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Abstract. In this paper we propose a general MAP-estimation frame-
work for blind image deconvolution that allows the incorpor ation of pow-
erful priors regarding predicting the edges of the latent im age, which is
known to be a crucial factor for the success of blind deblurrin g. This is
achieved in a principled, robust and uni�ed manner through t he use of
a global energy function that can take into account multiple constraints.
Based on this framework, we show how to successfully make use of a
particular prior of this type that is quite strong and also appl icable to a
wide variety of cases. It relates to the strong structural re gularity that is
exhibited by many scenes, and which a�ects the location and di stribution
of the corresponding image edges. We validate the excellent performance
of our approach through an extensive set of experimental results and
comparisons to the state-of-the-art.

1 Introduction

The problem of blind image deconvolution has regained lately a lot of research
interest in the computer vision community [24, 40, 14, 4, 25,12, 38, 26, 1, 11, 37,
27, 13, 39, 28, 10, 29, 34, 31, 22, 33, 21, 16]. By examining more closely the various
state of the art algorithms that have been proposed recently, it becomes clear
that there exist at least two elements that can play a crucial role for the success
of blind image deconvolution: edge prediction and the use ofproper priors.

The �rst element relates to the ability of one to correctly pr edict part of
the true edges of the unknown deblurred image. The more of these edges can
be detected during the deconvolution process, the better for the quality of the
estimated results. Of course, the challenge is that this is often very di�cult to
achieve due to the inherent blurriness associated with the provided input image.

The second element is that the good performance of the recentblind decon-
volution algorithms relies heavily on the successful use ofvarious types of image
priors, which naturally serve the purpose of reducing the severe ill-posedness
of the above problem. To mention just a few characteristic examples, there has
been recently made use of priors related to the distributions of image gradients

? Part of this work was done while the �rst author was an intern a t Ecole des Ponts
ParisTech.



2 Yipin Zhou and Nikos Komodakis

obeyed by natural images [7], color priors [15], normalizedsparsity priors [20],
compactness priors over the so-called motion density function of the camera [9],
discrete MRF image priors [19], patch priors [32] as well as smoothness priors
that aim to reduce ringing artifacts [30].

Fig. 1: Scenes very often exhibit important structural regularitie s.

In this paper we want to capitalize on the above two �ndings. In other words,
we wish to be able to utilize priors that are even more powerful, and which will
help us to estimate edges much more robustly during blind deconvolution. To do
that, in this paper we rely on an additional observation, which directly relates
to the fact that a large part of the images nowadays depict scenes that exhibit
strong geometric regularities with respect to the location and distribution of
the corresponding image edges. One of the many reasons that this happens,
for instance, is because a lot of these images display man-made objects or are
captured inside man-made environments (both indoor and outdoor). Actually,
one certain aspect of this phenomenon has been �rst noticed in an earlier work
by Coughlan and Yuille [6], where it has been experimentallyshown to hold for
a large variety of scenes (not only urban but also rural ones).

The presence of such regularities suggests an opportunity for utilizing priors
that can signi�cantly constrain (and thus hopefully improv e) the estimation of
edges in this case. If we take a look at the images of Fig. 1, forinstance,we
can immediately see that edge pixels do not appear isolated or in arbitrary
curves, but instead typically form line segments. Moreover, these segments are
not arbitrary either. Instead, many of them are collinear (i.e., can be grouped
into lines) and, furthermore, many of the resulting lines converge into vanishing
points.

One of the goals of this work is exactly to allow successfullytaking advan-
tage of all such amount of scene-speci�c prior knowledge during the deblurring
process. More generally, our aim here is to propose a sound MAP-estimation
framework for blind deconvolution, based on which one wouldbe able to incor-
porate in a principled, uni�ed and robust manner multiple ty pes of constraints
or priors, importantly including any available prior infor mation regarding pre-
diction of image edges.

In blind deconvolution, the idea of exploiting domain-speci�c properties had
been previously used for the deblurring of text images [3]. More generally, us-
ing scene-speci�c prior knowledge for improving the performance of computer
vision algorithms is an idea that has already been applied with great success in
other contexts in the past. For instance, one characteristic example was in the
context of camera orientation estimation [5], while two more recent examples
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are the works of Furukawaet al. [8] on multi-view stereo reconstruction, where
signi�cant improvements are shown through the use of a \Manhattan world"
assumption, and Barinova et al. [35] on horizon estimation with also excellent
results.

We conclude this section by briey mentioning the main contributions of this
work, which are as follows:

{ It introduces the idea of utilizing scene-speci�c edge priors for tackling the
blind image deblurring problem.

