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Abstract: Road profile acts as a disturbance input to the vehicle dynamics and results in
undesirable vibrations affecting the vehicle stability. A precise information of this data is
mandatory for a better understanding of the vehicle dynamics behavior and active vehicle
control systems design. However, direct measurements of the road profile are not trivial
for technical and economical reasons, and thus alternative solutions are needed. This paper
develops a novel observer, known as virtual sensor, suitable for real-time estimation of the
road profile. The developed approach is carried on a quarter-car model and on measurements
of the vehicle body. The road elevation is modeled as a sinusoidal disturbance signal acting
on the vehicle system. Since this signal has unknown and time-varying characteristics, the
proposed estimation method implements an adaptive control scheme based on the internal
model principle and on the use of Youla-Kucera (YK) parametrization technique (also known
as Q-parametrization). For performances assessment, estimations are comparatively evaluated
with respect to measurements issued from Longitudinal Profile Analyzer (LPA) and Inertial
Profiler (IP) instruments during experimental trials. The proposed method is also compared to
the approach provided in (Doumiati et al. (2011)), where a stochastic Kalman filter is applied
assuming a linear road model. Results show the effectiveness and pertinence of the present

observation scheme.
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1. INTRODUCTION

1.1 Motivation

Road geometries, irregularities and deformations con-
stantly modify the vehicle positions and wheel orienta-
tions. Thus, road profile is one of the most important
factors that determines the vehicle performance. Its knowl-
edge is essential for road quality evaluation, road rough-
ness index calculation, vehicle dynamics analysis, suspen-
sions design, and active control systems development (see
(Gillespie (1992)), (Sayers and Karamihas (1998)), (Bas-
tow et al. (2004)), (Elmadany and Abduljabbar (1999)),
and (Savaresi et al. (2010))). For car manufacturers, road
profile on-board evaluation would help to adjust the vehi-
cle dynamics to improve passengers safety, ride comfort,
and road holding through an electronic stability program.
However, nowadays, there are no low-cost sensors that
directly measure the road elevation. This motivates the
development of an observer, also known as virtual sensor,
to online reconstruct this data.

1.2 Paper contribution vs. State of arts

Road profile evaluation is a complex task. For experimen-
tal purposes, tools called profilers, profilometers or profilo-
graphs are usually employed to take measurements of the
road profile. However, cost and installation constraints de-
grade the applicability of these instruments in ordinary ve-
hicles (see Section 2). Other profile measurement methods
are based on visual inspections as in (Kim et al. (2002)).
Recently, Mercedes-Benz introduces in its new 2014 S-
and E-Class cars stereo cameras for road profile scanning
(Mercedes-Benz (2014)). These sensing techniques are ex-
tremely expensive and require some specialized operations,
i.e sensibility to sensors location, hard signal processing,
and so on. Moreover, the application of laser sensors for
profile measurement is impractical in rainy weather. As
an alternative, research involving use of observers for road
profile estimation has gained prominence. In (Yousefzadeh
et al. (2010)), an artificial nonlinear neural network (ANN)
based approach was adopted to estimate the random road
excitation. Authors employed a seven acceleration mea-
surements vector as input for the estimation process where
the road profile is modeled as a function of the road rough-



ness coefficient. For a good classification, the vehicle be-
havior under different standardized roads (ISO 8608) must
be incorporated in the (ANN) learning phase. Similarly,
authors in (Solhmirzaei et al. (2012)) proposed a solution
for road profile estimation using multi-input multi-output
feed forward wavelet neural network (WNN). A novel
approach based on the cross-entropy method employing
Monte Carlo techniques was given in (Harris et al. (2010))
to obtain road profile estimation using the sprung and un-
sprung mass accelerations. The proposed ANN, WNN, and
Monte-Carlo estimators require too much computing time,
and could be practically impossible to be implemented on
real-time applications.

