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SOLVABILITY OF A VOLUME INTEGRAL EQUATION FORMULATION FOR
ANISOTROPIC ELASTODYNAMIC SCATTERING

MARC BONNET

ABSTRACT. This article investigates the solvability of volume integral equations arising in
elastodynamic scattering by penetrable obstacles. The elasticity tensor and mass density are
allowed to be smoothly heterogeneous inside the obstacle and may be discontinuous across
the background-obstacle interface, the background elastic material being homogeneous. Both
materials may be anisotropic, within certainme limitations for the background medium. The
volume integral equation associated with this problem is first derived, relying on known properties
of the background fundamental tensor. To avoid difficulties associated with existing radiation
conditions for anisotropic elastic media, we also propose a definition of the radiating character
of transmission solutions. The unique solvability of the volume integral equation (and of the
scattering problem) is established. For the important special case of isotropic background
properties, our definition of a radiating solution is found to be equivalent to the Sommerfeld-
Kupradze radiation conditions. Moreover, solvability for anisotropic elastostatics, directly related
to known results on the equivalent inclusion method, is recovered as a by-product.

1. Introduction. Volume integral equations, also known as Lippmann-Schwinger integral equations,
arise naturally when considering the scattering of waves by penetrable inhomogeneities embedded in
a homogeneous background medium, for which a fundamental solution is known. They have been
developed and used in various areas of physics such as electromagnetism and optics [3, Chap. 2] [8,
Chap. 9], acoustics [28] [9, Chap. 8], or elastodynamics [34, 35, 39], since a long time. If the
penetrable object has homogeneous properties, scattering may alternatively be modelled using coupled
surface integral equations, see e.g. [13] for elastodynamics. Variational formulations, combined with
appropriate handling of the solution behavior at infinity, can also be applied to such scattering problems.

Volume integral equations have a geometrical support restricted to the spatial region where material
properties differ from the background. This feature makes them useful e.g. for deriving asymptotic or
homogenized models involving inhomogeneities of low contrast or vanishing size [2, 38]. Moreover, as
they provide a direct mathematical link between unknown inhomogeneities and remote measurements,
they are also convenient for medium imaging inverse problems [5], for instance providing a foundation
for contrast source inversion methods [32] or allowing rather explicit expressions of far-field patterns.

In contrast with the vast existing literature on the mathematical aspects of boundary integral equa-
tions and their application to scattering by impenetrable obstacles characterized by Dirichlet, Neumann
or impedant boundary conditions, comparatively few studies are available regarding the mathemati-
cal properties of volume integral equations. The well-posedness of volume integral formulations for
various electromagnetic scattering problems is addressed in [33] for two-dimensional orthotropic in-
homogeneities, and in [21, 22, 23, 24] for three-dimensional problems where connections to (and
complementarity with) variational formulations are emphasized. Solvability and other mathematical
properties of volume integral equations for three-dimensional electromagnetic scattering are addressed
in [10, 11]. All of these studies assume isotropic properties for the background material.

The goal of this article is to establish the solvability of volume integral equations associated with
elastodynamic scattering by penetrable obstacles, a question which to our best knowledge is not
addressed in the available literature (see however [18] for obstacles characterized by a mass density
perturbation and [16] for Eshelby-type elastostatic problems involving elastic inhomogeneities). The
relevant material properties (elasticity tensor, mass density) are assumed to be smooth inside the
obstacle; they may be discontinuous across the background-obstacle interface, and are otherwise allowed
to be arbitrary (e.g. in terms of heterogeneity or elastic anisotropy). The background elastic material
is assumed to be homogeneous. To make this study as general as possible, anisotropy is also allowed
for the background material. The elastodynamic fundamental tensor for the background medium is
then known as a Fourier integral that, unlike in the isotropic case, cannot be evaluated in closed form.

Keywords and phrases. Volume integral equation, elastodynamics, anisotropy, scattering.
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The permitted background anisotropy is constrained by a set of assumptions, expressed in terms of
the geometry of the slowness surfaces, that allow reasonably simple far-field asymptotic formulas for
the fundamental tensor, a framework that was previously used in [31] for studying the solvability of
surface integral formulations of anisotropic elastodynamic exterior problems. We thus rely on some
results of [31] regarding e.g. properties of the anisotropic fundamental tensor. The permitted subclass
of anisotropic background properties, termed as class I anisotropy in the three-class categorization
of [4], includes isotropic materials as an important special case.

The assumption of background anisotropy complicates the solvability problem at hand. First, the
available generalization of the Sommerfeld-Kupradze radiation conditions [31, 36] is inconvenient,
prompting us to adopt instead (inspired by [12] and [29, Chap. 7]) another definition of the radiating
character of transmission solutions that is easier to formulate and use, and is equivalent to Sommerfeld-
type radiation conditions in situations when the latter are available. We also show that this definition
achieves solutions that have outgoing energy flux, i.e. are radiating in a physical sense. Moreover,
the unavailability of expansions of elastodynamic solutions as series of eigenfunctions deprives one of
Rellich’s lemma, so we rely instead on a theorem [26] valid for a large class of linear partial differential
operators, which however must here also conform to the class I anisotropy restrictions.

This article is organised as follows. The rest of this section is devoted to introducing the scattering
problem of interest and collecting background and notation pertaining to anisotropic elastodynamics.
In Section 2, we derive the governing volume integral equation for this problem, relying on known
properties of the background fundamental tensor that are recalled along the way, and specify a definition
of the radiating character of transmission solutions which is both appropriate and convenient for the
context of this work. The unique solvability of the volume integral equation (and of the scattering
problem), which is our main result, is established in Section 3. Remarks on the important special
case of isotropic background properties are given in Section 4, where our definition of a radiating
solution is in particular shown to be equivalent to the Sommerfeld-Kupradze radiation conditions [25].
Finally, unique solvability for anisotropic elastostatics is obtained as a by-product in Section 5, this
time without restrictions on anisotropy; this result is closely related to that of [16] on the equivalent-
inclusion method. Some auxiliary proofs are finally given in Section 6

1.1. Formulation of the problem. We consider the scattering of time-harmonic elastic waves by
an elastic inhomogeneity embedded in an unbounded background elastic medium. The inhomogeneity
occupies a bounded domain D1⊂R3. The unbounded complement D0 := R3 \D1 of D1 is assumed to
be connected, the background material filling D0 being homogeneous and anisotropic. The constitutive
material of the scatterer is also anisotropic, and may be heterogeneous. The possibly-anisotropic elastic
properties of the background medium and the scatterer are respectively characterized by the fourth-
order elasticity tensors C0 and C1. The corresponding mass densities are ρ0 and ρ1. These material
characteristics are all real-valued. Moreover, C0 and ρ0 are assumed to be uniform, while C1 and ρ1

are C1,α(D1) functions. The primary field variable characterizing an elastodynamic state is the vector-
valued displacement. For a given displacement field w, the stress tensor σ`[w] in D` (`= 0, 1) is then

given by σ`[w] = C` : ε[w], where ε[w] := 1
2 (∇w + ∇wT) is the linearized strain tensor associated

with w. The tractions t`[w], i.e. the force surface densities exerted by medium ` on the interface Γ
separating D0 and D1 (with n conventionally denoting the unit normal to Γ pointing outwards of D1),
are then defined by

(1) t`[w](x) = lim
h>0→0

σ`[w](x+(−1)`hn)·n(x), x∈Γ, `= 0, 1.

In (1) and hereinafter, symbols ’·’ and ’ : ’ denote single and double inner products, e.g. (σ·n)i = σijnj
and (C0 :ε)ij = C0

ijk`εk`, with Einstein’s convention of summation over repeated indices implicitly used
throughout and component indices always referring to an orthonormal frame. To define a physically
meaningful problem, the material parameters obey the following assumptions: the elasticity tensors
C` verify C`ijk` = C`k`ij = C`ij`k (major and minor symmetries) and define symmetric positive quadratic

forms over the symmetric second-order tensors (i.e. ε :C` :ε> 0 for any ε∈R3×3
sym \{0}), while the mass

densities ρ` are strictly positive and bounded away from zero.
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In the absence of body forces, any displacement field w in D` (` = 0, 1) satisfies the homogeneous
time-harmonic elastodynamic field equation

(2) B`w = 0 in D`,

where the partial differential operator B` associated to medium `, defined by

(3) B`w = −div
(
C` :ε[w]

)
− ρ`ω2w

(with the divergence of any second-order tensor field σ defined by (divσ)i = ∂jσij), is strongly
elliptic [29, Chap. 4] and formally self-adjoint. The time-harmonic factor e−iωt is implicitly understood
for all field quantities.

