N
N

N

HAL

open science

How well can linear stability analysis predict the
behavior of an outward valve brass instrument model ?
Lionel Velut, Christophe Vergez, Joél Gilbert, Mithra Djahanbani

» To cite this version:

Lionel Velut, Christophe Vergez, Joél Gilbert, Mithra Djahanbani. How well can linear stability
analysis predict the behavior of an outward valve brass instrument model 7. 2016. hal-01245846v2

HAL Id: hal-01245846
https://hal.science/hal-01245846v2

Preprint submitted on 8 Jun 2016 (v2), last revised 22 Feb 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01245846v2
https://hal.archives-ouvertes.fr

How well can Linear Stability Analysis predict the

behaviour of an outward valve brass instrument model?

Lionel Velut!, Christophe Vergez!, Joél Gilbert?, and Mithra Djahanbani!

ILMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, F-13453
Marseille cedex 13, France.
2Laboratoire d’Acoustique de 1'Université du Maine, UMR CNRS-6613, Avenue
Olivier Messiaen, 72085 Le Mans cedex 9, France

May 31, 2016

Abstract

A physical model of brass instrument is considered in this paper : a one degree-of-freedom
outward-striking valve for the lips, non-linearly coupled to a modal representation of the air
column. Tt is studied through Linear Stability Analysis (LSA) of the equilibrium solution.
This approach provides the threshold blowing pressure value, at which instability occurs, and
the instability frequency value. The relevance of the results of this method is theoretically
limited to the neighbourhood of the equilibrium solution. This paper checks the efficiency of
LSA to understand the behaviour of the model computed through time-domain simulations.
As expected, a good agreement is observed between LSA and numerical simulations of the
complete nonlinear model around the oscillation threshold. For blowing pressures far above the
oscillation threshold, the picture is more contrasted. In most of the cases tested, a periodic
regime coherent with the LSA results is observed, but over-blowing, quasi-periodicity and
period-doubling also occur. Interestingly, LSA predicts the production of the pedal note by
a trombone, for which only nonlinear hypotheses have been previously proposed. LSA also
predicts the production of a saxhorn note which, although known to musicians, has barely

been documented.

1 Introduction

Linear Stability Analysis (LSA) can be used to analyse the behaviour of dynamical systems around
equilibrium points (i.e. non-oscillating solutions). LSA consists in writing a linearised version of a
dynamical system. The stability of the linearised system is then assessed by studying its response

to harmonic perturbations.



LSA has already been applied to physical models of musical instruments, such as woodwind
instruments [Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008, Karkar et al., 2012],
flute-like instruments |[Terrien et al., 2014] and brass instruments [Cullen et al., 2000,
Lopez et al., 2006, Silva et al., 2007]. By definition, the domain of relevance of the LSA re-
sults is theoretically limited to the neighbourhood of the equilibrium solution. However, recent
results on flutes have highlighted that LSA can predict important features of periodic regimes,
such as their frequencies |Terrien et al., 2014|. This paper examines to what extent LSA can be
used to understand some aspects of the behaviour of a physical model of brass instrument.

Physical models of brass instuments have been proposed in multiple stud-
ies [Eliott and Bowsher, 1982, Fletcher, 1993, Adachi and Sato, 1996b, Cullen et al., 2000,
Campbell, 2004, Silva et al., 2007]. Since our focus in this study is a simple model, a one
degree-of-freedom system is retained to model the player’s lips: the outward-striking valve,
also referred to as "(+,—)" in some publications. The same goal of simplicity makes us
ignore nonlinear propagation in the bore of the instrument, which is responsible for "brassy
sounds" at high sound levels [Myers et al., 2012|. The coupling by the airflow blown be-
tween the lips and the air column inside the bore is modelled through a usual nonlinear
algebraic equation [Hirschberg et al., 1995].  This model is detailed in Section 2.1. Even
such a simple brasswind model has more parameters needing to be tuned than the sim-
plest models of woodwind instruments, which is based on two dimensionless parameters
only [Hirschberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013].
However, brasswind players make their instrument oscillate on several modes, which implies a
significant modification of the mechanical characteristics of their lips. In musical terms, this
corresponds to playing multiple notes without pulling a slide nor depressing a valve, which is part
of the playing technique of all brass instruments. Therefore, the lip dynamics cannot be ignored,
which implies an increase in the number of parameters to tune. A bibliographical review is given
in Section 2.2 to give grounds to the choice of the values chosen for each parameter of the model.
In Section 2.3, details are given on how LSA is applied to the model. There are several possible
approaches to highlighting nonlinear model behaviours to compare them with LSA results. For
instance, the Harmonic Balance Method gives a Fourier series approximation of the steady state of
periodic regimes, including unstable ones |Gilbert et al., 1989, Cochelin and Vergez, 2009|. Since
the pioneering work described in [McIntyre et al., 1983, Schumacher, 1981], it is also possible to
carry out time-domain simulations at moderate computational cost, providing access to transients
and possibly non-periodic solutions. The second approach is retained here (see Section 2.4).
Section 3 compares LSA results and numerical simulations for different sets of parameter values.
Periodic regimes, corresponding to the usual sound of the instrument, are explored, along with
less common regimes such as quasi-periodicity and period-doubling. In Section 4, we focus on
the lowest acoustic resonance of brass instruments, called the pedal note, for which LSA provides

interesting unforeseen information on numerical simulation results.



2 Tools

2.1 Brass instrument model

In most wind instruments [Fletcher, 1993, Chaigne and Kergomard, 2016|, including brass instru-
ments [Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000], the oscillation results from
the coupling between an exciter and a resonator. More generally, the closed-loop system repre-
sentation shown in Figure 1 has been widely used by the musical acoustics community since the
seminal work of Helmholtz [von Helmholtz, 1877, McIntyre et al., 1983].

Resonator
(air column)

Exciter

(lips)

Nonlinear
Coupling

Figure 1: Closed-loop model in free oscillation, suitable for the description of most self-sustained
musical instruments. Self-sustained oscillations are generated by the localised nonlinear coupling
between a linear exciter and a linear resonator. For brass instruments, the exciter is the lip reed
while the resonator is the air column inside the bore, and the coupling is due to the air flow between
the lips.

For brass instruments, the exciter is the lips of the musician. It is represented by a linear,
oscillator-like valve linking the height of the lip aperture h(t) and the pressure difference across
the lips dp(t) = py — p(t), where p, is the blowing pressure, and p(t) is the oscillating pressure
signal inside the mouthpiece (the input of the bore).

A one degree of freedom valve (referred to hereafter as "1-DOF valve") [Fletcher, 1993| is
enough to model the lips for common playing situations [Yoshikawa, 1995| with a tractable number
of parameters. Two kinds of 1-DOF valves can be considered : the "outward-striking" valve tends
to open when dp grows, while the "inward-striking" valve tends to close.

While it is now admitted that woodwind reeds can be satisfactorily modelled by inward striking
valves [Wilson and Beavers, 1974, Dalmont et al., 1995|, there is no consensus about the modelling
of the lip reed, as neither the outward nor the inward valve model reproduces all the behaviours
observed with real musicians. Particularly, brass players are able to reach a playing frequency
fose either above or below the n' bore resonance frequency f., [Campbell, 2004], while a 1-DOF
inward or outward valve model is limited to playing frequencies respectively below or above fq.,
to meet the regeneration condition explained in [Eliott and Bowsher, 1982|. Moreover, measure-
ments of the mechanical response of artificial [Cullen et al., 2000, Neal et al., 2001] and natural
lips [Newton et al., 2008] revealed the coexistence of both inward and outward resonances - this
coexistence allowing f,s. to be below or above f,. .

