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Abstract.  In this paper we propose a general MAP-estimation frame-
work for blind image deconvolution that allows the incorpor ation of pow-
erful priors regarding predicting the edges of the latent im age, which is
known to be a crucial factor for the success of blind deblurring. This is
achieved in a principled, robust and uni ed manner through t he use of
a global energy function that can take into account multiple constraints.
Based on this framework, we show how to successfully make use ba
particular prior of this type that is quite strong and also appl icable to a
wide variety of cases. It relates to the strong structural re gularity that is
exhibited by many scenes, and which a ects the location and di stribution
of the corresponding image edges. We validate the excellent grformance
of our approach through an extensive set of experimental results and
comparisons to the state-of-the-art.

1 Introduction

The problem of blind image deconvolution has regained latgl a lot of research
interest in the computer vision community [24, 40, 14, 4,25]12, 38, 26,1, 11, 37,
27,13, 39,28, 10,29, 34,31, 22,33, 21, 16]. By examining recclosely the various
state of the art algorithms that have been proposed recentlyit becomes clear
that there exist at least two elements that can play a crucialrole for the success
of blind image deconvolution: edge prediction and the use oproper priors.

The rst element relates to the ability of one to correctly pr edict part of
the true edges of the unknown deblurred image. The more of ttee edges can
be detected during the deconvolution process, the better fothe quality of the
estimated results. Of course, the challenge is that this is fteen very di cult to
achieve due to the inherent blurriness associated with the vided input image.

The second element is that the good performance of the receittind decon-
volution algorithms relies heavily on the successful use ofarious types of image
priors, which naturally serve the purpose of reducing the seere ill-posedness
of the above problem. To mention just a few characteristic emmples, there has
been recently made use of priors related to the distributios of image gradients

? Part of this work was done while the rst author was an intern a t Ecole des Ponts
ParisTech.
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obeyed by natural images [7], color priors [15], normalizegparsity priors [20],
compactness priors over the so-called motion density funan of the camera [9],
discrete MRF image priors [19], patch priors [32] as well asmsoothness priors
that aim to reduce ringing artifacts [30].

Fig. 1: Scenes very often exhibit important structural regularitie s.

In this paper we want to capitalize on the above two ndings. In other words,
we wish to be able to utilize priors that are even more powerfy and which will
help us to estimate edges much more robustly during blind deznvolution. To do
that, in this paper we rely on an additional observation, which directly relates
to the fact that a large part of the images nowadays depict scees that exhibit
strong geometric regularities with respect to the locationand distribution of
the corresponding image edges. One of the many reasons thahis happens,
for instance, is because a lot of these images display man-mha objects or are
captured inside man-made environments (both indoor and outloor). Actually,
one certain aspect of this phenomenon has been rst noticedhian earlier work
by Coughlan and Yuille [6], where it has been experimentallyshown to hold for
a large variety of scenes (not only urban but also rural ones)

The presence of such regularities suggests an opportunityf utilizing priors
that can signi cantly constrain (and thus hopefully improv e) the estimation of
edges in this case. If we take a look at the images of Fig. 1, fanstance,we
can immediately see that edge pixels do not appear isolatedran arbitrary
curves, but instead typically form line segments. Moreovey these segments are
not arbitrary either. Instead, many of them are collinear (i.e., can be grouped
into lines) and, furthermore, many of the resulting lines cawerge into vanishing
points.

One of the goals of this work is exactly to allow successfullyaking advan-
tage of all such amount of scene-speci c prior knowledge dimg the deblurring
process. More generally, our aim here is to propose a sound MAestimation
framework for blind deconvolution, based on which one woulde able to incor-
porate in a principled, uni ed and robust manner multiple ty pes of constraints
or priors, importantly including any available prior infor mation regarding pre-
diction of image edges.

In blind deconvolution, the idea of exploiting domain-speé c properties had
been previously used for the deblurring of text images [3]. Mre generally, us-
ing scene-speci ¢ prior knowledge for improving the perfomance of computer
vision algorithms is an idea that has already been applied wh great success in
other contexts in the past. For instance, one characterist example was in the
context of camera orientation estimation [5], while two more recent examples
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are the works of Furukawaet al. [8] on multi-view stereo reconstruction, where
signi cant improvements are shown through the use of a \Manhattan world"
assumption, and Barinova et al. [35] on horizon estimation with also excellent
results.