{ It successfully makes use of one such prior (related to the strong regularities
that exist in many of the existing images with respect to the location and
distribution of their edges) for improving the performance of blind decon-
volution. This prior is generic enough, goes beyond the Manhattan world
assumption, and is applicable to a wide variety of cases.

{ More generally, by building upon recent work [19] that showsthe importance
of utilizing sparse discrete MRF image priors in this context, it proposes a
solid MAP-estimation framework that manages to formulate blind deconvo-
lution as optimization over a single uni�ed energy function that can take
into account various types of constraints.

{ Importantly, given the signi�cance of correct edge prediction to blind decon-
volution, such a framework enables one to incorporate available prior edge
information (both low-level and high-level) into the deconvolution process
in a principled, sound, and robust manner.

2 Our blind deconvolution approach

In this section we describe the MAP-estimation framework that we propose for
blind image deconvolution. As usual, we are considering a model where the blurry
input image I is assumed to be the result of a convolution of a latent imagex
with a blur kernel k plus some additive noisen, i.e.,

I = x 
 k + n; (1)

where the symbol
 denotes the convolution operator.
In blind deconvolution, we need to recover bothx and k using as only input

the image I . To that end, here we propose minimizing an energy function of the
following form:

E(k; x; ejI ) = Edata (k ; x jI ) + Ekernel (k) + E img (x je) + Eedge(ejx): (2)

This energy consists of 4 main terms, corresponding to a dataterm Edata (k ; x jI ),
a prior-related term Ekernel (k) concerning the kernel k, a prior-related term
E img (x je) for the image x, and a prior-related term Eedge(ejx) concerning the
image edges of the latent imagex (where e is an appropriate set of variables
used for specifying image edges).

The role of these terms is to properly constraint (in a soft manner) all the
di�erent elements involved in blind deconvolution with the goal of ensuring that,
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in the end, convergence towards the correct kernel will takeplace. The last two
terms are of particular importance in this regard, since their role is to help
together for correctly predicting some of the main structural elements ofx that
play a crucial role for obtaining high quality blur kernels. We next de�ne each
of the above terms, and also explain their role in more detail.

2.1 Data term E data (k ; x j I)

This is a standard data term used in blind deconvolution, de�ned as

Edata (k ; x jI ) = kk 
 x � I k2: (3)

It essentially corresponds to a negative log-likelihood term for the case where
the noisen in equation (1) is assumed as white Gaussian.

2.2 Blur kernel prior term E kernel (k)

For the blur kernel k we select a Laplacian prior to impose on it. This leads to
utilizing an l1-norm penalty term as Ekernel (k), i.e.,

Ekernel (k) = � � kkk1: (4)

Such a term is known to be sparsity-inducing, leading to kernels with few non-
zero entries, which is an assumption that holds true in most of the cases encoun-
tered in practice. This is especially true for kernels due tocamera shake, which
is the most common example. Of course, employing alternative priors for k (that
might be more appropriate for other cases) is also possible within the proposed
framework.

2.3 Image prior term E img (x je)

For de�ning this term, we will draw upon recent work that show s the importance
for blind deconvolution of imposing a discrete piecewise-constant MRF prior on
image x (which inherently promotes sparsity). This, at �rst, means that the
elements of imagex are assumed to take values from a discrete label set,i.e.,
x 2 L n , where L n denotes the set of quantized images that contain a restricted
number of at most n intensities or colors (n is supposed to be small).

Under this assumption, E img (x je) is then given by the following formula

E img (x je) =
X

(p;q)2E

wpq(e)[xp 6= xq] + �
X

(p;q)2E

(xp � xq)2; (5)

where E denotes the set of pairs of pixels that are considered to be neighbors
in the MRF graph, and

�
�
�

equals 1 if the expression inside the brackets is true
and zero otherwise.

The �rst term in eq. (5) above corresponds to a weighted discrete Potts model
[2], which penalizes the assignment of di�erent labels (i.e., colors/intensities) to
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neighboring image pixels. By de�nition, such a model promotesL 0 sparsity and
its role here is to impose a piecewise-constant structure onimage x. The idea
of applying such a prior term to blind image deconvolution has been introduced
recently in [19], where it was shown its importance for avoiding trivial blur
kernel solutions (such as the no-blur one) and for obtainingvery high quality
blur kernels.