However, situations where f,q. is below f,.,, (inward-striking behaviour) are mostly specific to

some musical effects. For normal playing situations, the playing frequency is above f,.,, and an



outward valve model is preferred. Moreover, the geometry of human lips makes them open when
the pressure in the mouth increases, which is consistent with the behaviour of the outward valve
model. The relevance of this choice will be reinforced throughout this article, by comparing the
results of the model analysis with experimental behaviours of brasswinds.
The outward-striking valve model gives the relation below, linking the height of the channel
between the lips and the pressure difference across the lips :
d*h w; dh 9

T oS R o) = (= p(0), ()

where w; = 27 f; (rad - s71) is the lip resonance angular frequency; Q; the (dimensionless) quality
factor of the lips; ho the value of h(t) at rest; u a lip surface mass equivalent; (kg-m™2). The

variables are reported on the sketch of the lip region in Figure 2:

Figure 2: Sketch of the mouth and lips of the musician and the instrument mouthpiece. The
mouth (left) is considered as a cavity under a static pressure p,. The lips (red ellipses) separate
the mouth and the mouthpiece. The height between the lips is A(t), the airflow between the lips
is u(t) and the pressure in the mouthpiece is p(t).

This model assumes the mouth pressure to be constant, even though the existence of an oscil-
lating component in the mouth has been demonstrated experimentally [Fréour and Scavone, 2013].
A more precise model would consider this oscillating component, and would also consider the tun-
able resonant cavity formed by the vocal tract [Eliott and Bowsher, 1982|. A significant role of
the vocal tract has been shown for saxophone and clarinet playing [Clinch et al., 1982, Fritz, 2005,
Guillemain et al., 2010, Chen et al., 2011]. For brass instrument playing on the other hand, the
role of the vocal tract does not seem to be significant when playing periodic regimes in the usual
musical range of the instrument - although its interaction with the lips has been highilighted by
experimental studies [Chen et al., 2012, Fréour and Scavone, 2013, Boutin et al., 2015].

The resonator is the air column inside the bore of a trombone or a saxhorn (see Section 4.4.2).
It is modelled by its input impedance, which is the ratio of the pressure at the input of the resonator

P(w) and the acoustic flow at the same point U(w) in the frequency domain:

Z(w) = ——. (2)

Nonlinear effects in the resonator should be taken into account to accurately describe

the behaviour of brass instruments at medium/high playing levels [Hirschberg et al., 1996,

4



Myers et al., 2012| particularly the "brassy sound" related to the formation of shock waves. How-
ever, the main objective of this work is the study of oscillation around threshold (i.e. at low lev-
els). Therefore the acoustic propagation along the bore is assumed to be linear and thus the input
impedance fully describes the resonator in our model. Here, input impedances of a Courtois "T149"
tenor trombone (and when mentioned, a Couesnon "Excelsior" baritone-saxhorn in Bb) are used.
Impedances are measured with the impedance sensor described in [Macaluso and Dalmont, 2011].
They are fitted by a sum of complex modes (Lorentzian functions) using a Least Mean Squares
method, as described in [Silva, 2009, p.28-40]. The characteristic impedance of the resonator is
Z. = pc/S, S being the input cross Section of the bore, located at the mouthpiece rim. The

modal-fitted impedance is written:

Z(w)=2Z.) _Gn (3)

Jw— 8,

s, and C, being the complex poles and the complex residues of the n' complex mode, respec-
tively. Comparison between the measured trombone impedance and an 18-mode fit can be found
in Figure 3. The maximum relative difference between the measured and the fitted curves, for
frequencies above 30Hz, is lower than 2.6 % for the magnitude, and 4.7 % for the phase. Some

measurement points in low frequency are biased due to the precision of the impedance sensor.
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Figure 3: (color online) Magnitude (top) and phase (bottom) of the input impedance of a Courtois
tenor trombone. The solid (blue) curve depicts the measured impedance, the dashed (red) curve
is the fitted version with 18 complex modes.The difference between fit and measure is also plotted.

Those two linear elements (exciter and resonator) are non-linearly coupled by the airflow
through the lip channel. The air jet is assumed to be laminar in the lip channel, but tur-
bulent in the mouthpiece, all its kinetic energy being dissipated without any pressure recov-
ery. Applying the Bernoulli law and the mass conservation law gives the following expression
of the flow between lips, depending on the pressure difference and the height of the lip chan-
nel [Wilson and Beavers, 1974, Eliott and Bowsher, 1982, Hirschberg et al., 1995|:



u(t) = \@Whm/p_b 0. (4)

where u(t) is the airflow (m®-s™'), h(t) the height of the channel between the lips (m), p = 1.19
kg - m~? the density of the air at 20 °C and W the width of the lip channel (m).

The dynamics of the system described by (4), (1) and (3) can be put into a state-space repre-
sentation X = F(X), where F is a nonlinear vector function, and X the state vector, containing the
observables of the system. Taking p(t) = ZnN:1 2Re(pn(t)), where p, is the n'™ modal component
of the pressure at the input of the bore:

d?h w; dh
T = —wPh(t) — £ 20 — 20 4 (2, 4 B -

e = 5upa(t) + ZeCuy[AWh(E)/py — p(D) for n € [1: N].

This leads to the following state vector, similar to the one proposed in [Silva et al., 2014]:

X = [h@);%;{pn@,n el N]}} , 6)

and the function F' can be written as:

ah X(2)
t 1
@ ~wPX (1) - %X(Q) - o 2Re[X (k)] + wiho + %
2 2
WX _Ndpy | | six(3)+ (Jl.Zc.\/jWX(l)\/pb — M 2oRelX (k)] | (7)
dt dt P
' 2
% su X (n 4 2) + Cn.Zc.\/;WX(l)\/pb — SV 2Re[X (k)]

2.2 Choice of lip parameters

Setting the values for the parameters of the lip model is not obvious, as measuring the mechanical
impedance (velocity over force ratio)under playing conditions (oscillating lips) seems out of reach.
Adjusting parameters to get results comparable with measured signals does not seem a good
approach: Indeed, even though a one-DOF model depends on a small number of parameters,
different sets of parameter values may lead to similar results [Hélie et al., 1999]. Moreover, lip
valve parameters are expected to vary far more than reed valve parameters, particularly the lip
resonance frequencies.

A bibliographical review on lip parameter values has been done. Results from the literature

are gathered in Table 1 along with a brief summary of the method used in the reviewed articles.