We conclude this section by brie y mentioning the main contributions of this
work, which are as follows:

{ It introduces the idea of utilizing scene-speci c edge priors for tackling the
blind image deblurring problem.

{ It successfully makes use of one such prior (related to the gtng regularities
that exist in many of the existing images with respect to the location and
distribution of their edges) for improving the performance of blind decon-
volution. This prior is generic enough, goes beyond the Manattan world
assumption, and is applicable to a wide variety of cases.

{ More generally, by building upon recent work [19] that showsthe importance
of utilizing sparse discrete MRF image priors in this contex, it proposes a
solid MAP-estimation framework that manages to formulate blind deconvo-
lution as optimization over a single unied energy function that can take
into account various types of constraints.

{ Importantly, given the signi cance of correct edge prediction to blind decon-
volution, such a framework enables one to incorporate avadlble prior edge
information (both low-level and high-level) into the deconvolution process
in a principled, sound, and robust manner.

2 Our blind deconvolution approach

In this section we describe the MAP-estimation framework that we propose for
blind image deconvolution. As usual, we are considering a natel where the blurry
input image | is assumed to be the result of a convolution of a latent image
with a blur kernel k plus some additive noisen, i.e.,

l=x k+n; 1)

where the symbol denotes the convolution operator.

In blind deconvolution, we need to recover bothx and k using as only input
the image|. To that end, here we propose minimizing an energy function bthe
following form:

E(k;x;€jl) = Egata (K;Xjl) + Exemel (K) + Eimg (xje) + Eedge(ejx): 2

This energy consists of 4 main terms, corresponding to a dateerm Egaa (K; Xj1),
a prior-related term Eyemel (k) concerning the kernel k, a prior-related term
Eimg (xje) for the image x, and a prior-related term Eeqgge(€jX) concerning the
image edges of the latent imagex (where e is an appropriate set of variables
used for specifying image edges).

The role of these terms is to properly constraint (in a soft maner) all the
di erent elements involved in blind deconvolution with the goal of ensuring that,
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in the end, convergence towards the correct kernel will takeplace. The last two
terms are of particular importance in this regard, since ther role is to help
together for correctly predicting some of the main structural elements ofx that
play a crucial role for obtaining high quality blur kernels. We next de ne each
of the above terms, and also explain their role in more detalil

2.1 Dataterm Egaa (K;Xxjl)

This is a standard data term used in blind deconvolution, de ned as
Edata (K;Xjl) = Kk x  1K?: ©)

It essentially corresponds to a negative log-likelihood tem for the case where
the noisen in equation (1) is assumed as white Gaussian.

2.2 Blur kernel prior term E emel (K)

For the blur kernel k we select a Laplacian prior to impose on it. This leads to
utilizing an I;-norm penalty term as Egemel (K), i.€.,

Ekemel (K) = kkky: 4)

Such a term is known to be sparsity-inducing, leading to kerels with few non-
zero entries, which is an assumption that holds true in most 6the cases encoun-
tered in practice. This is especially true for kernels due tocamera shake, which
is the most common example. Of course, employing alternatie priors for k (that
might be more appropriate for other cases) is also possibleithin the proposed
framework.

2.3 Image prior term  Eing (Xj€)

For de ning this term, we will draw upon recent work that show s the importance
for blind deconvolution of imposing a discrete piecewiseanstant MRF prior on
image x (which inherently promotes sparsity). This, at rst, means that the
elements of imagex are assumed to take values from a discrete label sete.,
x 2 L, whereL, denotes the set of quantized images that contain a restricte
number of at most n intensities or colors ( is supposed to be small).
Under this assumption, Eimg (xj€) is then given by the following formula
X X
Eimg (Xj€) = Wpq(€)[Xp 6 Xq] + (xp  Xq)% (5)
(pig)2E (pig)2E

where E denotes the set of pairs of pixels that are considered to be ghbors
in the MRF graph, and equals 1 if the expression inside the brackets is true
and zero otherwise.

The rsttermin eq. (5) above corresponds to a weighted discete Potts model
[2], which penalizes the assignment of di erent labelsi(e., colors/intensities) to



Title Suppressed Due to Excessive Length 5

neighboring image pixels. By de nition, such a model promoesL sparsity and
its role here is to impose a piecewise-constant structure oimage x. The idea
of applying such a prior term to blind image deconvolution has been introduced
recently in [19], where it was shown its importance for avoithg trivial blur
kernel solutions (such as the no-blur one) and for obtainingvery high quality
blur kernels.

