Learning to Compare Image Patches via Convolutional Neural Networks

Sergey Zagoruyko 1, 2, 3 Nikos Komodakis 2, 1, 3, 4
3 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
Abstract : In this paper we show how to learn directly from image data (i.e., without resorting to manually-designed features) a general similarity function for comparing image patches, which is a task of fundamental importance for many computer vision problems. To encode such a function, we opt for a CNN-based model that is trained to account for a wide variety of changes in image appearance. To that end, we explore and study multiple neural network architectures, which are specifically adapted to this task. We show that such an approach can significantly outperform the state-of-the-art on several problems and benchmark datasets.
Type de document :
Communication dans un congrès
IEEE Conference on Computer Vision and Pattern Recognition 2015, Jun 2015, Boston, United States. 2015, 〈10.1109/CVPR.2015.7299064〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01246261
Contributeur : Sergey Zagoruyko <>
Soumis le : vendredi 18 décembre 2015 - 12:29:18
Dernière modification le : lundi 9 juillet 2018 - 12:39:44
Document(s) archivé(s) le : samedi 19 mars 2016 - 12:40:28

Fichier

1504.03641v1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sergey Zagoruyko, Nikos Komodakis. Learning to Compare Image Patches via Convolutional Neural Networks. IEEE Conference on Computer Vision and Pattern Recognition 2015, Jun 2015, Boston, United States. 2015, 〈10.1109/CVPR.2015.7299064〉. 〈hal-01246261〉

Partager

Métriques

Consultations de la notice

562

Téléchargements de fichiers

340