Simultaneous Registration and Change Detection in Multitemporal, Very High Resolution Remote Sensing Data

Abstract : In order to exploit the currently continuous streams of massive, multi-temporal, high-resolution remote sensing datasets there is an emerging need to address efficiently the image registration and change detection challenges. To this end, in this paper we propose a modular, scalable, metric free single shot change detection/registration method. The approach exploits a decomposed interconnected graphical model formulation where registration similarity constraints are relaxed in the presence of change detection. The deformation space is discretized, while efficient linear programming and duality principles are used to optimize a joint solution space where local consistency is impo
Type de document :
Communication dans un congrès
2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun 2015, Boston, United States. pp.61-69, 2015, 〈10.1109/CVPRW.2015.7301384〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01264072
Contributeur : Maria Vakalopoulou <>
Soumis le : mardi 16 février 2016 - 14:03:41
Dernière modification le : mercredi 3 octobre 2018 - 01:10:40
Document(s) archivé(s) le : mardi 17 mai 2016 - 17:21:05

Fichier

vak_etal_cvprw.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Maria Vakalopoulou, Konstantinos Karatzalos, Nikos Komodakis, Nikos Paragios. Simultaneous Registration and Change Detection in Multitemporal, Very High Resolution Remote Sensing Data. 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun 2015, Boston, United States. pp.61-69, 2015, 〈10.1109/CVPRW.2015.7301384〉. 〈hal-01264072〉

Partager

Métriques

Consultations de la notice

424

Téléchargements de fichiers

121