The associated weightsw,q play an important role in this regard, as they
are used for determining the amount of penalty that should beassigned to an
intensity (or color) discontinuity across pixels p, g of image x. In this work,
given that the variables e should already be predicting which of the pixels of the
deblurred image x belong to image edges, we choose to de ne the weightsy
in terms of these edge-related variableg. More speci cally, we use the following
formula® for setting these weights:

(
Wig(€) = Wedge; | if por q is edge pixel based ore ©)
Whon edge; Otherwiseg
where Wedge and Wnon edge are 2 parameters that satisfy weqge Whon  edge-
The result of this is that label discontinuities in image x are penalized much less
if there is evidence (according to variablese) that there should actually exist
an edge in the deblurred image. In doing so, the goal is to alle the edges of
imagex to be much better aligned with the true edges of the deconvoled image,
which, as mentioned already, is important for high quality kernel estimation. In
this manner we aim to be able to successfully transfer any edgrelated prior
knowledge (as encoded by variables) onto correctly estimating the structure of
the image x. )

Last, concerning the term ()2 (Xp Xq)? also appearing in (5), its
role here is to provide just a very small amount of extra reguarization by pe-
nalizing large magnitude discontinuities (this can contribute a very slight image
re nement in some cases). As a result, a small parameter, satisfying 1
(e.g., =10 3), should be used with it. We note that the role of this term is
minor, and that the important term in (5) is the Potts term.

2.4 Edge prior term  Ecqge (€]X)

This term serves the purpose of allowing us to encode any avable prior knowl-
edge with regard to the edges of the latent imagex. The rationale behind its
introduction is to help in the correct prediction of these edges, which is an impor-
tant factor for the success of blind deconvolution. Importantly, this permits us to
incorporate in a principled manner various types of such prors into our frame-
work (ranging rom low-level to higher-level ones), where tle precise speci cation
and meaning of the corresponding variables is to be updated accordingly in
each casej.e., depending on the speci c choice that has been made. In theext

8 Other ways of expressing Wpq In terms of the variables e are also possible, but we
found the above simple de nition to be e ective enough.
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section, we describe one particular prior of this type that will be used, which is
applicable to a wide variety of cases and provides strong angery useful high-
level constraints.

3 Geometric parsing prior for blind deconvolution

Our motivation for introducing the scene-speci ¢ prior described in this section
comes from the well known observation that many of the imagegoday depict
scenes exhibiting strong structural regularities. Here wewish to be able to suc-
cessfully take into account as many of these regularities apossible, imposing
at the same time assumptions that are as general as possibl&o that end, we
are going to rely on a geometric image parsing prior similar & the one used in
recent work [35]. Such a prior is generic enough and has alrdg been shown
to successfully apply to a wide variety of cases. Essentigll the main assump-
tions* that we make about the depicted scenes, in this case, are thanany of
the edge pixels appearing in image« are part of line segments, many of these
line segments can possibly be grouped into lines, and many te resulting lines
can possibly be grouped into parallel line families. These arallel line families,
therefore, converge (in the image plane) into a set of vanishg points (including
the so-called zenith vanishing point as well as a set of horantal vanishing points
that lie close to the horizon line).

As a result, the set of variablese = fs;1; h; zg used in this case consists of the
set of 2d line segments = fs;g, which represent the edge segments of image,
the set of linesl = fl;g, the set of horizontal vanishing pointsh = f h;g, as well as
the zenith vanishing point z. Deciding, therefore, if p is an edge pixel according
to these variables (as needed by the formula used for settinthe weights in (6))
simply requires checking ifp belongs to one of the segments i, i.e.

p is edge pixel (according toe) , p2[ s : @)

The corresponding prior Ecqge(€jX) is then de ned as

- X . X . X .
Eedge(elx) = i Epixel (pijs; x) + i E segment (sijl) + i Eiine (lijh; 2)
X

. (8)
+ i Enorizon (hi;hjjz) + Eprior (S;1;h):

The individual terms appearing in (8) are de ned similarly t o [35], and es-
sentially encode all the assumptions that we mentioned aba regarding the
regularities of the depicted scenes. We next brie y descrik each of these terms
(and we refer to [35] for a detailed explanation):

{ Epixel (Pijs; x): this term encodes how well an edge pixep; of image x is
explained by one of the edge segments included in sst

4 Note that these assumptions are more general than the so-caled Manhattan world
model.
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X
Epixel (ij;X) = ED(S) a:(p:q) 2E

where E(s) is de ned (for any pixel p) as

[Xp & Xql;

Ep(s):min bg; miin dist d(p;si)"' grad dangle(p;si) :

In the above, d(p; si) denotes the minimum distance fromp to segments;,
and dangle (p; 5) denotes the angular di erence betwgen the local edge direc
tion at p and the direction of s;. The role of the term . ,.,1o¢ [Xp & Xg] is tO
ensure that that only an edgepixel p of the discrete imagex can contribute
(proportional to E(s)) to the Epixer term.

