∑
q c

ref (q)Dσd
(pin,qref )∑

qDσd
(pin,qref )

. (6)

Note that this transfer function is applied on chrominance channels only, although the luminance
could also be modi�ed depending on the purpose. A colorization example is shown in Figure 8
(bottom). Large values of σd tend to average colors on large regions and consequently create pale
and monochrome results. Therefore σd should be kept small enough for colorization purpose, in
order to only average colors over regions of highly similar descriptors.

5.4 Implementation & performances

We fully implemented our color manipulation functions on the GPU using Cuda. All the results
presented in this paper were obtained with a NVIDIA Quadro 6000 graphics card. In practice,
we �rst precompute the descriptors SSS for both the input and reference images before applying a
transfer or a colorization. Depending on the number of iterations chosen for the unnormalized
bilateral �lter, it approximately takes 20 to 40 seconds to obtain both descriptors. However,
Equations 5 and 6 require to iterate over all the pixels of the input image, and compute the
similarities with the whole reference for each of them in order to obtain the weighted mean and
standard deviations. This leads to extensive computation times: about 20 minutes for 512× 512
images.

To achieve reasonable speed, we propose to quantify similarities using a user-de�ned distance
τ that controls how close two descriptors should be to be considered as equal. Considering a
particular input pixel p, all the other pixels pi such as Dσd

(p,pi) < τ are processed using the
same similarity function. That way, increasing τ decreases the total number of iterations needed
to obtain the result. The e�ect of this optimization can be seen in Figure 9, where important
speed-up is achieved without visual impacts. High values of τ tend to produce quantization
artifacts, but may be used to interactively explore the result space.

To summarize, the user can tune the following parameters to achieve the desired results:

� rmax controls the size of the window on which descriptors are computed and thus de�nes
the scale at which textures are estimated. Typically, we found that rmax = 21 works well
for natural images of resolution 512× 512.
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� σs and σl respectively control the in�uence of spatial distances and luminance variations
when smoothing the descriptor with the unnormalized bilateral �lter. All the results in
the paper were done with σs = 2 and σl = 0.05. The number of iterations used for this
�lter depends on the complexity of texture edges. We typically used 500 iterations for our
results.

� σd controls how strongly the weight between two pixels is in�uenced by their distances in
the descriptors space. In practice, we respectively used σd = 1 and σd = 0.2 for most color
transfer and colorization results.

� τ controls the quantization step. In our results, we used τ = 0.01 as it provides a good
speed-up while keeping a good visual quality in almost every case.

6 Results

Results and comparisons presented in the paper and in the supplemental materials were all made
with the default parameters given in the previous section.

6.1 Color Transfer Results

Figure 10 (top) shows the results of our color transfer against other state-of-the-art methods.
The results of [RAGS01,XM06] were computed with our own implementation of their method.
The results of [PKD07,PR11] were computed using the available code on the authors webpage,
we used a full match (100%) for [PR11]. The results of [HLMCB15] were taken from the authors
webpage and drove our choice of images.

These results �rst show that global approaches [RAGS01, PKD07, XM06] tend to produce
saturated colors due to the stretching of the input color histogram. Furthermore, global histogram
matchings will tend to match regions of similar colors and luminance, failing in transferring
colors between similar textured regions if they have highly di�erent luminance or colors. This is
showcased in the bottom row where the orange color of the reference buildings is transferred to
the input sky.

Local or progressive approaches based on color information [PR11,HLMCB15] lead to better
results, but also fail in matching regions of similar textural content because they de�ne similar
regions by their luminance and color distributions. Our approach successfully matches those
regions, as shown in the third row, where the �ower �eld of the reference is matched to the grass
of the input (making it yellow); or in the fourth row where the buildings of the reference are
matched to those of the input (making them orange). Figure 11 shows two more examples where
the matching between di�erent regions is clearly e�ective thanks to our descriptors.

6.2 Colorization Results

Figure 10 (bottom) compares the results of our colorization against other state-of-the-art meth-
ods. The results of [WAM02,CHS08,GCR∗12] were taken from [GCR∗12]. The results of [BT12]
were computed using the available code on the authors webpage, using the default parameters
suggested in their code.