The associated weightswpq play an important role in this regard, as they
are used for determining the amount of penalty that should beassigned to an
intensity (or color) discontinuity across pixels p, q of image x. In this work,
given that the variables e should already be predicting which of the pixels of the
deblurred image x belong to image edges, we choose to de�ne the weightswpq

in terms of these edge-related variablese. More speci�cally, we use the following
formula3 for setting these weights:

wpq(e) =

(
wedge; if p or q is edge pixel based one
wnon � edge; otherwise;

(6)

where wedge and wnon � edge are 2 parameters that satisfy wedge � wnon � edge.
The result of this is that label discontinuities in image x are penalized much less
if there is evidence (according to variablese) that there should actually exist
an edge in the deblurred image. In doing so, the goal is to allow the edges of
imagex to be much better aligned with the true edges of the deconvolved image,
which, as mentioned already, is important for high quality kernel estimation. In
this manner we aim to be able to successfully transfer any edge-related prior
knowledge (as encoded by variablese) onto correctly estimating the structure of
the image x.

Last, concerning the term � �
P

(p;q)2E (xp � xq)2 also appearing in (5), its
role here is to provide just a very small amount of extra regularization by pe-
nalizing large magnitude discontinuities (this can contribute a very slight image
re�nement in some cases). As a result, a small parameter� , satisfying � � 1
(e.g., � = 10 � 3), should be used with it. We note that the role of this term is
minor, and that the important term in (5) is the Potts term.

2.4 Edge prior term E edge (ejx)

This term serves the purpose of allowing us to encode any available prior knowl-
edge with regard to the edges of the latent imagex. The rationale behind its
introduction is to help in the correct prediction of these edges, which is an impor-
tant factor for the success of blind deconvolution. Importantly, this permits us to
incorporate in a principled manner various types of such priors into our frame-
work (ranging rom low-level to higher-level ones), where the precise speci�cation
and meaning of the corresponding variablese is to be updated accordingly in
each case,i.e., depending on the speci�c choice that has been made. In the next

3 Other ways of expressing wpq in terms of the variables e are also possible, but we
found the above simple de�nition to be e�ective enough.
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section, we describe one particular prior of this type that will be used, which is
applicable to a wide variety of cases and provides strong andvery useful high-
level constraints.

3 Geometric parsing prior for blind deconvolution

Our motivation for introducing the scene-speci�c prior described in this section
comes from the well known observation that many of the imagestoday depict
scenes exhibiting strong structural regularities. Here wewish to be able to suc-
cessfully take into account as many of these regularities aspossible, imposing
at the same time assumptions that are as general as possible.To that end, we
are going to rely on a geometric image parsing prior similar to the one used in
recent work [35]. Such a prior is generic enough and has already been shown
to successfully apply to a wide variety of cases. Essentially, the main assump-
tions4 that we make about the depicted scenes, in this case, are thatmany of
the edge pixels appearing in imagex are part of line segments, many of these
line segments can possibly be grouped into lines, and many ofthe resulting lines
can possibly be grouped into parallel line families. These parallel line families,
therefore, converge (in the image plane) into a set of vanishing points (including
the so-called zenith vanishing point as well as a set of horizontal vanishing points
that lie close to the horizon line).

As a result, the set of variablese = f s; l ; h; zg used in this case consists of the
set of 2d line segmentss = f si g, which represent the edge segments of imagex,
the set of linesl = f l i g, the set of horizontal vanishing pointsh = f hi g, as well as
the zenith vanishing point z. Deciding, therefore, if p is an edge pixel according
to these variables (as needed by the formula used for settingthe weights in (6))
simply requires checking ifp belongs to one of the segments ins, i.e.

p is edge pixel (according toe) , p 2 [ si : (7)

The corresponding prior Eedge(ejx) is then de�ned as

Eedge(ejx) =
X

i
Epixel (pi js; x) +

X

i
Esegment (si jl ) +

X

i
E line (l i jh; z)

+
X

i;j
Ehorizon (hi ; hj jz) + Eprior (s; l ; h):

(8)

The individual terms appearing in (8) are de�ned similarly t o [35], and es-
sentially encode all the assumptions that we mentioned above regarding the
regularities of the depicted scenes. We next briey describe each of these terms
(and we refer to [35] for a detailed explanation):

{ Epixel (pi js; x): this term encodes how well an edge pixelpi of image x is
explained by one of the edge segments included in sets

4 Note that these assumptions are more general than the so-called Manhattan world
model.
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Epixel (pjs; x) = Ep(s) �
X

q:( p;q)2E
[xp 6= xq];

where Ep(s) is de�ned (for any pixel p) as

Ep(s)=min
�

� bg ; min
i

� dist �d(p; si )+ � grad �dangle (p; si )
�

:

In the above, d(p; si ) denotes the minimum distance fromp to segment si ,
and dangle (p; si ) denotes the angular di�erence between the local edge direc-
tion at p and the direction of si . The role of the term

P
q:( p;q)2E [xp 6= xq] is to

ensure that that only an edgepixel p of the discrete imagex can contribute
(proportional to Ep(s)) to the Epixel term.