In (Imine et al. (2005)) and (Imine et al. (2006)), es-
timation techniques based on model-based sliding mode
observers were proposed. Therein, authors considered a
full car model of 16 Degree Of Freedom (DOF). Such a
complex vehicle model appears time-consuming for on-
board implementation. Recently, in (Rath et al. (2014)),
authors developed a road profile estimator using adaptive
super-twisting theory and considering nonlinear dynamics
of the spring and damper of an active suspension system.
In (Tuddén-Martinez et al. (2014)), an H o, robust observer
was used to estimate the variables monitoring the suspen-
sion dynamics from accessible vehicle measurements. The
estimated variables were then used in the static equation
of the unsprung mass acceleration to calculate the road
excitation. In (Doumiati et al. (2011)), authors proposed
a method based on an augmented quarter of vehicle (QoV)
state-space model, where the road profile and its velocity
were incorporated as unknown states. The observation
process was built on a recursive Kalman estimator for
on-board applications. The studies in (Doumiati et al.
(2011)), (Imine et al. (2005)) and (Imine et al. (2006))
assumed linear road profile models neglecting profile ac-
celerations. However, this hypothesis does not fully satisfy
the analysis of the road profile presented in (Sayers and
Karamihas (1998)). Therein, a demonstration was given
that even small road profile variations could lead to consid-
erable road accelerations depending on the current vehicle
velocity.

According to the road roughness classification ISO 8608
discussed in (Gonzdles et al. (2008)), a real road profile
could be interpreted and evaluated by means of its spectral
decomposition. A typical road profile has no direct resem-
blance to a pure sinusoid, but it encompasses a spectrum of
sinusoidal wave lengths. This hypothesis is adopted in this
study, and constitutes one of its particularity with respect
to others existing in literature. The proposed procedure in
this paper considers the road profile as unpredictable and
random input disturbance to the vehicle system. Since this
sinusoidal disturbance has unknown and time-varying am-
plitudes and frequencies, the estimation problem is tackled
in the feedback adaptive control context applying the in-
ternal model principle (introducing the disturbance model
into the controller) (refer to (Ioannou and Sun (1996))
and (Landau et al. (2011))). The given estimation process
is a real-time conditioning algorithm. It is formulated as
a closed-loop regulation approach, trying to attenuate the
difference between the measured chassis position and the
QoV model output. To simplify the design and reduce the
computation load, the developed controller is built within
the Youla-Kucera (YK) parametrization framework. The

work given here is an extension of the study reported by
the present authors in (Doumiati et al. (2014)). Note that
in (Tudén-Martinez et al. (2015)), a part of the present
authors used YK principle and online Fourier transform
analysis for road roughness classification. The main con-
tributions of this study with respect to (Doumiati et al.
(2014)) and (Tuddén-Martinez et al. (2015)) are:

e detailed synthesis of the observation scheme;
e experimental validation using different real profilers.

The rest of the paper is organized as follows. Section 2
describes some real profilers used for validation of the
proposed method. Section 3 discusses the adopted vehicle
and road models. Section 4 deals with the estimation
process and discusses the observer design in a control
scheme. Section 5 compares the estimation results to mea-
sured profiles during experimental tests. Finally, Section
6 provides concluding remarks and some perspectives for
future works.

2. SOME EXISTING PROFILERS

Profilers or profilometers are instruments and methods
used to produce a sequence of numbers related to the
true road profile (Sayers and Karamihas (1998)). A pro-
filer works by combining three main ingredients: a ref-
erence elevation, a height relative to the reference, and
the longitudinal distance. These ingredients are combined
in different ways, based on the design of the profiler.
Among the different existing profilers, this study considers
the Longitudinal Profile Analyzer (LPA) and the Inertial
Profiler (IP).