The transmission problem under consideration concerns the scattering by the inhomogeneity of a
given incident field uI, which is an elastodynamic solution for the background medium, i.e. satisfies

(4) B0uI = 0 in R3.

Writing the total displacement field u in D0∪D1 in the form u = v+uI, the restrictions v0 := v|D0

and v1 := v|D1 of the scattered field v satisfy the field equations

(5) (a) B0(v0 +uI) = 0 in D0, (b) B1(v1 +uI) = 0 in D1

and the transmission conditions

(6) (a) v1 = v0, (b) t1[v1 +uI] = t0[v0 + uI] on Γ.

In what follows, any solution v to (5) and (6) will be called a transmission solution.

In addition, v0 is assumed to be radiating at infinity. Radiation conditions for anisotropic elastic
media, while known [36], are cumbersome as they involve an additive split of v0 into three parts that
are not defined explicitly. An alternative, simpler, definition for the radiating character of v0 will be
stated and adopted later in this article (see Def. 1 in Sec. 2.3); until then, the precise meaning of
”radiating” is left unspecified.

We are interested in transmission solutions v which have finite local energy: v ∈ H1
loc(R3), i.e.

v1 ∈H1(D1) and v0 ∈H1
loc(D0), where boldface symbols H1,L2 . . . indicate Sobolev function spaces

of complex-valued vector fields, e.g. H1(X) :=H1(X;C3) for some domain X ⊂R3. We introduce the
bilinear forms

(7) 〈u,w〉CX :=

∫
X

ε[u] :C :ε[w] dV =

∫
X

∇u :C :∇w dV,
(
u,w

)ρ
X

:=

∫
X

ρu·w dV

respectively associated with elastic strain energy and kinetic energy, for some domain X ⊂R3, elasticity
tensor C and mass density ρ. Any transmission solution v ∈H1

loc(R3) of (5), (6) then satisfies

(8)
〈
v,ψ

〉C
R3 − ω2

(
v,ψ

)ρ
R3 = −

〈
uI,ψ

〉∆C
D1

+ ω2
(
uI,ψ

)∆ρ
D1

for all test displacements ψ ∈H1
comp(R3), having set C := C0 + (∆C)1D1

and ρ := ρ0 + (∆ρ)1D1
; this

stems from taking the inner product of (4) and (5a,b) with ψ ∈H1
comp(R3), invoking in each case the

first Green identity, and combining the resulting equalities. Equation (8) is the variational form of

(9) Bv = div
(

∆C :ε[uI]
)

+ ∆ρω2uI in R3 \Γ

(with Bv := −div
(
C :ε[v]

)
− ρω2v) combined with the transmission conditions (6).

1.2. Auxiliary results and notation. This section collects auxiliary results and notation associated
with the framework of [31], adopted in this study, regarding anisotropic elastodynamics and constraints
(stated in Assumption 1 below) on the background elasticity tensor.

1.2.1. Matrix form of elastodynamic equation. The general inhomogeneous elastodynamic equa-
tion B0w = f for the background medium can be given the equivalent matrix form

(10) B0(−i∇)w = f ,
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with ∇ = (∂1, ∂2, ∂3), B0(ξ) = A(ξ) − ρ0ω2I and the acoustic tensor A(ξ) is defind by Aik(ξ) =
C0
ijk`ξjξ`. The positive definiteness of ε 7→ ε : C0 : ε over R3×3

sym implies that A(ξ) ∈ R3×3 is positive

definite for any ξ ∈R3 \{0}. Let

(11) D(ξ) = Det(B0(ξ)) = Det(A(ξ)− ρ0ω2I)

denote the characteristic determinant of B0. The adjugate matrix N(ξ) of B0(ξ), i.e. the transpose
of its cofactor matrix, is then given (since B0(ξ) ∈ R3×3) by

N(ξ) =
(

1
2

(
[Tr(B0)]2 − Tr(B2

0)
)
I − Tr(B0)B0 +B2

0

)
(ξ)

and is such that
B0(ξ)·N(ξ) = N(ξ)·B0(ξ) = D(ξ)I.

In particular, when B0(ξ) is invertible, B−1
0 (ξ) = D(ξ)−1N(ξ). Finally, defining Â(n, ξ) by

Âik(n, ξ) = C0
ijk`njξ` (1≤ i, k≤ 3), the traction operator w 7→ t0[w] can be given the form

(12) t0[w] = Â(n,∇)w.

1.2.2. Characteristic (slowness) surfaces. Plane waves, i.e displacement fields w of the form
w(x) = eiξ·xb in the background medium (with the vectors ξ, b ∈ R3 defining propagation and
polarization directions, respectively), solve the field equation B0(−i∇)w = 0 provided the linear
system B0(ξ)·b = 0 has nonzero solutions b = b(ξ). The propagation vector ξ must therefore satisfy
the characteristic equation

D(ξ) = 0.

Setting ξ = λξ̂ with ξ̂ ∈ Ŝ and λ > 0 (Ŝ denoting the unit sphere in R3), the above characteristic

equation implies, for given propagation direction ξ̂ ∈ Ŝ, that ρ0ω2/λ2 are eigenvalues of the (real,

symmetric, positive definite) matrix A(ξ̂). Counting possible multiplicities, there are three such values

0 < α1(ξ̂) ≤ α2(ξ̂) ≤ α3(ξ̂). The corresponding polarization directions bq (where |bq| = 1 may be

assumed) solve B0(λqξ̂)·bq(ξ̂) = 0, and B0(ξ) is given in terms of the αq and bq by

(13) B0(ξ) =

3∑
q=1

(
|ξ|2αq(ξ̂)− ρ0ω2

)
bq(ξ̂)⊗bq(ξ̂).

Real solutions of D(ξ) = 0 form three characteristic surfaces Sq (q = 1, 2, 3) in ξ-space, defined by

Sq =
{
ξ ∈R3, ξ = [ρ0ω2/αq(ξ̂)]ξ̂, ξ̂ ∈ Ŝ

}
. The Sq are often called slowness surfaces [4]. The adjugate

matrix N(ξ) of B0(ξ) for ξ ∈Sq has rank one and is given, when the Sq are all distinct, by

(14) N(ξ) = γq(ξ̂) bq(ξ̂)⊗bq(ξ̂), γq(ξ̂) = (ρ0ω2)2
∏
p 6=q

(
1− αp(ξ̂)/αq(ξ̂)

)
(ξ ∈Sq).

In particular, we have (−1)qγq(ξ̂)> 0 (q= 1, 2, 3).

1.2.3. Restrictions on background anisotropy. For reasons which will appear later, the permitted
anisotropic elastic properties of the background material are subject to the following constraints:

Assumption 1. The background elasticity tensor C0 is such that the following conditions (which define
the class I anisotropy in the three-class categorization of [4]) are satisfied:

(i) ∇D 6= 0 at any real zero of the polynomial D(ξ);
(ii) The Gaussian curvature κq of Sq does not vanish anywhere on Sq (q= 1, 2, 3).

Assumption 1 ensures that Sq are closed, convex and non-self-intersecting surfaces containing the origin
in their interior [31]. The outward unit normal to Sq being given by ν(ξ) = (−1)q∇D(ξ)/|∇D(ξ)|,
conditions (i) and (ii) also imply that for any given unit direction x̂ ∈ Ŝ there exists a unique vector
ξq(x̂) on Sq such that ν(ξq) = x̂ (in which case we also have −ξq ∈ Sq and ν(−ξq) = −x̂).
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2. Volume integral equation of Lippmann-Schwinger type.