{ Esegment (si jl ): this terms aims at measuring how well segmentsi is explained
by one of the lines in l . It is de�ned as

Esegment (sjl )=min
�

� bg � length(s); min
i

� dist �darea (s; li )
�

;

wheredarea (s; li ) measures the distance between segments and line l i as the
area of the �gure between the line and the segment divided by the cosine of
the corresponding angle between the line and the segment.

{ E line (l jh; z): this encodes if the line l passes close to one of the vanishing
points h [ z as follows

E line (l jh; z)=min
�

� bg ; min
i

(� dist � � (l; h i ); � dist � � (l; z))
�

;

where � (l; h i ) measures the distance on the Gaussian sphere between the
projection of l and the projection of a vanishing point hi .

{ Ehorizon (hi ; hj jz): this term relates to measuring if the vanishing points in
h lie close to a line in the image plane as they should. It is de�ned in the
following manner

Ehorizon (hi ; hj jz) = � hor � tan  (hi � hj ; L (z)) ;

where L(z) is the line connecting the zenith and the principal point of the
camera (assumed to lie at the center of imagex), and  is the absolute angle
betweenhi � hj and a perpendicular to L(z).

{ Eprior (s; l ; h): this term corresponds to an MDL-like prior that penalizes the
number of lines segmentsjsj (taking also into account their length), the
number of lines jl j and the number of vanishing points jhj, aiming to favor
explanations of the image edges ofx involving as few elements as possible

Eprior (s; l ; h)= � line jl j + � vp jhj + � segm

X

i

length(si ):

4 MAP-estimation inference

To perform blind image deconvolution, all we need is to optimize the energy
function speci�ed in the previous section. To that end, we follow a block co-
ordinate descent approach by separately optimizing overk, x, and e. We next
describe the corresponding updates that result in such a process.
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4.1 Optimizing over the kernel k

If variables x and e are kept �xed, the updating of kernel k corresponds to
solving the following minimization task

min
k

kx 
 k � I k2 + � kkk1 = kM x k � I k2 + � kkk1; (9)

where M x denotes the matrix corresponding to a convolution byx.
To e�ciently compute a solution to the above problem, we resort to applying

the Alternating Direction Method of Multipliers [36] in a ma nner similar to [19].
Essentially, this amounts to introducing a replicating variable together with a
decoupling quadratic term for decomposing the problem into2 subproblems and
then applying alternating minimization between them.

4.2 Optimizing over the latent image

When k and e = f s; l ; h; zg are kept �xed, optimization of (2) over x reduces to
the following problem

min
x 2L n

Edata (k ; x jI ) + E img (x je) +
X

p

Epixel (pjs; x) =

kk 
 x � I k2 + � �
X

(p;q)2E

(xp � xq)2+

X

(p;q)2E

wpq(e) � [xp 6= xq] +
X

p

X

q:( p;q)2E

Ep(s) � [xp 6= xq]:

To again decouple the above optimization task into easy-to-handle subprob-
lems, we similarly introduce a replicating variable x0 together with a quadratic
penalty term � kx0� xk2 = �

P
p(x0

p � xp)2 (which penalizes deviations between
x and x0) [36], leading to the following objective function

min
x 02L n ;x

kk 
 x � I k2 + �
X

(p;q)2E

(xp � xq)2+

X

(p;q)2E

�
wpq(e) + Ep(s) + Eq(s)

�
[x0

p 6= x0
q] + � kx0 � xk2

(10)

Applying block coordinate descent to (10) with respect tox and x0 leads to the
2 subproblems described next.

Optimizing over x The subproblem with respect tox involves minimizing the
following least squares objective

min
x

kk 
 x � I k2 + �
X

(p;q)2E

(xp � xq)2 + � kx � x0k2; (11)
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which amounts to solving the linear system shown below

�
M T

k M k + � (M T
i M i + M T

j M j ) + �
�

x = M T
k I + � x0;

whereM k , M i , M j denote the convolution matrices for �lters k, i = [1 ; � 1] and
j = [1 ; � 1]T .5

A solution is e�ciently computed through the following freq uency-domain
operations

x = F � 1
� F (k) � F (I ) + � F (x0)

jF (k)j2+ � (jF (i )j2+ jF (j )j2)+ �

�
; (12)

where F � 1() and F () denote inverse and forward FFTs.