e The LPA illustrated in Figure 1 is an instrument
developed by the French Roads and Bridges Central
Laboratory (IFSTTAR laboratory previously named
LCPC) (Imine et al. (2006, 2005)). It has been the
subject of many studies and research. The system
includes one or two single wheel trailers towed at con-
stant speed by a car, and employs a data acquisition
system. A ballasted chassis supports an oscillating
beam holding a feeler wheel that is kept in per-
manent contact with the pavement by a suspension
and damping system. The chassis is linked to the
towing vehicle by a universal-jointed hitch. Vertical
movements of the wheel result in angular travel of the
oscillated beam, measured with respect to the hori-
zontal arm of the inertial pendulum, independently of
movements of the towing vehicle. The measurements
are made by an angular displacement transducer as-
sociated with the pendulum. The induced electrical
signals are amplified and then recorded. Rough mea-
surements have to be processed to obtain a reliable
measurement of the road profile (phase distortion cor-
rection). Although this device has proved to provide
precise profile elevation measurements, it cannot be
integrated in ordinary cars for technical reasons.

e The IP was basically introduced by the General Mo-
tors research laboratory in 1964 (Sprangler and Kelly
(1964)). This technique uses accelerometers placed
on the body of the measuring vehicle to establish an
inertial reference. The recorded profile is independent
of the type of the vehicle survey and of the profiling
speed. The inertial reference serves to correct for the
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Fig. 1. LPA: Longitudinal Profile Analyzer (Imine et al.
(2006)).

bounce of the survey vehicle. It is obtained using
accelerometers placed on the body of the measuring
vehicle. The vertical body motion (inertial reference)
is obtained by double integration of the accelerom-
eter signal. The relative displacement between the
accelerometers and the pavement surface is measured
with a non-contact light sensor mounted with the
accelerometer on the vehicle body. Adequate filters
must be used to eliminate noises in the acceleration
signal and to suppress other distorted signal compo-
nents due to the integration process. The elevation
profile of the road is then obtained by subtracting
the height sensor output from the absolute motion
of the vehicle body (Imine et al. (2005, 2006)). The
disadvantages of this method are its complete depen-
dency on sensors location, weather conditions, and
environment noises.

In the following, the performance of the proposed observer
is compared to the LPA and IP tools.

3. MODELS OF THE VEHICLE/ROAD
INTERACTIONS

To implement a model-based observer, suitable vehicle and
road models must be assumed. The adopted models in this
study are discussed in the next.

3.1 QoV wvehicle model

For simplicity reasons, a linear passive QoV model (with-
out actuation) that captures the most basic features of
the vertical behavior of the vehicle is considered. This
model represents a corner of a vehicle as shown in Figure
2. Tt accounts for about 75% of the vertical vibrations
present on a vehicle (Sayers and Karamihas (1998)). The
suspension system joins chassis and tire. The sprung mass
of the car body, mg, is connected by a spring and damper
to the unsprung mass, m,,, of the suspension components
by the suspension spring, ks, and the damper, cs. The
spring is considered linear because around 95% of its
operating zone in an automotive application is linear. The
tire is linked with the road displacement, u(t), involving
the tire’s stiffness, k;. It is assumed that the tire damping
is negligible. A sensitivity analysis of kg, cs, ki, and ky
parameters on the suspension performance was drawn in
(Rajamani (2006)).

An analysis of the full car model and half car model
responses to road irregularities given in (Rajamani (2006))
indicated that the suspensions can be designed indepen-
dently at each wheel. The quarter car suspension model is
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Fig. 2. QoV model.

therefore adequate to study and design automotive suspen-
sion systems for optimizing response to road irregularities.
Assuming that wheels are rolling without slip and without
contact loss, relations (1) and (2) represent the motion of
the vehicle body and the wheel respectively:

MeZs = —ksZs — CsZs + kszy + CsZy, (1)
M2y = — (ks + ki)zy — Cséu + kszs + cs2s + kyu, (2)
where z4(t) is the position of the vehicle body, z,(t)
is the position of the wheel, and the dot denotes the

time derivative, i.e., Z; = d;f;. In the Laplace-domain,
the transfer function between the road profile U(s) and
the chassis position Zs(s), known as the road-to-body
transmissibility equation, is of fourth-order and can be

given by (3):

Zs(s) ay
= 1 (3)

U(S) b1 . bQ bg
where: a1 = k¢ (scs + ks), b1 = (SQms + scg + ks),
by = (s2mu + scs + ko + kt)7 by = (scs + kS)Q.
The suspension system is designed so that it absorbs
the road inputs, isolating the body from the road at
high frequency road excitation (> 1 Hz). At very low
frequencies (< 1 Hz), the vehicle body moves up and down
almost exactly as does the ground. At about 1 Hz the body

resonates on the suspension, amplifying the input from the
road (Sayers and Karamihas (1998)).