2.1. Elastodynamic radiating fundamental tensor. Let G = ek⊗Gk be the fundamental tensor
for the unbounded background medium, with each vector Gk defined as the radiating displacement
field solving

(15) B0G
k = δek

(δ denoting the Dirac distribution supported at the origin). As shown in [31], G is given by

(16) G(x) = lim
ε>0→0

lim
R→+∞

1

(2π)3

∫
|ξ|≤R

[
A(ξ)− ρ0(ω+iε)2I

]−1
eiξ·x dV (ξ),

with the chosen limiting process with respect to ε expressing the limiting absorption principle. No
closed-form expression of (16) is known for general anisotropic elasticity (whereas one is available for
isotropic elasticity, see e.g. [14, 25] and Sec. 4). G(x) has the properties

(17)
(a) G(x) = G(−x) = GT(x) (symmetry),

(b) G(x) = O(|x|−1), |x| → 0 (singularity),

which can be proved by a suitable change of variables in the Fourier integral representation (16)
(or inferred from the alternative representation of G given in [37], based on the Radon transform).
Moreover, translational invariance of the homogeneous full space implies that the fundamental tensor
generated by a point source located at y is G(x−y).

The far-field asymptotic behavior of G(x−y) for |x| → ∞ (with y fixed) is given by

(18a) G(x−y) =

( 3∑
q=1

(−1)qE(ξq)N(ξq)eiξq·(x−y)

)
|x|−1 +O

(
|x|−2

)
(see [31, Lemma 3.2]) with ξq = ξq(x̂) and

E(ξq) =
(

2π
∣∣∇D(ξq)

∣∣)−1
[κ(ξq)]−1/2.

Using (12), the corresponding far-field asymptotic form of the fundamental traction tensor T = ek⊗T k

such that T k := t0[Gk] is then

(18b) T (x−y) =

(
i

3∑
q=1

(−1)qE(ξq)Â(n(x), ξq)·N(ξq)eiξq·(x−y)

)
|x|−1 +O

(
|x|−2

)
.

Remark 1. The far-field asymptotic formulas (18a,b) are valid for anisotropic materials satisfying
Assumption 1 [31], so that ξq(x̂) are the (nondegenerate) critical points arising in a stationary-phase
approximation of the integral representation (16) for |x| → ∞. Materials of this class for which
the characteristic surfaces Sq are in addition ellipsoidal are determined in [6]. Anisotropic elasticity
tensors failing to satisfy Assumption 1, i.e. corresponding to class II or III materials in [4], give rise to
additional far-field contributions, some of them decaying at a rate slower than O(|x|−1) along certain
observation directions x̂ (see e.g. [17]), making the far-field behavior of G significantly more complex;
they are not considered in this work.

2.2. Volume potentials. Define the volume vector potentials Vω and Wω, for respective densities
g ∈ L2(D1) and h ∈ L2(D1;C3×3), by

Vω[g](x) =

∫
D1

G(x−y)·g(y) dV (y),(19a)

Wω[h](x) = div

∫
D1

G(x−y)·h(y) dV (y),(19b)

with the divergence operator in (19b) defined as in (3). By virtue of known mapping properties of
integral operators treated as pseudodifferential operators [20, Thm. 6.1.12], Vω and Wω are well
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defined as L2(D1;C3) → H2
loc(R3) and L2(D1;C3×3) → H1

loc(R3) operators, respectively. Moreover,
we note for later reference that Wω[h] can be reformulated by using property (17a) of G, to obtain

(20) Wω[h](x) =

∫
D1

∇G(x−y) :h(y) dSy = −
∫
D1

∇G(y−x) :h(y) dSy

= Vω

[
divh

]
(x)− Sω[h·n](x),

where the last equality results from an integration by parts and

Sω[f ](x) :=

∫
Γ

G(y−x)·f(y) dSy

is the elastodynamic single-layer potential with density f , satisfying B0Sω[f ] = 0 in R3 \Γ.

The following two lemmas state properties of fields given by volume potentials that will be useful
later in proving uniqueness for the transmission problem.

Lemma 1. Any displacement field w of the form w = Vω[g] + Wω[h] has the far-field asymptotic
expansion

w(x) = |x|−1
3∑
p=1

(−1)pγp(ξ̂
p)E(ξp)

[
b(ξp)·Ip(x̂)

]
ei%x̂·ξpb(ξp) +O(|x|−2),(21a)

t0[w](x) = i|x|−1
3∑
q=1

(−1)qγp(ξ̂
p)E(ξq)

[
b(ξp)·Ip(x̂)

]
ei%x̂·ξqÂ(x̂, ξq)·b(ξp) +O(|x|−2),(21b)

with ξp = ξp(x̂) ∈ Sp as defined after Assumption 1 and with the vectors Ip(x̂) defined by

Ip(x̂) =

∫
D1

e−iy·ξp[g + divh
]
(y) dVy −

∫
Γ

e−iy·ξph(y)·n(y) dSy.

Proof. The lemma follows directly from the far-field asymptotic form (18a,b) of the fundamental
elastodynamic tensor and the equivalent representation w = Vω[g+ divh] − Sω[h·n] of w stemming
from (20). �

Lemma 2. Let S% denote the sphere
{
x∈R3, |x|= %

}
of radius %.

(a) The integrals

IR,k := R−1

∫ 2R

R

{∫
S%

Gk(x)·T k(x) dSx

}
d%

are such that =
(
IR,k

)
< 0 for R large enough.

(b) For any displacement field w of the form w = Vω[g] + Wω[h], define IR(w) by

IR(w) := R−1

∫ 2R

R

{∫
S%

w(x)·t0[w](x) dSx

}
. d%

We have

(22) IR(w) = −i

3∑
p=1

(−1)p
∫
Ŝ

γp(ξ̂
p)
(

2π2
∣∣∇D(ξp)

∣∣κ(ξp)
)−1∣∣Ip(x̂)·bp(ξ̂p)

∣∣2 dSx̂ + o(1),

with ξp = ξp(x̂) ∈ Sp as defined after Assumption 1. In particular, =(IR) < 0 for R large enough.

Proof. See Section 6.1 �

Remark 2. Part (a) of Lemma 2 confirms that the elastodynamic state associated with each Gk is
radiating in the physical sense: the time average over one period of the energy flux across S% averaged
over R≤ %≤ 2R is negative for large enough R (see also Remark 6).

Moreover, upon replacing ω+iε with ω−iε in the integrand of (16), G represents incoming, rather than
outgoing, waves (see [31] for details); this change in particular manifests itself through the substitution
i→ −i in (18a) and (18b).
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Then, part (b) shows that any w = Vω[g] + Wω[h] is radiating in the physical sense. The strict
inequality in the last statement therein requires that the leading O(1) contribution to IR(w) does not
vanish. The uniqueness study of Sec. 3.3 implies that any nonvanishing w in fact satisfies this condition.

2.3. Radiating transmission solutions and volume integral equation. We now establish a
representation identity for transmission solutions in terms of volume potentials, from which the volume
integral equation will follow. This step entails accounting for the behavior at infinity of transmission
solutions and in particular defining what is a radiating transmission solution in the present context.
We follow for that purpose the approach of [12] and [29, Chap. 7]. Accordingly, for u solving B0u = 0
in D0, let M[u](x) be defined for any given x∈D0 by

(23) M[u](x) :=

∫
SA

(
G(·−x)·t0[u]− T (·−x)·u

)
dS

(where SA is the sphere of radius A centered at the origin) for any A > |x|. This definition does not
depend on the choice of (large enough) A: for any A′ > A, the first Green’s identity applied to the
elastodynamic states u and G(· −x), which verify B0u = 0 and B0G(· −x) = 0 in the region enclosed
by the spheres SA and SA′ , implies (using the exterior unit normal on both spheres SA and SA′)∫

SA′

(
G(·−x)·t0[u]− T (·−x)·u

)
dS =

∫
SA

(
G(·−x)·t0[u]− T (·−x)·u

)
dS.