{ Esegment (Sijl): this terms aims at measuring how well segmens; is explained
by one of the lines inl. It is de ned as

Esegment (sjl)=min bg length(s); miin dist Garea(S;1i) ;

where darea (S; ;) measures the distance between segmestand line |; as the
area of the gure between the line and the segment divided by lhe cosine of
the corresponding angle between the line and the segment.

{ Eiine (ljh; 2): this encodes if the linel passes close to one of the vanishing
points h [ z as follows

Eline (Ijh; 2)=min bg;miin( dist  (Lhi); aist  (12)) ;

where (I;hj) measures the distance on the Gaussian sphere between the
projection of | and the projection of a vanishing point h;.

{ Ehorizon (hi;hjjz): this term relates to measuring if the vanishing points in
h lie close to a line in the image plane as they should. It is de ed in the
following manner

Ehorizon (hi; hj iZ)= por tan (h; hj i L(2));

where L(z) is the line connecting the zenith and the principal point of the
camera (assumed to lie at the center of image&), and is the absolute angle
betweenh; h; and a perpendicular toL (z).

{ Eprior (s;1; h): this term corresponds to an MDL-like prior that penalizes the
number of lines segmentsjsj (taking also into account their length), the
number of linesjlj and the number of vanishing pointsjhj, aiming to favor
explanations of the image edges af involving as 1;((3W elements as possible

E prior (s;;n)="inejlj + vpjhj *  segm length(s;):

4 MAP-estimation inference

To perform blind image deconvolution, all we need is to optinize the energy
function speci ed in the previous section. To that end, we fdlow a block co-
ordinate descent approach by separately optimizing ovek, x, and e. We next
describe the corresponding updates that result in such a preess.
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4.1 Optimizing over the kernel k

If variables x and e are kept xed, the updating of kernel k corresponds to
solving the following minimization task

mkinkx K 1k2+ kkk;= kMyk 1k®+ Kkk;: 9)

where M , denotes the matrix corresponding to a convolution byx.

To e ciently compute a solution to the above problem, we resort to applying
the Alternating Direction Method of Multipliers [36] in a ma nner similar to [19].
Essentially, this amounts to introducing a replicating variable together with a
decoupling quadratic term for decomposing the problem into2 subproblems and
then applying alternating minimization between them.

4.2 Optimizing over the latent image

When k and e = fs;l; h;zg are kept xed, optimization of (2) over x reduces to
the following problem

X
xrgljn Edata (k; le) + Eimg (Xje) + Epixel (ij; X) =
" p

kk  x 1K*+ (Xp  Xq)%+
X (p:a)2E
Wpq(€) [Xp & Xg] + Ep(s) [xp 6 Xql:
(p:a)2E P a:(pa)2E

To again decouple the above optimization task into easy-tddandle subprob-
lems, we similarly introduce B replicating variable x° together with a quadratic
penalty term kx° xk? = (x) xp)? (which penalizes deviations between
x and x9 [36], leading to the following objective function

X
min kk x 1k>+ (Xp  Xg)?+

XL (pa)2E
X ’ (10)
Wpg(€) + Ep(s) + Eq(s) [x) 6 x§1+ kx® xk?

(p:g)2E

Applying block coordinate descent to (10) with respect tox and x° leads to the
2 subproblems described next.

Optimizing over x ~ The subproblem with respect tox involves minimizing the
following least squares objective

X
minkk x  1k2+ (Xp  Xq)?+ kx x%% (11)
X

(i) 26
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which amounts to solving the linear system shown below
MIM+ (MM + MjTMj)+ x=MJI+ x5

whereM g, M, M denote the convolution matrices for lters k, i =[1; 1]and
j=M; 1
A solution is e ciently computed through the following freq uency-domain
operations
Cpr FIFM*: FEO 2)
JE(K)j2+ (F (Di2+jF (1)i%)+

whereF () and F () denote inverse and forward FFTs.