8.2 Sinusoidal road profile model

The model of the road profile should be representative for a
good estimation quality. Besides, it should be convenient
for integration as input disturbance to the proposed ob-
server formulated as a closed-loop regulation scheme.

As the vehicle moves over the road profile at a speed v,
the static spatial waves (irregularities) of the road are
transformed into time-variant sinusoidal elevation wu(t) at
the wheel. The relation between the spatial wavelength, A
(respectively the wave number v = %) imposed by a part
of the road profile and the resulting oscillation frequency,
f, of the corresponding elevation signal is given by (Sayers
and Karamihas (1998)):

f=5=v (4)

It could be observed that the travel speed affects how the
vehicle sees sinusoidal waves in the road. More precisely,
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Fig. 3. Examples of spectra of two real road profiles.

according to ISO 8608, a typical road profile is a stochastic
signal that has no direct resemblance to a pure sinusoid,
but considered as a composition of series of sinusoidal
waves (see (Rajamani (2006)), and (Sayers and Karamihas
(1998))). Figure 3 shows examples of spectra of two
different real road profiles collected through the LPA and
IP instruments. These measurements are obtained using
two laboratory cars moving at 75 Km/h and 25 Km/h
respectively. The spectra of these low-pass signals are
computed using the Fast Fourier transform.

Working hypothesis: Based on ISO 8608 classification, this
study assumes that the time-based dynamics of the road
profile can be modeled as a finite series of N sinusoids with
different wavelengths, \;, frequencies, f;, amplitudes, Cj,
and phases, ¢;:

N
u(t)=>_ Cisin(2r fit + ¢;). (5)

i=1
C;, fi, and ¢; are unknown time-varying parameters.
There are no feasible prior information of these parameters
that depend on: 1) suspension capability; 2) road surface
(number of waveforms); 3) tire dynamics; and 4) vehicle
velocity (Tudén-Martinez et al. (2015)). The objective of
this paper is not to evaluate these parameters separately,
but to estimate the road elevation wu(t).

4. OBSERVER DESIGN
4.1 Problem formulation

The estimation process developed in this study is for-
mulated as a closed-loop regulation approach, trying to
attenuate the difference e between the measured chassis
position z; and the estimated QoV model output %, (see
Figure 4). The chassis position signal is the result of the
road profile disturbance input u on the vehicle system. A
linear relation is assumed between z; and u. The signal
u is modeled as a time-varying (in frequency and ampli-
tude) sinusoidal disturbance. When the estimated chassis
position coincides with the corresponding measured one,
so will also the estimated profile 4 be equivalent to wu.
In other terms, the command @ could be interpreted as
the estimated road profile required to produce Zg, so that

e = zs — 2s = 0. The problem becomes to find a control
law for unknown time-varying disturbances rejection, case
where the plant model (vehicle system) is known, and the
disturbance model (road) is of unknown parameters.

One of the approaches considered for solving this problem
is to build/estimate the disturbance model, and then re-
compute the controller in real-time. This leads to indirect
adaptive control (Landau and Airimitoaie (2013)). The
time-consuming part of this approach is the redesign of the
controller at each sampling time. This method seems not
to be practical for the present application due to the fast
dynamics of the unpredicted variations of the road profile.
Another way, known as direct adaptive control, consists
to apply YK parametrization of the controller also known
as (Q-parametrization, where it is possible to insert and
adjust the internal model (model of the disturbance) in the
controller by adjusting the parameters of the Q-polynomial
without recomputing the whole controller (polynomials Ry
and Sy remain unchanged, see Figure 5). YK parametriza-
tion technique reduces the computation load and enhances
the controller performances. Authors in (Constantinescu
et al. (2007)) and (Landau and Airimitoaie (2013)) proved
that the direct adaptive control scheme has simpler struc-
ture, implementation, and provides better performance
than an indirect adaptive control scheme, especially during
transient dynamic phases. Based on the analysis given
above, it is recommended to develop the road profile ob-
server in the direct adaptive control framework.