Lemma 3. Let the scattered field v ∈ H1
loc(R3) satisfy the field equations (5) and transmission

conditions (6) for some given incident field uI. Then, the value of the total field u = uI + v at
any point x ∈ D0∪D1 is given by the representation formula

u(x) = Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[ ∆ρu1 ](x) + uI(x) + M

[
v0

]
(x).

Proof. Consider a bounded domain X ⊂ R3, and let the partial differential operator B be defined
(in the distributional sense) by Bw = −div

(
C : ε[w]

)
− ρω2w for some elasticity tensor C and mass

density ρ. Let w ∈H1(X) such that Bw = 0 in X, and define the distribution w̃ as the extension of
w by zero in R3 \X. For any test function ϕ∈C∞0 (R3;C3), one has(

B0w̃,ϕ
)

=
(
w̃, (B0−B)ϕ

)
+
(
w̃,Bϕ

)
=
(
w, (B0−B)ϕ

)
X

+
(
w,Bϕ

)
X

(with
(
·, ·
)

and
(
·, ·
)
X

respectively denoting the distributional duality product and the L2(X) scalar

product), since B0 involves only even-order derivatives. Next, using the definition of operators B and
B0 and the first and second Green identities [29, Thm. 4.4] for the domain X, one has(

w, (B0−B)ϕ
)
X

=
(
w, t[ϕ]−t0[ϕ]

)
∂X
−
〈
w,ϕ

〉C−C0
X

+ ω2
(
w,ϕ

)ρ−ρ0
X(

w,Bϕ
)
X

= −
(
w, t[ϕ]

)
∂X

+
(
t[w],ϕ

)
∂X

(ϕ → t[ϕ] denoting the surface traction operator relative to elastic properties C, and with the second
equality using the formal self-adjointness of B and Bw = 0 in X), and therefore

(24)
(
B0w̃,ϕ

)
= −

(
w, t0[ϕ]

)
∂X

+
(
t[w],ϕ

)
∂X
−
〈
w,ϕ

〉C−C0
X

+ ω2
(
w,ϕ

)ρ−ρ0
X

Equality (24) holds for arbitrarily chosen bounded domain X ⊂R3 and physically acceptable material
properties C, ρ. It is now applied (i) for X = D1 with w = u1 and B = B1, and (ii) for X = D0 ∩BR
with w = u0 and B = B0 (where BR is the ball of radius R centered at the origin, bounded by the
sphere SR), yielding the identities(

B0ũ1,ϕ
)

= −
(
u1, t0[ϕ]

)
Γ

+
(
t1[u1],ϕ

)
Γ
−
〈
u1,ϕ

〉∆C
D1

+ ω2
(
u1,ϕ

)∆ρ
D1
,(

B0ũ0,ϕ
)

=
(
u0, t0[ϕ]

)
Γ
−
(
t0[u0],ϕ

)
Γ
−
(
u0, t0[ϕ]

)
SR

+
(
t0[u0],ϕ

)
SR

(the sign inversion for integrals over Γ in the second equality being caused by the unit normal to
Γ conventionally pointing inwards of D0). Summing those equalities and invoking the transmission
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conditions (6) gives

(25)
(
B0(ũ0 + ũ1),ϕ

)
= −

〈
u1,ϕ

〉∆C
D1

+ ω2
(
u1,ϕ

)∆ρ
D1
−
(
u0, t0[ϕ]

)
SR

+
(
t0[u0],ϕ

)
SR
.

Equality (25) holds for any test function ϕ∈C∞0 (R3;C3), so is an equality between two distributions,
whose supports are compact. One can then take the distributional convolution of both members by
the fundamental tensor G, which satisfies B0G = δI, to obtain

(26)
(
ũ0 + ũ1,ϕ

)
= −

〈
u1,G ?ϕ

〉∆C
D1

+ ω2
(
u1,G ?ϕ

)∆ρ
D1
−
(
u0, t0[G ?ϕ]

)
SR

+
(
t0[u0],G ?ϕ

)
SR

where the left-hand side results from G?B0(ũ0+ũ1) = B0G? (ũ0+ũ1) = ũ0+ũ1 while the right-hand
side stems from

(
G ?w,ϕ

)
=
(
w,G ? ϕ

)
for any compactly supported distribution w ∈ D′(R3;C3);

note that here the convolution ? entails an inner product, e.g. G ?ϕ =
∫
R3 G(· − x)·ϕ(x) dV (x).

The remaining task is to evaluate each term in the right-hand side of (26). We have(
u1,G ?ϕ

)∆ρ
D1

=

∫
D1

∆ρ(y)u1(y)·
{∫

R3

G(y − x)·ϕ(x) dV (x)
}

dV (y)

=

∫
R3

{∫
D1

∆ρ(y)G(x− y)·u1(y) dV (y)
}
·ϕ(x) dV (x) =

(
Vω[∆ρu1],ϕ

)
(the second equality exploiting the symmetry properties (17a) of G) and, similarly〈

u1,G ?ϕ
〉∆C
D1

=

∫
D1

∇u1(y) :∆C(y) :∇
{∫

R3

G(y − x)·ϕ(x) dV (x)
}

dV (y)

= −
∫
R3

{∫
D1

∇G(x− y) :∆C(y) :∇u1(y) dV (y)
}
·ϕ(x) dV (x) = −

(
Wω

[
∆C :ε[u1]

]
,ϕ
)

(the second equality again exploiting properties (17a)). Finally, the last two terms in the right-hand
side of (26) are evaluated under the additional assumption that ϕ∈C∞0 (BR;C3), so that

−
(
u0, t0[G ?ϕ]

)
SR

+
(
t0[u0],G ?ϕ

)
SR

=

∫
SR

(
t0[u0](y)·

{∫
R3

G(y − x)·ϕ(x) dV (x)
}
− u0(y)·t0

[ ∫
R3

G(y − x)·ϕ(x) dV (x)
] )

dS(y)

=

∫
R3

{∫
SR

(
t0[u0](y)·G(y − x)− u0(y)·T (y − x)

)
dS(y)

}
·ϕ(x) dV (x)

=
(
M[u0] , ϕ

)
, for all ϕ∈C∞0 (BR;C3).

Inserting the last three identities in (26), sending R to infinity and noting that the resulting distributions
are locally summable functions, we obtain

u = Wω

[
∆C :ε[u1]

]
+ ω2Vω[∆ρu1] + M

[
u0

]
in D0∪D1.

Finally, since uI solves B0uI = 0 in R3 (in which case ∆C = 0 and ∆ρ= 0), applying equality (24)
to X =BR and w=uI|BR and subsequent convolution by the fundamental tensor G provides

M
[
uI

]
= uI, i.e. M

[
u0

]
= uI + M

[
v0

]
.

This completes the proof of the lemma. �

When defined in terms of the radiating Green’s tensor, M[v] is the ”contribution from infinity”
to a displacement v, i.e. its ”non-radiating” part. In usual contexts such as linear acoustics, electro-
magnetism or isotropic elasticity, radiating solutions are defined by enforcing relevant Sommerfeld-type
radiation conditions at infinity, which is in fact equivalent to setting M[v] = 0 (see e.g. [29, Chap.
9] for acoustics, and Sec. 4). Since radiation conditions are rather involved for general anisotropic me-
dia [31, 36] or configurations such as semi-infinite media, we choose here to adopt the latter definition:

Definition 1. A solution v of B0v = 0 in D0 is radiating if M[v] = 0.
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Remark 3. The viewpoint of Definition 1 is for example adopted in [27], where elastodynamic problems
for layered semi-infinite media are considered.

Lemma 3 implies that radiating solutions (in the sense of Def. 1) of the transmission problem (5),
(6) satisfy a volume integro-differential equation of Lippmann-Schwinger type:

Proposition 1 (Lippmann-Schwinger integral equation). Define the integral operator Aω : H1(D1)→
H1(D1) by

(27) Aω[w](x) = Wω

[
∆C :ε[w]

]
(x) + ω2Vω

[
∆ρw

]
(x), x∈D1.