Reference ho (m) | W (m) | fi (Hz) | p=' (m*kg™!) | @ Summary
[Eliott and Bowsher, 1982] N/A N/A 200 0.2 0.5 @Q); measured on cheek
[Cullen et al., 2000] 1" (Outward) mode
Soft 6.3-107% | 18-1073 | 189 0.07 10.5 artificial lips
Medium 5.3-107* | 12-1073 | 203.5 0.11 6 3 embouchures
Tight 44.-1074 | 11-1073 222 0.09
[Lopez et al., 2006] 2-107% [30-107% | 162 0.03 5 artificial lips
[Gazengel et al., 2007] human lips;
Soft N/A N/A 115.7 N/A 0.79 saxophone-like
Medium N/A N/A 479.9 N/A 0.46 position;
Tight N/A N/A 1073 N/A 0.46 3 embouchures
[Newton et al., 2008] N/A N/A 32 N/A 1.2-1.8 Human lips
High-speed camera
[Richards, 2003 5-107* 7-1073 162 0.19 3.7 artificial lips
fit for good results
[Rodet and Vergez, 1996] N/A N/A 428.4 0.67 2.88 Trumpet; adjusted
for simulation
[Adachi and Sato, 1996b] 1-107% | 7-107% | 60-700 variable 0.5-3 Adj. for simulation

Table 1: Review of different values of lip parameters from literature, along with a brief explanation
of the method. In some articles, certain values are not available (N/A). For papers presenting 2-
DOF lip models, only the first, outward DOF is reported.

This work complements the review published in [Newton, 2009, p.119]. Many authors do not
provide the parameter values they use, nor do they give explanations about their method to get
these values, except the fact that these parameters allow periodic self-sustained oscillation of the
model. Measurements on human or artificial lips were made in conditions as similar as possible
to the playing conditions. The list of publications is not exhaustive: we left aside most of the
publications since they do not justify their values or do not fit their measurements with a modal
lip-reed model.

Geometric parameters (lip channel width, and lip channel height when the player is not blowing)
given in all studies are very similar, around hg = 5.107* m and W = 12.1073 m. Parametric studies
have shown that variations in these values do not drastically change the qualitative behaviour of
the model: the threshold values change but the overall shape of the curves is the same. Similar
observations have been made about u, even though the range of the values gathered is a little
wider (p € [3.7 : 11.1] for the trombone).

Measurements from |[Gazengel et al., 2007, Newton et al., 2008] tend to give low quality-factor
values between 0.5 and 2 for human lips. However, preliminary analysis carried out with @); ~ 1
showed very unrealistic pressure thresholds (order of magnitude : 10? to 10° Pa). Thus, a value

for Q; = 7 was chosen, closer to the values measured on artificial lips (Q; € [5 : 10]). The set of




parameters used for simulation and LSA throughout this paper is given in Table 2:

ho (m) | W (m) | 1/p (m*kg™") | @
51074 | 12.10°3 0.1 7

Table 2: Lip parameters retained in this study.

The value of f; is constantly adapted by the musician while playing. For this reason, we performed
LSA with f; values ranging from 20 Hz to 500 Hz. This allows oscillation on the first eight regimes

of the instrument, which correspond to the usual notes of the trombone, from Bbl to Bb4.

2.3 Stability of the equilibrium solution

Linearising a closed-loop system to assess potential instabilities is a widely used method, in the dy-
namical systems community [Bergé et al., 1995| as well as in musical acoustics for brasswind, wood-
wind and flute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,
Auvray et al., 2012, Terrien et al., 2014|. Basically, the equations modelling the system are lin-
earised around a known equilibrium solution. Then, the stability of this solution is determined.

When the system described in Section 2.1 is in static equilibrium, the lip opening position has
a static value h(t) = h.. This equilibrium position is slightly larger than the lip opening at
rest hg, due to the constraint of the blowing pressure on the inner sides of the lips. Similarly,
there is a small static overpressure p. at the input of the bore of the instrument, as Z(w = 0) is
nonzero. This is related to the pressure loss in the instrument. Mathematically, this equilibrium

is obtained by cancelling all time derivatives in the system, as described in appendix A. The value
of A= ./py, — pe is obtained by solving:

A? Dy
AP 4 = houwlA — 2 =0, 8
B 0 l ﬁ ( )
with 8 = WZH(;;O) \/%. The value of Z(w = 0) is extrapolated from the fitted version of the
l

impedance. Equation (8) has 1 or 3 real roots. In the latter case, the smallest real positive root
should be considered to compute p. = p, — A? [Silva, 2009], as Z(w = 0) is small. The lip channel
height at equilibrium A, is then given by (1) with A = h = 0.

In the vicinity of the equilibrium solution X,, the linearised function F' can be written as:

F(X) = F(X.) + Jr(X)(X — X,), (9)

where Jp(X) is the Jacobian matrix of the function F' and X, the state vector at the equilibrium
solution. The solutions of X = F(X) are under the form :

N
X(t) = Xe =) Uit (10)
=1

where \; are the eigenvalues of Jp(X) and U; the corresponding eigenvectors.
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Thus, the eigenvalues of the Jacobian matrix give information about the stability of the equilibrium
solution for a given set of parameters. If at least one of these eigenvalues A has a positive real
part, the amplitude of the linearised solution tends toward infinity, which means the equilibrium
is unstable and the solution starts oscillating. Referring to (10), this means that one of the
terms of the sum dominates the solution, all other terms being decreasing exponentials. As a first

approximation, the solution of the linearised system can be written:

X(t) — X, = Xqe, (11)

In the transient phase of the oscillation, the exponential growth of the amplitude is determined
by the positive real part of A\, and the angular frequency is given by the imaginary part of the
eigenvalue w = Im(\). However, the nonlinearities of the system limit the final amplitude and
also affect the oscillation frequency of the steady state.

This method only detects instabilities emerging from the equilibrium solution. If a stable oscil-
lating regime coexists along with the stable equilibrium solution, it will not be detected. This
situation occurs for example in certain woodwind instruments, where the Hopf bifurcation (con-
necting the equilibrium solution to the oscillating one) is inverse in some cases [Grand et al., 1997,
Dalmont et al., 2000, Farner et al., 2006, B. Ricaud, 2009|.

2.4 Time-domain simulation

Another approach for studying musical instruments relies on time-domain ab initio simulations of
the chosen model, for a given set of parameters.

Multiple numerical methods have been developed to simulate wind instruments with models
similar to the one presented in Section 2.1. Various approaches have been proposed to im-
plement the resonator acoustic behaviour. The reflection function of the bore has been widely
used [Mclntyre et al., 1983, Schumacher, 1981, Adachi and Sato, 1996a, Vergez and Rodet, 1997,
Gilbert and Aumond, 2008]. The modal decomposition of the bore has been chosen for this arti-
cle, and computations are carried out with the open-source MoReeSC software tool, freely avail-
able [MoReeSC, 2013|. Its principles and results have been described in [Silva et al., 2014]. This
simulation tool uses the state-space paradigm, similar to the one presented in Section 2.1. It al-
lows the simulation of the behaviour of the model with a high number of acoustic modes for the
resonator (18 in this study), and offers the necessary flexibility to modify the model parameters,

including the resonator parameters, as it is done in Section 4.



3 Results

3.1 Linear Stability Analysis

The LSA method detailed in Section 2.3 is applied to the model defined in Section 2.1, with the
set of lip parameters defined in Table 2. The resonator is modelled with a modal fit (N=18 in
Equation (3)) of a measured impedance (Bb trombone, first position).