; e
Road,u | Vehicle | Zs & ,
system S

A
u
Quarter <«—Controller [«—

car model

Fig. 4. Problem formulation: block diagram of the observer
interpreted as a closed-loop control system.

4.2 Observability

Because the road profile is deduced from the vehicle mea-
surements, the observability condition must be ensured.
In (Doumiati et al. (2011)), it was verified that the sprung
mass position offers sufficient information leading to a fully
observable QoV model. Moreover, the Gilbert observability
criterion assures full observability even if the road distur-
bance model is represented by a sum of sinusoidal waves
(Tudén-Martinez et al. (2015)).

On a real vehicle, the sprung mass position zs on a corner
of the vehicle can be computed using an accelerometer
and a suspension deflection sensor. As z, is function of the
vehicle load, mass uncertainties, and load distribution, an
online estimator of the sprung mass is required (Yu et al.
(2013)).

4.8 Direct adaptive control scheme

The discrete (digital) direct adaptive control scheme for
time-varying disturbance rejection could be illustrated as
in Figure 5. It uses YK parametrization for the com-
putation of the controller. This algorithm takes its root
from the idea of Tsypkin (Tsypkin (1991)). The common



framework is the assumption that the disturbance is the
result of a white noise or a Dirac impulse passed through
the "model of disturbance (road)” considered unknown.
The polynomials A(z~!) and B(z7!) obtained using the
Z-transform of Equation (3), represent the denominator
and the numerator of the dynamic car model.
The adaptive controller to be built is of RS-type. Its
dynamic is separated into a nominal part (also called
central controller), defined by [Ro(27!),So(271)], and a
performing part given by the polynomial Q that includes
the disturbance model (Q denotes the estimation of the
@ polynomial required to suppress disturbances). The
controller [Ro(z71), So(271)] is built so that it stabilizes
the closed-loop system, and verifies desired specifications
in the absence of the disturbance (without internal model
of the disturbance, Q = 0). It can be computed using
classical methods in control theory, i.e pole placement
method. Once calculated, (R, Sp) remains unchanged in
the control scheme, but Q is adjusted online according to
an adaptive algorithm to make e(¢f) = 0 in the presence
of disturbances without modifying the closed-loop poles
(Landau et al. (2005)). The controller [R(z71),S(271)]
transfer function is given by :

R() _ Roe™)+ AGHQG) ’

S S - BERET) ’
The Q-parametrization offers a supplementary degree of
freedom into the controller permitting to treat separately
the problem of disturbances suppression. For details, ro-
bustness and stability analysis of the YK parametrization
in the framework of adaptive control, one can refer to
(Ioannou and Sun (1996)), (Landau et al. (2005)), and
(Landau et al. (2011)). This study is only restricted to a
brief presentation of the adaptive algorithm and the online
calculation of the polynomial Q
The order ng of the polynomial @ is fixed, and depends
upon the structure of the road wavelengths. According to
(Tudén-Martinez et al. (2015)) two coefficients in the Q
vector are enough to characterize the frequency of one
unknown sinusoidal disturbance.
Let ¢~ ! be the delay operator used for describlng the
system behavior in the time domain (i.e z(t) = ¢~ la(t +
1)). The operator z~! is applied for representation in
the frequency domain. Using the Q-parametrization, the
output of the system in the presence of disturbance can be

written as:
—1 -1 —1
o(t) = So(q )—PZ(_ql) )Q(q )w(t)’ ™
where P(q~!) represents the poles of the closed loop:
P(g™) = AlgH)Solg™") + Bla™ ") Ro(a™"), (8)
and w(t) (see Figure 5) is:
w(t) = A(g™e(t) + Blg™H)a(t). 9)

In the time domain, the internal model principle could be
explained as find @ such that e(t) becomes asymptotically
ZETO.