Optimizing over x 0 The subproblem with respect to x0 corresponds to mini-
mizing the energy of a discrete MRF Potts model

min
x 02L n

X

p

Vp(x0
p) +

X

(p;q)2E

Vpq(x0
p; x0

q);

that has unary potentials Vp(x0
p) = � � (x0

p � xp)2, and Potts pairwise potentials

Vpq(x0
p; x0

q)=
�

wpq(e)+ Ep(s)+ Eq(s)
�

[x0
p 6= x0

q]. Several o�-the-shelf state-of-the-

art optimizers exist for this task (in our experiments we have used the FastPD
algorithm due to its e�ciency [18]).

4.3 Optimizing over the edge-related variables e

With k and x being �xed, minimization of (2) over e reduces to

min
e

Eedge(ejx) +
X

(p;q)2E

wpq(e)[xp 6= xq]: (13)

Here the additional term
P

p;q wpq(e)[xp 6= xq] encourages the edge segments
determined by variabless to agree with the current edges of imagex.

The above energy function (13) is of the same form asEedge(ejx), with
the only di�erence being that the term

P
p Epixel (pjs; x) =

P
(p;q)2E

�
Ep(s) +

Eq(s)
�
[xp 6= xq] is now replaced by

P
(p;q)2E

�
Ep(s) + Eq(s) + wpq(e)

�
[xp 6= xq].

Given that the weights wpq(e) depend only on the variabless (see (6)), and
not on f l ; h; zg, the resulting objective function is of similar form to the energy
function used in [35], and can therefore be optimized using the same method,
which is highly e�cient.

5 W.l.o.g. here we assume 4-connectivity for the edgesE of the MRF graph, which is
what leads to the use of the �lters i and j in this case.
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4.4 Multi-resolution inference

As is usually the case with blind deconvolution, optimization proceeds in a
coarse-to-�ne fashion. This is done in order to avoid bad local minima and to
be able to deal with large kernels. We therefore use a multi-resolution image
pyamid, and iterate the updates described inx4.1-x4.3 at each pyramid level.
For e�ciency and fast convergence, the variablesx (x4.2), x0 (x4.2), e, k are
maintained throughout the whole process, and are upsampled/upscaled when
going from a coarser to a �ner level in the pyramid. In practice, convergence
at each level is very fast, with typically 3 iterations per level being enough on
average.

Given the kernel k, the �nal deconvolved image can be computed by applying
(12) (using the �nal estimated image x0 and a small � ), or by using a more
advanced non-blind deconvolution algorithm such as [38], [30].

5 Experimental results

We next test our method on a wide variety of cases and also provide comparisons
with the state of the art. We note that for all the experiments (paper and suppl.
material), we used uniform parameter settings for our method. More speci�cally,
we set wnon � edge = 5 �102, wedge = 0 :05�wnon � edge, � = 10 � 3, n = 20, while all
parameters of energyEedge were kept constant and set as in [35]. As already ex-
plained, � should always be set to a small enough value (it is used only for adding
a minor amount of regularization). Furthermore, it is enough that wnon � edge is
an order of magnitude larger than wedge, while any reasonably small value of
n (e.g., between 15 and 25) seems to su�ce. In general, our method was quite
robust (i.e., not very sensitive) with respect to how its parameters areset. As a
result, we expect the above settings to work well for any other case.

We applied our framework to a wide variety of test examples, including
blurred images of scenes with structural regularities, as well as general scenes,
while using a variety of blurred kernels, and also comparingwith the current
state-of-the-art. For the scenes with structural regularities, we made use of im-
ages from the publicly available \Eurasian cities" and \Yor k Urban" datasets.
We �rst show results on kernel estimation, which is the most critical part in
blind deconvolution. To that end, we experimented with a wide range of chal-
lenging kernels, including ones with large sizes that introduce very signi�cant
blur. Fig. 2 compares our method with several state-of-the-art blind deconvolu-
tion algorithms. Even visually, it is clear that our estimat ed kernels match the
ground truth much more closely (both for small and large kernel sizes). Fig. 8(a)
also shows the corresponding average SSD errors with respect to the correct blur
kernels, verifying the much superior performance of our method.

We next show results concerning the estimated deblurred images. Fig. 9 again
compares several state-of-the-art techniques (additional results are included in
the supplemental material due to lack of space). Thanks to its more accurate
blur kernel estimation, our method manages to recover much better images with