For each value of f; considered, the eigenvalues of the Jacobian matrix Jp(X.) presented in Equa-
tion (9) are computed for increasing values of p,, until a first instability, characterized by at least
one eigenvalue with positive real part, occurs. Results are reported in Figure 4. For each value
of f;, Figure 4a represents the lowest value of p, giving rise to an unstable equilibrium solution,
further referred to as the threshold pressure py,.esn- Figure 4b represents the imaginary part of
the corresponding eigenvalue divided by 27, which is the oscillation frequency at threshold, fur-
ther called fiyesn. Each horizontal dashed line in Figure 4b represents the n'* acoustic resonance
frequency of the instrument f,.,, given by the local maximum of the input impedance amplitude.
It should be noted that, for p, values higher than ps...sn, other pairs of conjugate eigenvalues may
have a positive real part, which implies a system with multiple instabilities. If different oscillating
solutions are stable with these parameters, the system is able to start oscillating on different
acoustic resonances. In Figure 4 and similar figures, the first instability (the one corresponding to
Db = Dinresn) 1s shown for each f; value (solid curve). The second instability is reported only for a
narrow range of f; (dash-dotted curve).

On the [20, 500 Hz] frequency range represented, Figure 4 plots can both be divided into 9 subranges
of f;, each subrange corresponding to one regime of oscillation, related to one acoustic resonance of
the instrument: [30 : 63 Hz] (first regime), [72, 123 Hz| (second regime), [124, 179 Hz|, [180, 234 Hz|,
(235, 288 Hz|, [289, 352 Hz], [353, 404 Hz|, [405,460 Hz|, [462,500 Hz]. In Figure 4b, an oscillating
frequency plateau is maintained just above each value of f,.,. This is the usual behaviour of an
outward valve coupled to an air column [Campbell, 2004]. For each regime, fin esn monotonously
follows the variation of f;. This matches the experience of the brass player, who can slightly
"bend" the sound (increase or decrease the pitch) by adjusting f; through the muscular tension of
the lips, and by adapting the blowing pressure to the change in p;,.sn. The width of each plateau,
i.e. the attainable musical range on each acoustic resonance, has analytical limits depending on
the lip quality factor @, as detailed in [Silva et al., 2007]. In the f; = [64,71 Hz] range, the
equilibrium solution is unconditionally stable whatever the value of p,: this range corresponds to
the neigborhood of the impedance minimum between 1% and 2¢ peaks, which are farther apart
from one another than the other peaks due to the first peak inharmonicity.

As for p,, it can be observed in Figure 4a that the oscillation threshold globally increases with
the rank of the acoustic resonance. A larger p, value is required to reach the higher notes of the
instrument, in accordance with the musical experience. For each regime, the pip.esn curve is U-
shaped, as already observed in [Silva et al., 2007|. Its minimum value p,: ,, marked with a circle

in Figure 4, is known to depend significantly on the quality factor of the lips @);. In the following,
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we assume as in [Lopez et al., 2006] that p,,, and the associated lip resonance frequency fopn
represent the optimal playing configuration for a human performer. This hypothesis is in line
with what musicians claim, i.e. they develop a strategy to minimize the effort to produce a sound
on a given regime. The values of pyy ., between 500 Pa and 10 kPa are in the same order of
magnitude as blowing pressure measures [Bouhuys, 1968, Fréour, 2013|. The pressure threshold
increases faster when f; is above f,,;, than below (see zoom-box in Figure 4b). These results are
compatible with brasswind playing experience, as "bending down" a note requires less effort from
a musician than "bending up" a note.

The rest of this Section focuses on some examples of [py, fi] points to illustrate the different be-
haviours observed for the model. For each case, the agreement between LSA results and the sound

produced by the time-domain simulation described in Section 2.4 is discussed.
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Figure 4: (colour online) Results of the LSA of the model detailed in Section 2.1 with parameters
from Table 2. For a range of lip resonance frequencies f;, (a) shows the threshold pressure pypesh,
while (b) shows the corresponding oscillation frequency fipresn. Dotted lines are the values of fuc..
Circles indicate the "optimal" values p,p, and fop, as defined in the text. The magnified subplot
(zoom on 4" regime) highlights the asymmetrical pesn behaviour above and below pyy, for
the third regime. For illustration, the second destabilisation threshold (a) and the corresponding
frequency (b) are also plotted on a narrow f; interval.
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3.2 Exact match between simulation and LSA

The simulated pressure at the input of the instrument is compared with the LSA results. In
particular, the pressure threshold pi.esn is assessed by performing simulations with p, in the
vicinity of pipresn- The finresn values are also compared with the f,,. values. This latter quantity
is measured by applying a zero-crossing algorithm, with a sliding Hanning window (width 0.3s,
overlapping 99%).

A simulation with the exact value of pyp,.esn Wwould theoretically lead to an infinite transient time,
defined as the time it takes to reach steady state. Therefore, values of p, slightly below and above
Pinresh are tested. To illustrate a periodic oscillation of the model, the lip resonance frequency is
set to f; = 90 Hz, everything else being given in Table 2. The corresponding mouthpiece pressure
waveforms are represented in the first two plots in Figure 5. The third plot shows a situation
where p, is much higher than pesp-

When the mouth pressure is below the threshold (p, = 1210 Pa whereas puresn = 1222 Pa)
(Fig. 5 a), the oscillation decreases exponentially towards the static, non-oscillating solution. The
mouthpiece pressure converges towards 115.5 Pa, which is the value of p. computed with LSA. The
thick line represents the exponential decrease in the amplitude X,.e/™M! (amplitude of solutions
taken from Eq. (11)). In this case, A is the eigenvalue of Jp with the highest (negative) real
part. The calculated oscillation frequency (dash-dotted line) is constant and equal to fipresn = 116
Hz = Im()\) /2.

When the mouth pressure is slightly above the threshold (p, = 1234 Pa) (Fig. 5, centre), the
pressure waveform envelope (thick line) increases exponentially during the transient phase, in
agreement with Equation (11), before reaching a steady-state regime. The calculated oscillation
frequency f,s. (dash-dots) begins at fip.esn = 116 Hz; it becomes quite higher in the permanent
regime (126 Hz, that is, 8.6 % or 143 musical cents above fin esn)-
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Figure 5: (colour online) Time-domain simulations with parameters from Table 2 and f; = 90 Hz,
with mouth pressure p;, lower (a) and higher (b) than the linearised model threshold (pyesn = 1222
Pa). Mouth pressure (steady) and mouthpiece pressure (oscillating) are plotted (left vertical axis)
along with the expected exponential growth/diminution of amplitude (thick curves: envelope of
Equation (11)). The expected oscillation frequency at threshold is fi,esn = 116 Hz. The third
plot (c) corresponds to a blowing pressure much higher than the threshold (p, = 3 kPa; zoom on
first second of signal). The dash-dotted curve depicts the instantaneous playing frequency.
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As expected, the behaviour of time-domain simulations is accurately predicted by LSA as long
as pp remains in the vicinity of pyesn (Figure 4a and 4b). The value of pypresn in simulation is
in agreement with the value given by LSA. The eigenvalue with the largest real part predicts the
frequency and the amplitude of the oscillation at the beginning of the simulation. However, after
t = 8 s, the simulated amplitude gets affected by nonlinear phenomena and is no longer exponential.
Thus, this linearised tool provides relevant information about the signal, but is obviously unable
to fully predict the amplitude of the sustained regime waveform.