Define Q(t,q~ ') the estimation of the polynomial @ at
instant ¢:

Qta") = do(t) + @()a™" + -+ dng (a2, (10)
the associated estimated parameter vector:

0(t) = [do(t) @1(t) - Gng (1) (11)

Environment Disturbance
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Fig. 5. Block diagram of the adaptive observer using the
Q-parametrization: problem formulated as a closed-
loop regulation control.

Define the following observation (regressor) vector:

6T (8) = [walt) walt — 1) .. walt — o)), (12)
where:
wrt) = 29Dy B (13)

Pg™)
The a priori adaptation error, defined as the value of e(t)
obtained with Q(t,¢~!), may be written as (details are
provided in (Landau et al. (2009)), and (Landau et al.
(2011)):

(t+1) =wi(t+1) — 07 ()o(t), (14)

The a posteriori adaptation error (using Q(t +1,¢71)),
may be expressed as:

et+1) =wi(t+1) =07t +1)o(t), (15)
with
So(g™h)
wi(t+1) = (q y w(t+ 1), (16)
w(t+1)=A(qg” )e(t+1)+B (¢~ ) (1), (17)
where B*(¢71)a(t) = Ba(t +1).

For estimation of Q(t, q 1) parameters, the following Pa-
rameter Adaptation Algorithm (PAA) is used (Landau
et al. (2005)):

B(t+1) = 0(t) + F(t)p(t)e(t +

Ot +1)
L+ oT(t)F (t) (t)’
t+1) = w1( 1) — 67 ()e(t), (20
F(t)¢(t)e" () F(t)
na O - ot ermen” @
where F(t) is a time-varying adaptation gain (positive
definite matrix), and «(t) = :\\;gg F(t) can be interpreted

as a measure of the parametric error. The tuning factors
A1(t) and Aq(t) permit the adjustment of the adaptation
speed. At the beginning of the adaptation, the gain is
high and then it decreases once the Q-parameter values
are being adapted.

1), (18

e(t+1)= (19

)
)
)
)

F(t+1) =




For adaptive operation, the following procedure works
continuously and is applied sequentially at each sampling
time:

(1) Get e(t+1) and -i(t) to compute w(t+ 1) using (17).

(2) Compute wq(t+ 1) and ws(t) through (13) to (16).

(3) Estimate the @-polynomial using the parametric
adaptation algorithm given by (18) to (21)

(4) Calculate 4(t + 1) according to:

So(q " )a(t+1) = Ro(q )e(t+1)+Q(t, ¢ w(t+1).
(22)

4.4 Choice of the adaptation gain

To optimize the performances of the PAA, it is useful
to tune the time profile of the adaptation gain F(¢)
through two parameters: A\;(¢) and A2(t). An adaptation
gain with a variable forgetting factor A;(¢) combined with
a constant trace of F'(t) is chosen to track automatically
the changes of the road characteristics. This adaptation
regime is required for the case where no initial information
is available upon the unknown parameters.

F(t) with variable forgetting factor:

The variable forgetting factor is given by:

A1(t) = Aot —1) + 1= Ao, (23)
with 0 < Ag < 1. A1 goes to 1 as t — +o0. A typical value
of Aa(t) is 1. Tt is proved that for the variable forgetting
factor A1, F(t) asymptotically tends toward a decreasing
adaptation gain (Landau et al. (2011)).

F(t) with constant trace:
The trace is defined as the sum of the diagonal terms of
the gain matrix F'(t). Constant trace means that:

tr(F(t) =tr(F(t+1)) =tr(F(0)) = ngé, (24)
where,
F(0) = diag(€...€), 0.01 < £ < 4 (25)
T
D) = SO o e @)
In this case, one computes A (t) for a(t) fixed.