Those results show that the method of [WAM02] based on luminance matching fails when the
input images are too complex: di�erent regions with similar luminance get the same colors, such
as the building and clouds in the �rst example. The method of [CHS08] uses SURF descriptors
and Gabor �lters which are strongly discriminative, leading to e�cient colorization when the

Inria
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Input Reference [RAGS01] [PKD07] [XM06] [PR11] [HLMCB15] Our Result

Input Reference [WAM02] [CHS08] [GCR∗12] [BT12] Our Result

Figure 10: Comparison with previous methods. Top and bottom respectively compare color
transfer and colorization results with previous state-of-the-art methods. See the text for more
details.
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Input Reference Our Result

Figure 11: Transfer and colorization results. Di�erent colors are clearly associated with
di�erent regions based on their textural content. Inria
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input and reference images have identical or very similar content. However, they have to crop
image borders and colors often smudge in their results. The method from [GCR∗12] produces
better results with more robust descriptors, however they fail to distinguish between intricate
regions such as the clouds and the sky in the �rst and fourth row, or the river and the land in
the fourth row. Finally, the method from [BT12] is very prone to halos due to the window used
in the descriptors computation.

As seen in the last column, our approach accurately matches corresponding textures and pro-
duces colorful results: sky, cloud, vegetation, mountain and building colors of the references are
successfully transferred into the input images. Figure 11 shows two more results demonstrating
a clear separation between regions of the input image and correct color associations from the
reference image.

6.3 Combining Colorization and Transfer

Since our framework is the same for colorization and color transfer, we can easily apply a com-
bination of both to a greyscale input by adding chrominance via colorization, while modifying
the luminance by transferring only the luminance from the reference image. The results of this
approach can be seen in Figure 12. They show that this combination can produce a result closer
to the style of the reference image, while still using only the input luminance. Comparing this to
the result of the color transfer (which also transfers luminance), we see that color transfer remains
more colorful because the chrominance information of the input image is also used, however it
requires a color version of the input image which is more restrictive.

7 Discussion and Future Works

In this paper, we presented a generic framework for both color transfer and colorization. Our
edge-aware descriptor accurately captures similar textural content in images while being robust
to texture transitions. It allows local color transfer and colorization between similar regions of an
input and reference images. Our method su�ers from two main limitations, as described below.
(1) Considering colorization, the input and reference images should be similar enough to produce
coherent results. If a particular region in the input image does not have any correspondence in the
reference one, the similarity function (based on a gaussian distance) tends to give the same weight
to all pixels, resulting in a monochrome colorization. Note that this is equivalent to increasing
σd for this particular region, as seen in Figure 8 (bottom-right). This problem also occurs for
color transfer but is much less visible since the mean and variance are only used to modify the
histogram. To prevent this, one possibility would be to automatically detect mismatched regions
and ask the user to disambiguate the transfer by providing more speci�c reference images.
(2) The proposed descriptors e�ciently capture texture regions and their transitions, but they
are not able to detect higher-level semantic information such as faces, man made objects or
background and foreground. Our descriptors might be altered by such objects, thus a�ecting the
quality of the transfers. Again, this is most visible in colorization results, as shown in Figure 13.
The yellow color obtained in the top left part of the image is due to the electric wires that
are associated to the warning sign contained in the reference. The wheels of the motorbike
contain �ne structures associated to the girl's hat, resulting in a bluish color against a light red
background. One way to mitigate these issues would be to rely on more complex, but slower,
descriptors combining both semantic and texture information.

Despite these limitations, we believe that our descriptor constitutes a good basis that could
contribute to other applications such as tone mapping, edge-aware image decomposition, and
color content modi�cation of videos.
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Figure 12: Combining colorization and luminance transfer. Our framework allows for an
easy combination of colorization and luminance transfer. This combination provides a good style
transfer between the input and reference images. While less colorful than a color transfer result,
this result only requires a greyscale input. In those results, σd = 0.5.

Inria
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Input Reference Our Result

Figure 13: Failure case. Semantic information such as man-made objects or faces may locally
modify the descriptors and produce incoherent colorizations. For instance, motorbike wheels are
colored in blue whereas the background is mainly red. One would expect the same color in both
regions.
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