The third plot shows the results with p, = 3 kPa much higher than p;,,esn. LSA and time-domain
simulation still give coherent information. As in Figure 5b), the oscillating frequency fos. = 130.5
Hz is 8 % higher than Im(\)/(27) = 120.8 Hz. The difference is 134 musical cents, larger than a
semitone. f,,. is higher than near the threshold. An in vivo experiment has also shown that the
pitch rises when the player increases the blowing pressure [Campbell and Greated, 1994|. However,
this remark should be considered carefully because during practice a brass player always apply

correlated control over mouth pressure and lip muscular activity.

pp (Pa) | Re(N) | Im(XN)/27 || fose (Hz) | measured transient duration (s)
1234 0.2864 116.74 126.5 9.71
1500 5.5591 117.66 127.6 0.74
2000 | 12.0262 118.99 128.9 0.31
2500 | 16.0891 120.01 129.7 0.215
3000 | 18.8507 120.82 130.5 0.1675

Table 3: Values of the real part of the destabilising eigenvalue A, its imaginary part divided by
27, the oscillation frequency and the duration of the transient (both measured on simulations)
for different values of the blowing pressure (all other parameters unchanged). The real part of A
increases with py,, which implies a faster-growing envelope as p;, increases. This is consistent with
the transient duration measured with MIRonsets function estimating the time needed to reach the
maximum value of p(¢) [MIR, |.

Transient times have been measured with different values of p,. The values are reported in Table 3.
The transient time decreases while Re(\) increases, which can be modelled: during the transient,
the amplitude grows exponentially as described in (11). The transient time can be defined as the
time needed for this amplitude to reach its maximum value. This maximum is approximately the
amplitude of the steady regime which, in a first approximation, varies as /Py, — Pinresn While in
the neighbourhood of a direct Hopf bifurcation [Bergé et al., 1995]. If the static value of p(t) is

neglected, a simple analytical model for the transient time is:
t ent L In(Ay/ ) (12)
ransient = ——-—— - Iin - resh):

With A = 4.75 fitted on values measured on time-domain simulations, this model matches very

well with the evolution of transient durations measured on simulations with different values of py,

as shown in Figure 6.
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Figure 6: (color online) Transient durations measured on time-domain simulations, plotted along
the Re(\) value (blue marks). The green line is the transient duration model described by Eq.(12).

The oscillation frequency also increases with p,. An estimate of the frequency is also given (imag-
inary part of A divided by 2 - 7) which matches well the pseudo-frequency of the transient phase

of each signal.

This example is representative of most cases tested: LSA predicts correctly whether the solution
is oscillating, with an estimation of the oscillation frequency. The transient duration can be
accurately predicted with the real part of A, as described in (12) even for p, far above the threshold.
However, the accuracy of the oscillation frequency prediction is limited, and LSA can predict
neither the steady-state waveform nor the nature of the oscillation regime. This latter observation

will be further highlighted in the following sub-section.

3.3 Unforeseen behaviours

The LSA provides a lot of relevant information about the oscillation threshold and the transient
phase. This is particularly true when py, is near pu.esn. However, some simulations (detailed

below) show nonlinear phenomena, which obviously this method cannot perceive.

Quasi-periodic oscillations

Firstly, the previous comparison between LSA an time-domain simulation is reproduced with a
different lip resonance frequency. Three simulations are performed with the parameters in Table 2
and f; = 110 Hz. For these parameters, pi.esn i equal to 711 Pa. Again, three different p,
values are tested: p, = 701 Pa, p, = 720 Pa to illustrate the behaviour just below and above
the threshold, and p, = 2 kPa for an example far above the threshold (c¢). Results are plotted in
Figure 7. When pj, is under the threshold, results are very similar to the previous case with f; = 90
Hz (Fig. 7 (a) and (d)). However, when p, becomes large enough to destabilize the equilibrium

solution, the oscillation of the mouthpiece pressure becomes quasi-periodic (Figure 7 (b),(e), (c)
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and (f)). The quasi-periodic nature of the signal is clearly visible on the spectra (Figure 7(e) and

(f)) with secondary peaks around the principal frequency peaks.
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Figure 7: (colour online) Simulation results for f; = 110 Hz, the pressure threshold being piyresn =
711Pa. Like in Figure 5 three simulations are shown with p, = 701 Pa (a), p, = 720 Pa (b)
and p, = 2 kPa (¢, much higher than py.esn). Other parameters (lip characteristics) are given in
Table 2. Figures (d), (e) and (f) are the spectra corresponding to (a), (b) and (c), respectively
((e) and (f) taken on steady regimes of (b) and (c).

This illustrates the aforementioned limitation of LSA. The existence of an oscillating solution
is attested in the vicinity of the bifurcation, and the pressure threshold pi.esn is accurately

predicted, but the occurrence of a quasi-periodic regime cannot be predicted.

Period doubling

When computed with f; = 55 Hz, p, = 400 Pa (piresn being 161 Pa), and the other parameters
are the values given in Table 2, the simulation result oscillates at f,,. = 32.5 Hz, far below
finresn = 59.78 Hz. This is a peculiar behaviour, as this oscillation frequency is significantly
under the trombone first acoustic resonance (f,.1 = 38 Hz). Indeed, the chosen model induces
playing frequencies above the acoustic resonance frequency (fosc > facn), at least near the pressure
threshold, to comply with the regeneration condition [Eliott and Bowsher, 1982].

Figure 8 compares the spectrum of the mouthpiece pressure simulated with the aforementioned
parameters (dotted plot) and simulated with parameters unchanged, except f; = 50 Hz, i.e., 5 Hz
lower (solid plot). For f; = 50 Hz, f,s. = 65 Hz is higher than fi.csn = 56.3 Hz, like in previous
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simulations in Section 3.2. For f; = 55 Hz, a reasonable expectation would be an oscillation
frequency slightly higher than 65 Hz, as f,s. tends to increase with f;. However, the simulation
oscillation frequency at f; = 55 Hz is f,s. = 32.47 Hz, close to half of its value at f; = 50 Hz.

10°

-~ fI=55Hz
— fI=50Hz

20.log[FFT(p(t)]
BN

0 50 100 150 200
Frequency (Hz)

Figure 8: (colour online) Spectra of the simulated trombone mouthpiece pressures, with (p, =
400Pa) for both lip resonance frequencies, f; = 50 Hz (solid) and f; = 55 Hz (dotted) (other
parameters from Table 2). Cross markers give the values of fin.esn = 56.3 Hz for f; = 50 Hz and
finresn = 59.78 Hz for f; = 55 Hz. The solid vertical line indicates the first acoustic resonance

frequency of the trombone bore, f,.; = 38Hz.

Further simulations were carried out, f; going from 50 to 61 Hz in steps of 1 Hz, all other parameters
being unchanged: p, = 400 Pa, others from Table 2. Table 4 reports the oscillation frequency
measured on the simulated signals, along with the fi,,..sn, value predicted by LSA. Between 54 and
55 Hz, the oscillation frequency is almost halved. Then, between 56 and 57 Hz, the frequency
is again halved, becoming a quarter of its value for f; < 55 Hz. For f; = 59 Hz and above, the
fundamental frequency rises sharply to a value close to its original value, but the energy is far

more distributed in the spectrum.

fi (Hz) 20 51 52 53 o4 95 26 o7 o8 59 60 61
fose (Hz) 65.45 | 65.48 | 65.49 | 65.49 | 65.46 | 32.53 | 32.54 | 16.32 | 16.32 | 65.1 | 65.1 | 65.1

finresn (Hz) || 56.3 | 56.97 | 57.71 | 58.36 | 59.08 | 59.78 | 60.51 | 61.27 | 62 | 62.77 | 63.58 | 64.44

Table 4: Oscillation frequencies measured on the simulated mouthpiece pressure, for lip frequencies
from 50 to 61 Hz, p, = 400 Pa and other parameters from Table 2. Oscillation frequencies at
threshold given by LSA are also reported.