Finally, the PAA algorithm switches from the case of
variable forgetting factor to the case of constant trace when

tr(F(t)) < ngé.
5. EXPERIMENTAL RESULTS

In this section, the proposed YK parametric estimator
is compared to the LPA and IP instruments through
two experimental tests using two different lab cars. The
signals coming from the profilers constitute the reference
profiles. These data correspond to random sequences of
road disturbances. They were collected during real trials,
and then treated off-line. Figure 3 shows the spectra of the
collected road profiles. In the following, the test scenarios,
observer configurations, and results are illustrated and
analyzed. A comparison of the present methodology with
the Kalman based approach developed in (Doumiati et al.
(2011)) is also provided in the next. For the following tests,
vehicles are moving straightly, and their body positions are
obtained by double integration of the signals generated
by the accelerometers installed at the vehicles’ corners in

the vertical direction. Due to the fast up and downward
movements, the vertical acceleration signals are noisy, and
thus well calibrated band pass numerical filters are applied
in the signals processing phase (Doumiati et al. (2011) and
(Doumiati et al. (2013)).

5.1 Test 1 : comparison with (LPA) profiler

The experimental vehicle shown in Figure 6 is the LCPC
Laboratory test vehicle. It is a Peugeot 406 equipped with
accelerometers, relative suspension deflections sensor and
towing LPA for road profile measurement. The suspen-
sion/tire parameters are: ms = 378 Kg, ¢s = 3000 Ns/m,
ks = 21319 N/m, m, = 36.8 Kg, and k; = 100000N/m
(Imine et al. (2006)). Among numerous experimental tests,
a trial made at the LCPC Laboratory test track is consid-
ered. The car runs on an irregular surface with a quasi-
constant speed of 72 km/h along 600 m. The results
illustrated in the following correspond to the left front
wheel. Figure 7 shows the body positions in response to
the road disturbance input.

Regarding the nominal controller (Ry,Sp) (without the
internal model of the disturbance), it is designed via MAT-
LAB/SISO tool so that it reconstructs the low frequencies
part of the profile elevation. Figure 8 draws the output
sensitivity function of the system defined as the transfer
function between zs and the output of the system e:

(& S()A

— —_ "% wh )= 0.
T SoArRep “here@=0

(27)
The polynomials Ry(z~1) and So(2~ 1) are found to be:

Ry =9.15—-16.62"" +8.04272, Sy =1—2"". (28)

The number of parameters in the Q-vector is experimen-
tally obtained because the number and the characteristics
of the waves that determine the road profile are unknown.
Figure 9 displays the residual variance between u and
@ for different ng. The error reduction is negligible for
ng > 8. Thus, eight parameters representing the sum of
four sinusoidal waves seem enough to illustrate the road
elevation of Test 1.

Figure 10 plots the estimated road profile via the proposed
control approach and the one measured by the LPA.
Clearly, the estimated values match well the LPA signal.
However, some discrepancies in amplitudes persist. They
might be caused by sensors calibration and filtration pro-
cess in the LPA system. Figure 11 shows the variations
of the polynomial Q coefficients. These coefficients are
adapted as function of the involved road frequencies, and
converge to some suitable values to ensure good estima-
tions.

5.2 Test 2 : Comparison with Inertial profiler

In this test, the IFSTARR-MA laboratory vehicle (see Fig-
ure 12) moves on an irregular surface at a quasi-constant
speed of 25 km/h. Some interesting parameters of the QoV
model are given as: mg = 411 Kg, ¢ = 1146 Ns/m,
ks = 20000 N/m, m, = 41 Kg, and k; = 100000 N/m.
A bump is encountered on the roadway at almost 50 m
from the departure point. The vehicle platform includes
the required sensors and data acquisition system to run



Fig. 6. LCPC laboratory vehicle towing LPA (Imine et al.

(2006)).
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Fig. 7. Test 1: Up and downward vehicle body movements

due to road irregularities.
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the inertial profiling method. The distance between the
vehicle body and the road is measured by a high-quality

optical sensor.