(a) For any solution v of the transmission problem (5), (6) that is radiating (in the sense of Def. 1),
the total field u1 = uI +v1 satisfies the integral equation

(28) (I −Aω)u1(x) = uI(x) (x ∈ D1),

with I denoting the identity operator.
(b) Then, u0 = uI +v0 is given explicitly in terms of u1 by the integral representation formula

(29) u0(x) = uI(x) + Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[ ∆ρu1 ](x) (x ∈ D0).

The main concern of this work is then to establish that the volume integral equation (28) is uniquely
solvable, and is equivalent to seeking radiating solutions to the initial transmission problem (5), (6).

3. Solvability of the volume integral equation. To investigate the solvability of integral
equation (28), we begin by establishing relevant properties of the volume potentials and the Fredholm
character of the integral operator, following the steps used in [21, 22, 23, 24] for transmission problems
involving the Helmholtz or Maxwell equations. The solvability result (Theorem 1) will then follow from
showing that the homogeneous transmission problem has at most one radiating solution.

3.1. Volume potentials as radiating solutions.

Lemma 4. The volume potentials Vω and Wω defined by (19a,b) are radiating (in the sense of Def. 1).

Proof. We first consider the case of Vω, and set w := Vω[g]. Using the definition (19a) of Vω[g]
in (23) and effecting some manipulation, we obtain

M[w](x) =

∫
D1

{∫
SA

(
G(z−x)·T (z−y)− TT(z−x)·G(z−y)

)
dS(z)

}
· g(y) dV (y).

Then, observing that G(z−x)·T (z−y)−TT(z−x)·G(z−y) = O(A−3) as A = |z| → ∞ (by virtue of
the far-field asymptotic formulas (18a,b), and noting that the matrix N(ξq) is symmetric), we obtain
M[w](x) = 0 since (i) M as defined by (23) is independent on A for large enough A and (ii) the above
integral over SA is O(A−1), D1 is bounded and g ∈ L2(D1,C3).

Essentially the same proof applies to Sω, and hence to Wω by virtue of (20). �

Lemma 5. Consider the volume potentials Vω and Wω as defined by (19a,b), for respective densities
g ∈ C0,α(D1;C3) and h ∈ C1,α(D1;C3×3).

(1) The displacement w = Vω[g] + Wω[h] is a radiating solution in R3 of

(a) B0w =

{
g + divh in D1

0 in D0
, (b) w0 = w1, t0[w0] = t0[w1] + h·n on Γ.

(2) The above problem has the variational form

(30)
〈
v,ψ

〉C0
R3 − ω2

(
v,ψ

)ρ0
R3 = −

(
h,∇ψ

)
D1

+
(
g,ψ

)
D1
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for all ψ ∈H1
comp(R3).

Proof. We know from Lemma 4 that w is radiating. To finish proving part 1 of the Lemma, we first
use the alternative expression (20) of Wω[h]. Recalling that B0Sω[f ] = 0 in D0 ∪D1, treating the
volume potential as a convolution in the distributional sense and using B0G = δI, one readily obtains

B0w = B0

(
Vω

[
g+divh

]
− Sω[h·n]

)
=
[
B0G

]
?
[
1D1(g+divh)

]
= 1D1(g+divh) in D0∪D1,

which proves (a). For part (b), single-layer and volume potentials with C0,α densities are known to
define C0(R3) and C1(R3) functions, respectively, see e.g. [15, Chap. 4] or [25, Chap. 4] for isotropic
elastodynamics (the proof of [15], while expounded for the Laplace equation, relies only on the fact
that G ∈ C∞(R3 \{0};R3×3) and has a O(|x|−1) singularity at the origin and therefore applies to the
present case as well). Consequently, w = Vω

[
g+ divh

]
− Sω[h·n] is in particular continuous across

Γ. Moreover, the derivatives of Vω

[
g+divh

]
are also continuous across Γ (in the sense of traces), and

therefore so is its traction vector. Finally, the known jump properties of the conormal derivative of a
single-layer potential [29, e.g. Thm. 6.11], which are valid for any strongly elliptic partial differential
operator (the conormal derivative considered here being the traction operator (1)), yield

t0
[
Sω[h·n]

]
(x+) = t0

[
Sω[h·n]

]
(x−) + h(x)·n(x), x∈Γ.

This completes the proof of transmission conditions (b) verified by the displacement w.

Part 2 follows from the weak form
(
B0w,ψ

)
D0

+
(
B0w,ψ

)
D1

=
(
g+divh,ψ

)
D1

of (a), by applying

the first Green identity to each term in the left-hand side, using the transmission conditions (b) and
noting that

(
divh,ψ

)
D1

=
(
h·n,ψ

)
Γ
−
(
h,∇ψ

)
D1

by virtue of the first Green identity. �

3.2. Fredholm character of the volume integral operator. Let the inner product
〈〈
w′,w′′

〉〉
be

defined for vector fields w′,w′′ ∈H1(D1) by

(31)
〈〈
w′,w′′

〉〉
=
〈
w′,w′′

〉C0+C1

D1
+
(
w′,w′′

)ρ0+ρ1

D1
.

By virtue of Korn’s inequality, ‖w‖H(D1) :=
〈〈
w,w

〉〉1/2
then defines a norm. Let H(D1) denote the

completion of H1(D1) with respect to ‖ · ‖H(D1).

Lemma 6. The operator I−Ai is coercive in H(D1): <
〈〈

(I−Ai)v, v̄
〉〉
≥
〈〈
v, v̄

〉〉
for any v ∈H(D1).

Proof. For v ∈H(D1), define w by w = Ai[v], which is of the form w = Vω[g] +Wω[h] considered
in Lemma 5 with g = −∆ρv, h = ∆C :ε[v] and ω = i. Moreover, w has a fast decay at infinity, such
that in particular w ∈H1(R3) (see Section 6.2 for a proof). The variational equation (30) with ω = i
therefore takes the form 〈

w,ψ
〉C0
R3 +

(
w,ψ

)ρ0
R3 = −

(
v,ψ

)∆C
D1
−
(
v,ψ

)∆ρ
D1

for any ψ ∈ H1(R3). Then, starting from the definition of the inner product
〈〈
,
〉〉

and exploiting the
above variational equation with ψ = w, we have

<
〈〈

(I −Ai)v, v̄
〉〉

= <
〈〈
v −w, v̄

〉〉
=
〈
v, v̄

〉C0+C1

D1
+
(
v, v̄

)ρ0+ρ1

D1
−<

〈
w, v̄

〉C0+C1

D1
−<

(
w, v̄

)ρ0+ρ1

D1

=
〈
v, v̄

〉C0+C1

D1
+
(
v, v̄

)ρ0+ρ1

D1
− 2<

〈
w, v̄

〉C0
D1
− 2<

(
w, v̄

)ρ0
D1

+
〈
w,w

〉C0
R3 +

(
w,w

)ρ0
R3

=
〈
v, v̄

〉C1
D1

+
(
v, v̄

)ρ1
D1

+
〈
w−v,w− v̄

〉C0
D1

+
(
w−v,w− v̄

)ρ0
D1

≥
〈
v, v̄

〉C1
D1

+
(
v, v̄

)ρ1
D1
.

The desired coercivity finally follows from the fact that
[〈
v, v̄

〉C1
D1

+
(
v, v̄

)ρ1
D1

]1/2
and ‖v‖H(D1) define

equivalent norms, the material coefficients having by assumption (Sec. 1.1) the requisite positivity
properties. �
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For any ω ∈ C\{0}, the differences Gω −G0 and ∇Gω −∇G0 are known to be non-singular at the
origin, even for the anisotropic elastodynamic Green’s tensor, see e.g. [31, 37]. Therefore, the same
holds for Gω −Gi = (Gω −G0)− (Gi −G0), implying that Aω −Ai is compact as an operator from
H1(D1) to H1(D1). This, combined with Lemma 6, shows:

Proposition 2. The integral operator I−Aω : H1(D1)→H1(D1) is Fredholm with index 0.