These results are close to those reported in [Gibiat and Castellengo, 2000], with a trombone
player performing two successive period doublings. When increasing f; in this range, the model
undergoes multiple period-doubling bifurcations. Similar scenarios have been observed on nu-
merical models of woodwind instruments [Gibiat, 1988, Kergomard et al., 2004]. This succession
of period doublings is also known as subharmonic cascade or Feigenbaum scenario and leads to

chaotic behaviour, which may explain the noisiness of signals above f; > 58 Hz. Again, explaining
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the occurrence of such phenomena is out of reach for LSA.

QOverblowing

Besides these two nonlinear phenomena, other differences between eigenvalue-based LSA and time-
domain simulation can be observed. Another example is given with f; = 120 Hz, the parameters
given in Table 2 and a high blowing pressure: p, = 6.5 kPa while the threshold is p;,esn, = 1056 Pa.
While fip,esn = 128.4 Hz is just above the 2" acoustic resonance frequency of the bore (faco = 112
Hz), the simulation oscillation frequency is f,s. = 187.5 Hz, near the 37 resonance frequency
(facs = 170 Hz). Figure 9 shows the spectrum of a simulation oscillating on the third acoustic

resonance, while the predicted oscillation at threshold corresponds to the second one.

Mouthpiece pressure (dB)

200 300 400 500
Frequency (Hz)

Figure 9: (colour online) Spectrum of simulated mouthpiece pressure for f; = 120 Hz and p, = 6.5
kPa with other parameters taken from Table 2. The self-sustained oscillation occurs at f,s. = 187.5
Hz, corresponding to the third acoustic resonance, while LSA predicts an oscillation at fi,.csn =
128.4 Hz (solid line) for pi,esn = 1056 Pa. Each dash-dotted line represents the nt" acoustic
resonance frequency f,., of the trombone bore.

The method previously used, which consists in retaining the lowest p, value causing a destabilisa-
tion, does not predict the behaviour of the system with such a high blowing pressure. Yet, this
oscillation on the third regime can be understood, since another pair of eigenvalues of the Jacobian
matrix with a positive real part appears for p, > piresn. The dashed line in Figure 4a) and b)
shows the pressure threshold corresponding to the second pair of such eigenvalues (called \;), and
the associated frequency. For f; = 120 Hz the second threshold is 6116 Pa with an oscillation
frequency equal to Im(\y)/2m = 172 Hz, corresponding to the third regime of oscillation of the
system. This is consistent with the behaviour observed in the numerical simulation.

For a better understanding of the origin of the different instabilities, another LSA formalism is

used, as it gives visual information about the stability margins of the different oscillation regimes.
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It consists in studying a linearised version of the open-loop transfer function (OLTF) of the system
defined by Equation (4), (1) and (3) [Saneyoshi et al., 1987, Ferrand et al., 2010]. This OLTF is
divided into two parts: the exciter admittance Y, which describes the lip reed behaviour, from
Equation (4) and (1), and the resonator input impedance, which is modelled with a modal fit of
its input impedance Z like in the other formalism (see Equation (3)).

The linearisation of the exciter admittance Y, simplifies to a 1%* degree Taylor expansion of Equa-
tion (4) near the equilibrium point; Equation (1) is then put into the result. Details can be found

in Appendix B about the calculation which leads to the following expression of Y,:

2p. D(w) 1
Y, = Whey/ - - ) 13
p < Khe 2pe) 13)

where D(w) represents the dynamics of the lip reed.
The stability of the OLTF, called Hpp, is then evaluated with the Barkhausen -crite-

rion [von Wangenheim, 2011|, which points to possibly unstable solutions when Hop, =Y,.Z = 1.

On a Bode diagram, points with Hpy having a 0 dB magnitude and 0° phase are limits of stability.
This method has already been used for clarinet models with inward valves, and for brass and
flute-like instruments [Saneyoshi et al., 1987, Ferrand et al., 2010, Terrien et al., 2014].

Figure 10 shows the Bode diagram of the OLTF of the system fed with the parameters in Figure 9.

The stability limits are indicated with crosses.
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Figure 10: (colour online) Bode diagram of the open-loop transfer function of the trombone model
with the parameters in Table 2, f; = 120 Hz and p, = 6.5 kPa. There are two instability points
(crosses), with a 0dB magnitude and a zero phase.

Here, the Bode diagram shows two points of 0 dB magnitude and 0° phase at 132 Hz and 172
Hz. In terms of the eigenvalues-based LSA tool described in 2.3, these frequencies correspond to
the imaginary part of the eigenvalues of Jp having a positive real part when these eigenvalues are
calculated with p, = 6500 Pa. The frequency obtained with OLTF differs from the one obtained

with eigenvalues of the Jacobian matrix, because fin, esn = 128 Hz is obtained at p, = pipresn = 1056
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Pa while the OLTF value is obtained with p, = 6.5 kPa. The real part of the second destabilising
pair of eigenvalues becomes positive above 6116 Pa, which is compatible with an oscillation on
this regime at p, = 6.5 kPa. The related frequency at threshold is 172.9H 2z corresponding to an
oscillation on the third acoustic resonance.

Both LSA methods show multiple instabilities of the static solution, that is, multiple possible
regimes of oscillation. The predictions of threshold pressures and possible oscillation frequencies
are satisfactory. But they give no information either about the stability of these oscillation regimes,
or about which regime the instrument will actually oscillate on. This is determined by initial
conditions and by the stability of the different oscillating solutions, which depends on nonlinear

elements out of reach of the method.

4 Lowest regime of oscillation

This chapter focuses on the results of LSA and time-domain simulation on the lowest regime,
related to the first acoustic resonance of the air column inside the bore. This lowest playable note
is called "pedal note" by musicians. For the trombone with its slide fully pulled in, and the saxhorn

with no valve depressed (neutral position), the pedal note is a Bb1 at 58 Hz in the musical scale.

4.1 The Trombone "pedal note"

To compare the behaviour of the different registers of the trombone, the ratio between the thresh-
old frequency finresn and the resonance frequency of the corresponding acoustical mode f,., is
computed. Figure 11a) and b) gives piresn and fipresn like in Figure 4 but on a smaller f; range,
and Figure 11c) gives the fipresn/ facn ratio.

At the frequencies corresponding to the pressure threshold minima, called fo., (see circles in
Figure 9), this ratio appears to be significantly higher for the first acoustic resonance than for the
other ones: fo11/ fac1 = 55.62/38 = 1.46 while fo,tn/ facn € [1.04 : 1.1] for n > 2 as shown in
Table 5.

It can be noted that, at least for the five lowest resonances, fi,csn 1S in good agreement with the
note supposed to be played on the instrument for this resonance, according to the tempered scale
when f; = fot1 (see Table 5). Therefore, the LSA gives a reliable estimation of the reference
note for these acoustic resonances, including the pedal note, with a relative error smaller than
5.5%. The main difference here is the underestimation of the pedal note frequencies, while other

frequencies are overestimated.
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Regime no (n) | foprn (Hz) | tempered scale freq. (Hz) | relative error || focn (Hz) | foptn/ facn
1 99.6 58.27 —4.6% 38 1.46
2 122.9 116.54 5.4% 112 1.1
3 180.0 174.81 2.9% 170 1.06
4 238.9 233.08 2.5% 228 1.05
5) 301.6 291.35 3.5% 290 1.04

Table 5: f,,; values for the five lowest regimes of the trombone, compared with the frequency of the
expected note. The acoustic resonance frequency of the corresponding mode and the f,p1 ./ facn
ratio are also given. f,, is a suitable prediction of the played note. The fo, .,/ facn ratio is
particularly high for the first oscillation regime.