The YK controller configuration is given as in the pre-
vious subsection. The calculated central controller using

Matlab/SISO toolbox is found to be:

Ry=84—-1572"1 475272 Sy=1-2"1. (29

Figure 13 illustrates the IP signal and the estimated profile
on the rear right wheel. Once again, the obtained results

2 3

25

15¢ : .
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Fig. 9. Test 1: Sensitivity study on ng; Residual variance
(mm? x 10~%) function of ng parameters.
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Fig. 10. Test 1: Comparison between the proposed adap-
tive observer approach and the LPA signal.
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Fig. 11. Test 1: Evolution of Q parameters during online
adaptation.

confirm the validation of the YK observer along the trial.
Figure 14 gives the variation of the Q-polynomial coeffi-
cients. At the beginning, the parameters converge almost
to the same value; then, all parameters are adapted again
when the vehicle passes through the bump. Afterward, the
parameter vector keeps almost constant values because the



Fig. 12. IFSTARR-MA laboratory car: Peugeot 307
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Fig. 13. Test 2: Comparison between the proposed adap-

tive observer approach and the Inertial profile.
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Fig. 14. Test 2: Evolution of Q parameters during online
adaptation.

remaining part of the road is smoother than the previous
part including the bump. Comparing Figures 11 and 14, it
can be deduced that the Q-parameters in Test 2 are more
dispersed than those identified in Test 1. This could be
explained by the fact that the vehicle in Test 2 tackles a
non homogenous road due to the occasional presence of
a bump. Authors also believe that as the vehicle moves
on rougher roads, higher Q- parameters values will be
identified meaning that the controller is demanding more
efforts to reject input disturbances, and so to achieve good
estimation of the profile.
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Fig. 15. Test 1: Spectrum of the estimation error signal,
u — 4: comparison between the proposed adaptive
approach and the Kalman observer.

5.8 Comparison with a Kalman based estimator

For more precise quantification of the estimation qualities,
Figures 15 and 16 illustrate the spectra of the estimation
errors for Test 1 and Test 2, respectively. It is deduced that
the observer performs well especially for low frequencies
corresponding to high wavelengths. These figures also com-
pare the performance of the present method to the study
given in (Doumiati et al. (2011)). Recall that the previous
study assumed low road acceleration signal, @ = 0, and
applied a model-based stochastic Kalman filter for profile
estimation. The road profile and its velocity were included
in the states vector. Results prove that the proposed YK
approach points out better performances especially for
small frequencies that are crucial for suspension control.
This is mainly due to the better representation and mod-
eling of the road profile in the estimation process. Other
advantages of the novel proposed method comparing to
the Kalman one are:

e less costly method: since it requires only informa-
tion regarding the body position, whilst the previous
method needed measurements of the suspension de-
flections, the body position and acceleration.

e simpler tuning approach: since it only demands the
regulation of the adaptation gain parameters, whilst
the proposed Kalman method built on six states and
three measurements required the regulation of a 6 x 6
and 3 x 3 noise variance-covariance matrices.

6. CONCLUSION

This paper described a new model-based estimation pro-
cess suitable for real-time implementation to reconstruct
the elevation of the road. According to ISO 8608, a road
profile satisfies a periodic motion of one or more sinu-
soidal waveforms, whose fundamental frequencies are not
straightforward to compute. To build the model-based
observer, the vehicle was represented by a QoV model
while the road surface was modeled by a finite number
of sinusoidal waves with time-varying characteristics (in
amplitude and frequency). Since the estimation quality
strongly depended on the unknown frequencies of the
road profile excitation, an adaptive observer scheme was
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Fig. 16. Test 2: Spectrum of the estimation error signal,
u — 4: comparison between the proposed adaptive
approach and the Kalman observer.

designed by means of YK parametrization also known
as Q-parametric observer. The road profile observation
problem tackled in an adaptive control regulation scheme
can be considered as a major contribution of this research.
The profile reconstruction capacity was successfully tested
through numerical simulations using experimental data
issued from LPA and IP tools. The obtained results sup-
ported the validity and pertinence of the postulated work-
ing hypothesis and framework.

Further investigations consist to apply half or full-car
vehicle model instead of a QoV model for a better rep-
resentation of the vehicle dynamics in different driving
situations (cornering, steering, accelerating, and braking).
The proposed method will be also integrated in a global
control scheme including semi-active suspensions among
other actuators for vehicle stability and driving comfort.
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