Remark 4. The formulation and proof of Lemma 6 adapt and modify Lemma 1 of [24] (where
transmission problems involving the anisotropic scalar wave equation are considered) and its method of
proof to the present context. The coercivity result of [24] rests upon the electromagnetic counterpart of
the positive definiteness of ∆C (albeit, as stressed therein, alternative lines of reasoning also allow to
establish bounded invertibility of I −Ai without such restriction).

3.3. Uniqueness. A solution v ∈ H1
loc(R3) to the homogeneous transmission problem (i.e. when

uI = 0) verifies

(32)
〈
v, v̄

〉C
B%
− ω2

(
v, v̄

)ρ
B%

= (t0[v], v̄)S% ,

where B% is the ball
{
x ∈ R3, |x| < %

}
of radius %; this stems from taking the inner product of (4)

and (5a,b) with v̄ ∈H1(B%), invoking in each case the first Green identity, and combining the resulting
equalities. Taking the imaginary part of the above identity gives

=(t0[v], v̄)B% = 0 = =(t0[v̄],v)B% .

Hence, IR(v) = 0 as well, with IR(v) defined as in Lemma 2. The asymptotic form of IR(v)

given by Lemma 2, together with (−1)p
∫
Ŝ
γp(ξ̂

p)
(

2π2
∣∣∇D(ξp)

∣∣κ(ξp)
)−1

> 0, then implies that
Ip(x̂) · bp(x̂p) = 0 for each p. Moreover, any radiating transmission solution is given by the
integral representation (29), whose far-field asymptotic approximation is of the form (21a). Exploiting
Ip(x̂)·bp(x̂p) = 0 in the latter implies that:

Lemma 7. Radiating solutions to the (homogeneous) transmission problem (5), (6) with uI = 0 verify
v(x) = o(|x|−1).

The next step consists in showing that v vanishes in D0 as a consequence of Lemma 7. This requires
a Rellich-type lemma, which is not readily available for anisotropic elasticity. We will instead rely on a
theorem by Littman [26]. Considering a solution v to the homogeneous transmission problem, which is
C∞ inD0 by virtue of the integral representation (29), let ṽ denote a C∞(R3) extension of the restriction
of v to R3 \ B̄R, and set f := −B0ṽ. The body force density f is a C∞(R3) function with compact
support (since by construction f = 0 outside of BR). Now, the relationship N(ξ) ·B0(ξ) = D(ξ)I
shows that each component of ṽ satisfies the sixth-order scalar PDE

D(−i∇)ṽi = Nij(−i∇)fj , i = 1, 2, 3.

Littman’s theorem states the following. Consider a partial differential operator P (−i∇) (where P (ξ),
the symbol of the operator, is a polynomial in ξ ∈ R3 with constant coefficients) such that (i) the
solution set in R3 of P (ξ) = 0 is the union of a finite number of smooth surfaces, (ii) ∇P (ξ) 6= 0 on S,
and (iii) the Gaussian curvature κ(ξ) is nonzero at any ξ ∈S. If a solution v of the PDE P (−i∇)v = g
is such that v = o(|x|−1) as |x| → ∞, then v has compact support. Conditions (i), (ii) and (iii) are
satisfied here by P = D and g = Nij(−i∇)fj by virtue of D(ξ) being the characteristic determinant of
B0(ξ) and Assumption 1. Consequently:

Lemma 8. Radiating solutions to the homogeneous transmission problem (5), (6) have compact support.

Remark 5. The assumptions underpinning Littman’s theorem here require the background material
properties to have class I anisotropy.
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Since v0 = 0 in D0\supp(f) and v0 solves B0v0 = 0 in D0, which is a homogeneous elliptic PDE with
constant coefficients, the unique continuation principle applies, so that v = 0 in D0. Then, the method
used in [7, Sec. 5.4] for scalar problems involving orthotropic scatterers allows to show that v = 0 in

D1 as well. Let C̃1 and ρ̃1 denote continuously differentiable extensions in BR of C1 and ρ1 that satisfy
all relevant physical requirements listed in Sec. 1.1, with the ball BR chosen such that D1 b BR and
with B̃ denoting the corresponding elastodynamic operator. Since v verifies (i) v0 = 0 in BR \D1, (ii)
the homogeneous transmission conditions v0 = v1 and t0[v0] = t1[v1] on Γ and (iii) the field equation

B1v1 = 0 in D1, it satisfies B̃v = 0 in BR. Elliptic regularity results then imply that v is C1 in the
interior of BR, allowing to apply the unique continuation principle (see Thm. 17.2.6 in [19]), showing
that v= 0 in BR as a consequence of v0 = 0 in D0. We have thus shown that:

Proposition 3. The transmission problem (5), (6) has at most one radiating solution.

3.4. Equivalence and well-posedness. Summarizing, we know at this point that (a) any radiating
transmission solution v is such that u1 = uI + v1 solves the integral equation (28); (b) any solution
of (28), together with the integral representation (29), defines a radiating transmission solution
v = u− uI; (c) the integral operator Aω of (28) is Fredholm with index 0; (d) the homogeneous
transmission problem has at most one radiating solution. Moreover, (d) implies uniqueness for the
integral equation (28), since a non-trivial solution w to (I−Aω)w = 0 would otherwise, by Lemma 5,
define a radiating solution of the homogeneous transmission problem that is nonzero at least in D1,
a contradiction. Existence and bounded invertibility for (28) therefore follows due to (c) and the
Fredholm alternative. Our main result is thus established:

Theorem 1. Assume that D1, C0, ρ0 and C1, ρ1 satisfy the assumptions in Sec. 1.1, with C0 additionally
constrained by Assumption 1 (i.e. of class I anisotropy). Then:

(a) the transmission (scattering) problem defined by (5), (6) for a given incident field uI satisfying
B0uI = 0 in R3 has a unique solution v ∈H1

loc(R3) that is radiating in the sense of Definition 1;
(b) The integral operator I−Aω : H1(D1)→H1(D1) is invertible with bounded inverse;
(c) The unique solution u1 ∈H1(D1) of integral equation (28) is the restriction of u to D1;
(d) The total field u0 = uI + v0 outside the inhomogeneity is given in terms of u1 by the integral

representation formula (29).

3.5. General transmission problem. A more general form of the transmission problem consists in
seeking displacement fields u1 in D1 and v0 in D0 solving (i) the field equations of linear elastodynamics

(a) B0v0 = 0 in D0, (b) B1u1 = 0 in D1,

(ii) the transmission conditions

(a) u1 = v0 + f , (b) t1[u1] = t0[v0] + g on Γ

for given f , g, and (iii) the radiation condition M[v0] = 0. The scattering problem studied in this
article then corresponds to

(
f , g

)
=
(
uI, t0[uI]

)
. Upon adapting the proof of Proposition 3 to this

case, the above version of the transmission problem leads to an integral representation identity which
differs from (29) by involving layer potentials on Γ with densities f and g in addition to the volume
potentials. The latter cancel out, as expected, whenever f , g are compatible, i.e.

(
f , g

)
=
(
uI, t0[uI]

)
for some uI solving B0uI = 0.

3.6. Inhomogeneity with piecewise-smooth properties. The solvability result of Theorem 1 can
be extended to scatterers for which C1, ρ1 are piecewise C1,α in D1, assuming that the interfaces between
components of D1 with smooth properties (a) have only two such components adjacent at any point
(e.g. no triple interfacial point), and (b) are separated from Γ. The unique continuation principle can
then be applied stepwise through each interface, while the representation formula of Lemma 3 can be
shown to satisfy the requisite transmission conditions at the new interfaces and the coercivity result of
Lemma 6 relies only on C1 and ρ1 to be positive and bounded away from zero.
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4. Isotropic background material. The foregoing analysis covers the important case of isotropic
background materials, which belong to class I. Some features of this case are however worth discussing,
as (i) there are only two distinct characteristic surfaces, and (ii) radiating solutions can be defined using
the Kupradze-Sommerfeld radiation conditions, which raises the issue of equivalence with the present
constraint M[v] = 0.