For illustration, a simulation is carried out with the usual parameters from Table 2 with f; =
fopta = 49 Hz and p, = 150 Pa (pipresn being 146 Pa). The resulting signal oscillates at f,s. = 61.86
Hz, far higher than f,.;: the frequency results of LSA and of simulation are consistent for these
parameters as well.

This ability to predict the pedal note of the trombone with the linearisation of an outward valve
model is peculiar. It makes it clear that the production of the pedal note involves the same
phenomena as the other regimes. Moreover, LSA computation with the resonator reduced to the
trombone’s first acoustic resonance results in f,,:; = 61.06 Hz: thus, the upper resonances cannot

be involved in this high f,,: 1/ fac1 ratio.
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Figure 11: (colour online) Results of LSA (with lip parameters from Table 2) are plotted on 11a
and 11b (narrower f; range than in Figure 4). Horizontal dotted lines in b) are the f,., values.
The bisector line is also plotted (dot). 1lc is the fi,esn/fac, n ratio. Circles indicate the fop,
resonance frequencies corresponding to the lowest pipresh-
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The LSA and the numerical simulation reveal a particularity of the trombone first regime: the
oscillation frequency predicted by both methods is far above the acoustic resonance frequency,
which translates into a high f,p; ./ facn ratio for n = 1, while it is much smaller when n > 2. This
matches the experience of trombone players, who are able to play the pedal note in tune with the
other notes, despite the large inharmonicity of the corresponding regime. Therefore, a linearised
model is able to predict a regime previously attributed to unexplained non-linear contributions of
the upper acoustic resonances [Benade, 1976, p.405|.

Bouasse proposed an experiment in which a trombone is played with a saxophone
mouthpiece [Bouasse, 1986, p.370|. Gilbert and Aumont recently ran this experi-
ment [Gilbert and Aumond, 2008], and published it, together with audio and video recordings. The
result is an instrument playing a low Eb0, that is, an oscillating frequency just under f,.; = 38Hz,
which is compatible with a playing frequency below the acoustic resonance frequency, characteristic
of the inward valve model used [Wilson and Beavers, 1974].

In order to explore the influence of nature of the exciter - inward or outward - this experiment is
simulated here. The trombone with a saxophone mouthpiece is modelled with a fit of the input
impedance of a trombone equipped with the equivalent volume of a saxophone mouthpiece, instead
of a trombone mouthpiece. The saxophone reed is modelled with an inward-striking valve having
the characteristics of a cane-reed as described in [Silva, 2009|, with f; = 1 kHz, @ = 1.1;1/u = 4.9
m?kg™ " W = 1073 m; hy = 5.10~% m. The results are presented in Figure 12.

The oscillating frequency of the simulated mouthpiece pressure is close to the first resonance
frequency fosc/ facn = 0.99 - a ratio contrasting with the high ratio obtained with an outward valve.
The signal is nearly sinusoidal, because p, = 1800 Pa is close to pi..sn = 176 Pa, and because of the

lack of acoustic resonances matching the harmonics of this frequency in the impedance spectrum.
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Figure 12: (colour online) Results of simulation of a trombone with a tenor saxophone mouthpiece,
modelled as an inward-striking valve with reed resonance frequency f; = 1 kHz, W = 1 cm,
ho =5.10"%*m, Q; = 1.1, 1/u = 4.9 m?kg~!. The blowing pressure p, = 1800 Pa is slightly above
Dinresh = 1760 Pa. Left plot (a) shows the blowing pressure (red dashed line) and the mouthpiece
pressure (blue solid line). Right (b) plot is the spectrum of the mouthpiece pressure, showing an
oscillation frequency finresn = 37.85 Hz slightly below the first acoustic resonance f,.1 = 38 Hz.
Dashed lines represent the resonance frequencies of the bore for comparison.

The high frequency ratio does not occur in a simulation which models the lips as an inward-striking
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valve: this supports our choice of an outward valve model to reproduce the behaviour of the lips
for the trombone.

4.2 A Saxhorn "ghost note" ?

A complementary exploration is conducted on a Baritone-saxhorn in B°. This instrument has a
conical bore on almost its entire length, and it is played on the same range as the tenor trombone.
Its acoustic resonance frequencies are quite similar to those of a trombone, as shown in Figure 13.
The main difference between both instruments is the first resonance peak, which is nearly harmonic
with the other ones on the saxhorn and very inharmonic on the trombone. Thus, unlike with the

trombone, the pedal note B1 is close to the lowest resonance frequency.
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Figure 13: (colour online) Comparison between modal fits of the impedances of a trombone (red,

dashed) and of a saxhorn (blue, solid). The main difference in terms of frequency concerns the
first peak.

The pedal note is easily playable by a practicing musician. However, while practicing, the authors
fortuitously found out another playable note, whose frequency lies between f,.; and f,.». Trials
have been carried out on different saxhorn models and brands. The note played lies between D5
and ES, that is, a frequency ratio fosc/fac1 between 1.19 and 1.35. We call it the "ghost note" in
this paper. Experienced saxhorn players further confirmed the existence, and facility of emission,
of this ghost note on many different saxhorns and tubas.

LSA results on the saxhorn model are provided in Figure 14. The model used is similar to the
trombone model, with Z equal to the input impedance of the saxhorn in Eq. (3). The behaviour is
similar to that of the trombone, with a particularly high finresn/ fac1 ratio. Once again focusing on
the fopt, values (circles in Figure 14), the ratio is fope1/ facn = 1.23. Asin the case of the trombone,
this ratio is smaller and quite constant for other modes (foptn/ facn < 1.05, n > 2). Time-domain
simulation of the saxhorn model on the first acoustic resonance (with p, = pope1 + 1%, fi = foptn

and other parameters given in Table 2) confirms that f,s./fac1 = 1.23.
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Figure 14: (colour online) LSA results for the saxhorn (with lip parameters given in Table 2) are
given under the same form as those for the trombone in Figure 11. Circles indicate p,p, (a) and

fopt,n (b)

The gap between the lowest note played and the first acoustic resonance is smaller for the ghost
note of the saxhorn (fopt1/ fae,1 = 1.23) than for the pedal note of the trombone (fopt1/ facq1 = 1.47).
However, both are significantly higher than for other modes ( fopt.n/ facn < 1.09 otherwise). Other
studies [Velut et al., 2014| also highlight a high f,s./fs1 ratio for trombone and saxhorn despite
quite different simulation conditions, which indicates the robustness of this phenomenon against
changes in parameters. Thus, this simple linearised model makes it possible to predict the pedal
note of the trombone and the ghost note of the saxhorn. However, a set of parameters simulating

the pedal note Bb1 of the saxhorn with this model still needs to be found, should it exist.