Optimizing over x  ° The subproblem with respect to x° corresponds to mini-
mizing the energy of a discrete MRF Potts model

X 0 X 0.0
Xrggll_nn Vo (Xp) + Voa (Xpi Xq);
p (pia)2E

that has unary potentials Vp(x3)=  (xJ xp)?, and Potts pairwise potentials
Vpa(XDi )= Wpq(e)+ Ep(s)+ Eq(s) [x] 6 xJ]. Several o -the-shelf state-of-the-

art optimizers exist for this task (in our experiments we hawe used the FastPD
algorithm due to its e ciency [18]).

4.3 Optimizing over the edge-related variables e

With k and x being xed, minimization of (2) over e reduces to

X
mein Ecdge(€jXx) + Wpq(€)[Xp 6 Xql: (13)
(p:a)2E

Here the additional term P 04 Wpq(€)[Xp & Xg] encourages the edge segments
determined by variabless to agree with the current edges of imagex.

The above energy function (13) is gf the same form @Eedge(ejx), with
the only di erence being that the term | Epixel (PIS;X) = (g2 Ep(S) +
Eq(s) [xp 6 Xq] is now replaced by (p:q) 2E Ep(s) + Eq(s) + wpqg(e) [Xp & Xql.
Given that the weights wpy(e) depend only on the variabless (see (6)), and
not on fl; h;zg, the resulting objective function is of similar form to the energy
function used in [35], and can therefore be optimized usinghe same method,
which is highly e cient.

5 W.l.o.g. here we assume 4-connectivity for the edgesE of the MRF graph, which is
what leads to the use of the lters i and j in this case.
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4.4  Multi-resolution inference

As is usually the case with blind deconvolution, optimization proceeds in a
coarse-to- ne fashion. This is done in order to avoid bad loal minima and to
be able to deal with large kernels. We therefore use a multigsolution image
pyamid, and iterate the updates described inx4.1x4.3 at each pyramid level.
For e ciency and fast convergence, the variablesx (x4.2), x° (x4.2), e, k are
maintained throughout the whole process, and are upsamplédpscaled when
going from a coarser to a ner level in the pyramid. In practice, convergence
at each level is very fast, with typically 3 iterations per level being enough on
average.

Given the kernel k, the nal deconvolved image can be computed by applying
(12) (using the nal estimated image x° and a small ), or by using a more
advanced non-blind deconvolution algorithm such as [38],30].

5 Experimental results

We next test our method on a wide variety of cases and also prage comparisons
with the state of the art. We note that for all the experiments (paper and suppl.
material), we used uniform parameter settings for our metha. More speci cally,
We SetWnon edge =5 107, Wedge = 0:05 Wnon edge; =10 3, n = 20, while all
parameters of energyEqqge Were kept constant and set as in [35]. As already ex-
plained, should always be set to a small enough value (it is used only fadding
a minor amount of regularization). Furthermore, it is enough that Wnon edge 1S
an order of magnitude larger than weqqe, While any reasonably small value of
n (e.g., between 15 and 25) seems to su ce. In general, our method waquite
robust (i.e., not very sensitive) with respect to how its parameters areset. As a
result, we expect the above settings to work well for any othe case.

We applied our framework to a wide variety of test examples, mcluding
blurred images of scenes with structural regularities, as @il as general scenes,
while using a variety of blurred kernels, and also comparingwith the current
state-of-the-art. For the scenes with structural regularities, we made use of im-
ages from the publicly available \Eurasian cities" and \Yor k Urban" datasets.
We rst show results on kernel estimation, which is the most citical part in
blind deconvolution. To that end, we experimented with a wide range of chal-
lenging kernels, including ones with large sizes that intrduce very signi cant
blur. Fig. 2 compares our method with several state-of-theart blind deconvolu-
tion algorithms. Even visually, it is clear that our estimat ed kernels match the
ground truth much more closely (both for small and large kerrel sizes). Fig. 8(a)
also shows the corresponding average SSD errors with respéa the correct blur
kernels, verifying the much superior performance of our metod.

We next show results concerning the estimated deblurred imges. Fig. 9 again
compares several state-of-the-art techniques (additionlaresults are included in
the supplemental material due to lack of space). Thanks to is more accurate
blur kernel estimation, our method manages to recover much btter images with





