An isotropic background material is characterized by an elasticity tensor C0 of the form C0 =
λI ⊗ I + 2µI, where λ and µ are the so-called Lamé constants of the elastic material and I and I
denote the second-order and symmetric fourth-order identity tensors, respectively. The fundamental
tensor G is available in closed form [14, 25]:

G = GP +GS; GP(x) = −kP(µk2
S)−1∇∇GP(x), GS(x) = (µkS)−1

(
k2

SI + ∇∇
)
GS(x),

where the functions Gα (α = P,S) are defined by Gα(x) = g(kα|x|) with g(t) := eit/(4πt), and with

kP :=ω
[
ρ0/(λ+2µ)

]1/2
, kS :=ω(ρ0/µ)1/2 denoting the wavenumbers of compression and shear elastic

bulk waves, respectively. Equation (4) in fact gives the Helmholtz decomposition of G in terms of its
irrotational and solenoidal parts GP and GS (since ∇×GP(x) = 0 and divGS(x) = 0 for any x 6= 0).
The far-field behavior of G and T is characterized by

(33)
GP(x) =

kP

λ+2µ
GP(x) x̂⊗ x̂+ o(|x|−1), GS(x) =

kS

µ
GS(x) (I − x̂⊗ x̂) + o(|x|−1),

TP(x) = ik2
PGP(x) x̂⊗ x̂+ o(|x|−1), T S(x) = ik2

SGS(x) (I − x̂⊗ x̂) + o(|x|−1).

4.1. Characteristic surfaces. The characteristic equation D(ξ) = 0 takes the form

µ2(λ+2µ)
(
|ξ|2 − k2

S

)2( |ξ|2 − k2
P

)
= 0.

Hence, S1, S2 are identical spheres of radius kS in ξ-space while S3 is a sphere of radius kP; moreover,

b3(ξ̂) = ξ̂. The vectors ξq(x̂) associated with an observation direction x̂ are ξ1(x̂) = ξ2(x̂) = kSx̂
and ξ3(x̂) = kPx̂, and so are in particular collinear to x̂. The adjugate matrix N(ξ) of B0(ξ) is given
(having omitted the constant factor µ(λ+2µ)) by

N(ξ) =
(
|ξ|2 − k2

P

)
I −

(
|ξ|2 − k2

S

)
ξ̂⊗ ξ̂

and satisfies B0(ξ)·N(ξ) =
(
|ξ|2−k2

S

)(
|ξ|2−k2

P

)
I. Littman’s theorem applies with N(ξ) thus defined;

alternatively, a Rellich-type lemma is available.

4.2. Radiating character of energy flux. Equations (33) yield

(34)
[
Gk ·T k

]
(x) =

[
(ek ·G)·(ek ·T )

]
(x) =

−i

(4π|x|)2

[
kP

λ+2µ
x̂2
k +

kS

µ
(1− x̂2

k)

]
+ o(|x|−2),

implying =
(
Gk(x)·T k(x)

)
< 0 for large enough |x|. Likewise, the far-field asymptotic behavior of any

displacement field of the form w = Vω[g] + Wω[h] = Vω[g+divh]− Sω[h·n] is found from (33), by
straightforward computations, to be given by

w(x) =
kP

λ+2µ
GP(x)

[
IP(x̂)·x̂

]
x̂+

kS

µ
GS(x)

(
IS(x̂)−

[
IS(x̂)·x̂

]
x̂
)

+ o(|x|−1)

with

Iα(x̂) =

∫
D1

e−ikαx̂·y
(
g+divh

)
(y) dVy −

∫
Γ

e−ikαx̂·yh(y)·n(y) dSy (α= P,S),

from which we deduce that

(35) t[w](x)·w(x) = −i

[
kP

λ+2µ
|IP(x̂)·x̂|2 +

kS

µ

(
|IS(x̂)|2−|IS(x̂)·x̂|2

)] 1

(4π|x|)2
+ o(|x|−2),

implying =
(
t[w] ·w

)
(x) < 0 if |x| is large enough. Equations (34) and (35) are the counterpart of

Lemma 2 for the isotropic case; they evidence the physically radiating character of Gk and of volume
potentials, respectively.
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4.3. Radiating fields and radiation conditions. It is well known that any displacement v solving
B0w= 0 in the isotropic case can be additively decomposed into irrotational and solenoidal parts, i.e.
v = vP +vS with divvP = 0 and ∇×vS = 0. Radiating solutions v can then be defined as satisfying
the Kupradze-Sommerfeld radiation conditions [25]:

(36)
(
∂r − ikP

)
vP(y) = o(|y|−1),

(
∂r − ikS

)
vS(y) = o(|y|−1),

which are known [25, Chap. 3, Thm. 2.9] to be equivalent to

(37) t0[vP](y)− ikP(λ+2µ)vP(y) = o(|y|−1), t0[vS](y)− ikSµvS(y) = o(|y|−1).

In particular, vα = Gk
α(· − x) verifies (37) for k= 1, 2, 3, α = P,S and any fixed x∈R3.

Proposition 4. Let v solve the transmission problem (5), (6), the background medium being isotropic.
The Kupradze-Sommerfeld radiation conditions (37) are equivalent to the requirement M[v] = 0.

Proof. First, assume that v satisfies the radiation conditions (37). It is a known result (see e.g. [25,
Chap. 3, Sec. 2.4]) that conditions (37), together with properties (33), ensure

lim
A→∞

∫
SA

(
G(·−x)·t0[u]− T (·−x)·u

)
dS = 0,

i.e. imply M[v](x) = 0. Conversely, let v solve equations (5), (6) and verify M[v] = 0. Then,
from (29)

v(x) = Wω

[
∆C :ε[u1]

]
(x) + ω2Vω[ ∆ρu1 ](x) (x ∈ D0) (x∈D0).

Now, using the decomposition G = GP +GS in the above potentials, splitting v into v = vP + vS

accordingly, evaluating the tractions t0[vP] and t0[vS] by differentiating the potentials under the integral
sign and invoking properties (33,b) of G, conditions (37) are readily found to be verified by v. �

4.4. Solvability. The foregoing remarks show that Theorem 1 applies to the case of isotropic
background elasticity.

5. Anisotropic elastostatics. In this case, the transmission problem is defined by the field
equations (5) with ω= 0, i.e.

(38) div
(
C0 :ε[uI +v0]

)
= 0 in D0, div

(
C1 :ε[uI +v1]

)
= 0 in D1,

and the transmission conditions (6), while uI solves div
(
C0 :ε[uI]

)
= 0 in R3. For instance, solutions

for polynomial ”incident” fields uI are often sought for the purpose of e.g. evaluating elastic moment
tensors [1] that are involved in small-inclusion asymptotics or in the estimation of effective properties.

The static fundamental tensor G0 is known (e.g. [30, Chap. 1, eq. (5.26)]) to be given by

G0(x) =
1

8π2|x|

∫ 2π

0

A−1(ξ̂(φ)) dφ

for any anisotropic elasticity tensor C0, where φ 7→ ξ̂(φ) is an angular parametrization of the unit circle

Ĉ :=
{
ξ̂ ∈ Ŝ, ξ̂ ·x̂= 0

}
. G0 is clearly homogeneous function with degree -1 in x. Unlike in the time-

harmonic case, no restriction need to be put on C0. The counterpart of Lemma 3 is the representation
identity

u(x) = W0

[
∆C :ε[u1]

]
(x) + uI(x) + M

[
v0

]
(x),

where M[v0] and the volume potential W0 are defined in terms of G0. The requirement M[v] = 0
is readily found to define fields v of the form v0 = W0

[
∆C : ε[u1], which decay as v(x) = O(|x|−2)

and t0[v](x) = O(|x|−3) for |x| → ∞; conversely, this decay implies M[v] = 0. The volume integral
equation is

(39) (I −A0)u1(x) = uI(x) (x ∈ D1)
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with the integral operator A0 : H1(D1) → H1(D1) defined by A0[w](x) = W0

[
∆C : ε[w]

]
(x).

Proposition 2 applies for ω = 0 and ρ1 = ρ0, and the integral operator I−A0 : H1(D1)→ H1(D1) is
Fredholm with index 0.