4.3 Shifting of the lowest resonance peak of the input impedances

The trombone and the saxhorn are two examples of instruments having a high fo,:1/fsc1 ratio.
The trombone has a higher ratio than the saxhorn, and the first bore resonance frequency is
lower. To assess this negative correlation between f,.1 and the fy1/ fac1 ratio, the first resonance
frequency of the input impedance is shifted for both instruments. This is done by modifying the
{C1, s1} values in Eq. (3) while keeping the other resonances, as well as the amplitude and quality
factor of the first resonance, unchanged.

For each value of f,.1 tested, the f,11/fac1 value is calculated. Results for both saxhorn and

trombone are reported in Figure 15. For both instruments, the ratio increases when the first
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resonance frequency tends towards zero. Thus, as far as the studied model is concerned, the lower
the resonance frequency, the larger the gap between the playing frequency and the first resonance

frequency.

Figure 15: (colour online) Ratio between the predicted oscillation frequency f,,: 1 and the acoustic
resonance frequency f,.1 for different values of the latter. The solid curve plots the results for
the trombone, the dotted one for the saxhorn. Vertical dash-dotted lines are the original first
resonance frequencies of a trombone (38 Hz) and a saxhorn (62 Hz).

5 Conclusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to
understand various near-threshold behaviours of a complete nonlinear model of brass instrument
applied to a trombone and a saxhorn.

Cases where simulation results are perfectly explained by LSA include obviously exponentially
decaying or increasing oscillation transients around the equilibrium solution. Moreover, in time
simulations, frequencies of periodic regimes measured in steady states are close to those given
by LSA, for all acoustic resonances of the instrument. This remains true as long as the pe-
riodic regime emanating from the equilibrium solution remains stable. Indeed, once this peri-
odic regime loses its stability, overblowing, quasi-periodicity or period-doubling occurs. Multi-
ple instabilities of the equilibrium solution are shown by LSA, corresponding to several avail-
able oscillation regimes, but this method will not determine on which of these regimes the
system is going to oscillate. Further studies of the model with numerical continuation meth-
ods |E.J.Doedel, 1981, Cochelin and Vergez, 2009|, should detect the bifurcations between oscil-
lation branches and estimate the stability domain of each periodic solution, thus determining on
which regime the system would oscillate. Quasi-periodicity and period-doubling are nonlinear
phenomena not taken into account in this method.

The most striking results in this paper concern the lowest acoustic resonance of brass instruments.

Indeed, in the case of the trombone, LSA predicts the production of the pedal note. LSA clearly
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indicates that for low enough acoustic resonance frequencies, the frequency of the emerging oscil-
lation is far beyond the resonance frequency of the instrument. This allows the trombone pedal
note to be played in tune, even though the corresponding resonance frequency is misaligned with
the nearly harmonic series of the upper impedance peaks. This result from LSA analysis is quite
unexpected: the pedal note of the trombone seems to result from a coupling between the lips and
the nearest acoustic mode below the playing frequency, just like for the other oscillation regimes.
The contribution of higher acoustic resonances, usually invoked to explain the pedal note, would
not be considered in a linearised model, and obviously cannot be involved when the analysis is
carried out with a single acoustic resonance. Considering the saxhorn, LSA also suggests the pro-
duction of a note - referred to as the "ghost note" in this paper - that has never been documented
but the playability of which is confirmed by advanced players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing
frequency at threshold and the acoustic resonance frequency rises when the latter decreases requires
further attention. Moreover, neither LSA nor numerical simulations could explain the production
of the saxhorn pedal note. This may be due to a limitation of the 1-DOF valve model for the lips or
more simply to unsuitable parameter values. Indeed, in spite of the bibliographical review carried
out for this study, choosing parameter values for a brass model remains challenging. Even though
the results obtained look reasonable, consistent with musicians’ experience, in vivo measurements

of lip parameters during musical performance would be very valuable.
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A Equilibrium point of the system

Prior to applying the linear stability analysis (LSA) to our model, the equilibrium solution must
be computed before linearising the equations around this solution. This solution consists of a
constant lip channel height h(t) = he, a constant flow between the lips u, and a constant pressure
in the instrument p(¢) = p.. Finding these values consists in solving the equation system (5) with

these constant values. The system becomes:

O—_wlh pe_'_wl2h0+%
Ue = \/;Whe vV Pb — Pe (14)
0= Z.Cprue + Sppne for n € [1: NJ.

Considering the relation between p(t) and its components p,(t¢), and adding the variable A =

/Db — Pe, it becomes:

he = ho + 25
l
Ue = \/%WheA (15)
Pe = Z(w = 0)u,.
These three equations can now be combined :
WZ(w=0) /2 2
7@2 )\FA?’ + A2+ WhoZ(w = 0)\/;1 —pp =0, (16)
P P

Hey

which leads to eq 8 given in Section 2.3.

B Linearisation of Open-Loop Transfer Function

This appendix details the calculations leading to the linearised expression of the open-loop transfer
function of the model. The linearisation of the admittance Y, simplifies to a 15 degree Taylor

expansion of Equation (4) near the equilibrium point:

1) = ) — | )| G0t = 00 + | Gk | 0 - h. )

dp = pp — p(t) is the differential pressure through the lips. dp. and h. are the equilibrium values
of dp and h, respectively, i.e., the values giving the equilibrium solution. Like in Section 2.3, the

h. value is obtained by computing the roots of a 3" order polynomial whose variable is X = /dp:

X2 Z(w=
X%+ — + pwiho X — P _ with 8 = 2w =0)W \/7 (18)
B B f.wp

he is given by Equation (1) in static conditions (all time derivatives being null):
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dPe
(pwp)

All calculations being done, the linearised expression of the flow between the lips is:

mgmzﬂymV??(%gf+%?—%). (20)

In the frequency domain, the equation of the lip movement (Equation (1)) gives the following

he = ho +

(19)

relation between the oscillating components of the differential pressure 6 P(w) and the height of
the lip channel H(w):

P (w)
H(w) = D(w)>—, (21)
//l/.wl
with D(w) being the dynamics of the lips:
1
Dw)=—"F—25" (22)
- wa
which leads to this final expression of the valve admittance:
2pe D 1
Y, = Wihe.y | 222 (— (,j”) - ) (23)
p wwihe  2.pe

C Nomenclature

The symbols and abbreviations used all along this paper are recalled here, along with their meaning

and the unit used:

e h(t): Height of the lip channel (m);

e IW: Width of the lip channel (m);

ho: Height of the lip channel at rest (m);

p: Density of air at 20°C (kg.m™3);

w: Equivalent surfacic mass of the lips (kg.m™2);

Q;: Quality factor of the lips (no unit);

p(t) or P(w): Waveform and Fourier transform of the pressure at the input of the bore of

the instrument (Pa);

pp: Blowing pressure (Pa);

Dinresh: Threshold value of py, above which the equilibrium solution is unstable (Pa);
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fthresh: Value of fosc at Pp = Dihresh (HZ),

u(t) or U(w): Waveform and Fourier transform of the air flow at the input of the instrument

(m?.s71);

Z(w): Input impedance of the resonator (Pa.m™3.s);

e w; = 2.7.f;: resonance frequency of the lips (rad.s');

e fos: Playing frequency of the instrument (Hz);

® facn: Acoustic resonance frequency of the n* mode (H?z);
® finresn: Oscillation frequency at pypresn (Hz).

® Doptn: Lowest value of pyp s for the nt" acoustic resonance (Pa);

d fopt,n: Value of fthresh (HZ) at pp = Popt,ns
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