The static counterpart of (32) implies that any transmission solution v of the homogeneous problem

(for which uI = 0) verifies
〈
v,v

〉C
B%

= (t0[v],v)S% . Then, due to the above decay conditions,

lim%→0(t0[v],v)S% = 0 = lim%→0

〈
v,v

〉C
B%

. The latter limit requires v to be a rigid-body motion

in D0 and D1, which must then vanish in both regions due to the decay and transmission conditions.
Therefore there is at most one decaying transmission solution. Concluding:

Theorem 2. Assume that D1, C0 and C1 satisfy the assumptions in Sec. 1.1. Let uI be a given
displacement field satisfying div

(
C0 :ε[uI]

)
= 0 in R3. Then:

(a) The elastostatic transmission problem defined by (38), (6) has a unique decaying solution v =
u−uI ∈H1

loc(R3);
(b) The integral operator I−A0 : H1(D1)→H1(D1) is invertible with bounded inverse;
(c) The unique solution u1 ∈H1(D1) of integral equation (39) is the restriction of u to D1;
(d) The total field u0 = uI + v0 outside the inhomogeneity is given in terms of u1 by u0(x) =

uI(x) + W0

[
∆C :ε[u1]

]
(x).

6. Auxiliary proofs.

6.1. Proof of Lemma 2.

Proof of part (a). Using the far-field asymptotics (18a) and (18b), the integral IR,k is given by

IR,k =

3∑
p,q=1

IpqR,k + o(1),

where IpqR,k are defined, for p, q ∈ {1, 2, 3}, by

IpqR,k = −i(−1)p+qR−1

∫ 2R

R

{∫
Ŝ

ei%x̂·(ξp−ξq)(ek ·gpq(x̂)·ek
)

dSx̂

}
d%,(40a)

gpq(x̂) = E(ξp)E(ξq)N(ξp)·Â(x̂, ξq)·N(ξq)(40b)

First, consider IpqR,k for p 6= q. In that case, since x̂ · (ξp− ξq) 6= 0 [31], the integrand is an oscillatory

function of % and a direct calculation yields that IpqR,k vanishes in the limit R→∞:

R−1

∫ 2R

R

ei%x̂·(ξp−ξq) d% = O(R−1) = o(1).

Then, the remaining integrals IppR,k are given by

IppR,k = −i

∫
Ŝ

(
ek ·gpp(x̂)·ek

)
dSx̂ + o(1)

with gpp given by
gpp(x̂) = 1

2 [E(ξp)]2N(ξp)·
(
Â(x̂, ξp)+Â(ξp, x̂)

)
·N(ξp),

by virtue of (40b), the fact that N(ξp) is real symmetric, and Â(ξp, x̂) = Â(x̂, ξp)T. We now evaluate
gpp(x̂), by means of a method used in the proof of Lemma 4.1 in [31]. We have B0(ξ)·N(ξ) = D(ξ)I,
and therefore N(ξ)·B0(ξ)·N(ξ) = D(ξ)N(ξ). Taking the directional derivative with respect to ξ and
in the direction ν(ξ) (denoted by the symbol ∂ν(ξ)) in both sides of the latter equality yields

∂ν(ξ)N(ξ)·B0(ξ)·N(ξ) +N(ξ)·∂ν(ξ)B0(ξ)·N(ξ) +N(ξ)·B0(ξ)·∂ν(ξ)N(ξ)

=
(
∂ν(ξ)D(ξ)

)
N(ξ) +D(ξ)∂ν(ξ)N(ξ).
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For any ξ ∈Sp, D(ξ) = 0 and B0(ξ)·N(ξ) = 0, so that

N(ξ)·∂ν(ξ)B0(ξ)·N(ξ) =
(
∂ν(ξ)D(ξ)

)
N(ξ) ξ ∈ Sp.

With the additional observation that Â(x̂, ξp)+Â(ξp, x̂) = ∂ν(ξ)B0(ξp) (stemming from definition (10)
of B0(ξ) and the quadratic and symmetric character of ξ 7→ A(ξ)), we obtain

N(ξp)·
(
Â(x̂, ξp)+Â(ξp, x̂)

)
·N(ξp) = ∂ν(ξ)D(ξp)N(ξp)

= (−1)p|∇D(ξp)|γp(ξ̂p) bp(ξ̂p)⊗bp(ξ̂p),

where the last equality rests on (14) and the fact that ∂ν(ξ)D(ξp) = ∇D(ξp)·ν(ξp) = (−1)p|∇D(ξp)|
(see comment after Assumption 1). As a result, gpp(x̂) is found to be given by

(41) gpp(x̂) = (−1)pγp(ξ̂
p)
(

2π2
∣∣∇D(ξp)

∣∣κ(ξp)
)−1

bp(ξ̂p)⊗bp(ξ̂p).

Finally

=
(
IR,k

)
= −

3∑
p=1

(−1)p
∫
Ŝ

γp(ξ̂
p)
(

2π2
∣∣∇D(ξp)

∣∣κ(ξp)
)−1(

ek ·b(ξ̂p)
)2

dSx̂ +O(R−1),

where the O(1) contribution is negative since (−1)pγp(ξ̂
p)> 0.

Proof of part (b). Using the far-field asymptotic form of w and t0[w] (Lemma 1), IR(w) is given by

IR =

3∑
p,q=1

IpqR + o(1),

IpqR := −i(−1)p+qR−1

∫ 2R

R

∫
Ŝ

ei%x̂·(ξp−ξq)(Ip(x̂)·gpq(x̂)·Īq(x̂)
)

dSx̂ d% (p, q ∈ {1, 2, 3}),

gpq(x̂) being given by (40b). Using the same argument as in the proof of part (a), we have IpqR = o(1)
for p 6= q. Then, if p= q, the limiting behavior of IppR is easily found by using expression (41) of gpp(x̂),

yielding the claimed asymptotic expression (22) of IR(w). Then, again noting that (−1)pγp(ξ̂
p) > 0,

we conclude that =
(
IR
)
< 0 for large enough R.

Remark 6. The integral over Ŝ in (40a) would be expected to vanish in the limit % → ∞ by virtue
of a stationary phase argument, which would make radial averaging unnecessary. However, finding the
critical points of the phase function in (40a) and determining whether or not they are degenerate is
involved due to the complicated dependence of ξq on the observation direction x̂, making radial averaging
a simpler approach.

6.2. Proof of fast decay of Ai[v]. We begin by showing exponential decay for |x| → ∞ of G(x) if
ω= i. In that case, (16) becomes

(42) G(x) = lim
R→+∞

1

(2π)3

∫
BR

F (ξ) eix·ξ dV (ξ) = F [F ](x),

where the matrix-valued function F is defined by F (ξ) =
[
A(ξ) + ρ0I

]−1
and F stands for the three-

dimensional Fourier transform (the limit ε→ 0 in (16) being straightforward since the matrixA(ξ)+ρ0I
is invertible for any ξ). In fact, F ∈ C∞(R3,C3×3) ∩ L2(R3,C3×3).

Letting m = (m1,m2,m3) ∈ N3 denote a multi-index of length |m| := m1 +m2 +m3, it is easy to
show by induction on |m| that ∂mF = O(|ξ|−2−|m|) for |ξ| → ∞ (where multi-index notation is used);
in particular, ∂mF ∈ L1(R3,C3×3) for |m| ≥ 2. Choosing m such that |m| = 2, ∂mF is a C∞ function
that is summable together with all its derivatives; therefore F [∂mF ](x) decays faster than any negative
power of |x| as |x| → ∞ by virtue of well-known properties of the Fourier transform in L1. Since in
addition we have F [∂mF ] = i|m|xmF [F ], F [F ](x) itself has a fast decay at infinity.
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For isotropic materials, the Fourier integral (42) can be evaluated analytically in closed form, showing
that G(x) in fact decays exponentially fast at infinity in this case.

In view of definition (27) of Aω, the fast decay of G clearly carries over to Ai[v](x) as |x| → ∞, for
any displacement v ∈ H(D1) and compact inhomogeneity region D1. This in particular ensures that
Ai[v] ∈H1(R3), as Ai[v] ∈H1

loc(R3) by known general properties of the volume potentials involved.
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