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Abstract

A physical model of brass instrument is considered in this paper : a one degree-of-freedom
outward striking valve for the lips, non-linearly coupled to a modal representation of the air
column. It is studied through linear stability analysis of the equilibrium solution. This ap-
proach provides the threshold value of the blowing pressure at which an instability occurs,
and the value of the frequency of this instability. The validity of the results of this method
is theoretically limited to the neighborhood of the equilibrium solution. This paper checks
the efficiency of linear stability analysis to understand the behavior of the model computed
through time-domain simulations. As expected, a good agreement is observed between linear
stability analysis and numerical simulations of the complete nonlinear model around the oscil-
lation threshold. For blowing pressures far above the oscillation threshold, the picture is more
contrasted. In most cases tested, a periodic regime coherent with the linear stability analysis
results is observed, but over-blowing, quasi-periodicity and period-doubling also occur. In-
terestingly, linear stability analysis predicts the production of the pedal note by a trombone,
for which only nonlinear hypotheses had been previously proposed. LSA also predicts the

production of a saxhorn note that had never been documented, but known by musicians.

I Introduction

Linear Stability Analysis (LSA) can be used to analyze the behaviour of dynamical systems around
equilibrium points (i.e. non-oscillating solutions). LSA consists in writing a linearized version of
the system around a given equilibrium point. Its stability is then assessed by studying the response

of the linearized system to harmonic perturbations.



LSA has already been applied to physical models of musical instruments: woodwind in-
struments [Wilson and Beavers, 1974, Silva et al., 2008, Karkar et al., 2012, flute-like instruments
[Terrien et al., 2014] and brass instruments [Cullen et al., 2000, Silva et al., 2007]. By definition,
the validity of the results of LSA is theoretically limited to the neighborhood of the equilibrium
solution. However, recent results on flutes have highlighted that important features of periodic
regimes such as their frequencies are explained by LSA [Terrien et al., 2014|. This paper examines
how far LSA can be used to understand some aspects of the behavior of a physical model of brass
instruments.

Physical models of brass instuments have been proposed in multiple stud-
ies [Eliott and Bowsher, 1982, Fletcher, 1993, Adachi and Sato, 1996b, Cullen et al., 2000,
Campbell, 2004, Silva et al., 2007, Myers et al., 2012]. Since we are interested in studying a
simple model, a one degree-of-freedom system to model the lips is retained: the outward-striking
valve. For the same reason, the nonlinear propagation in the bore of the instrument responsible
of "brassy sounds" at high sound levels [Myers et al., 2012| is ignored. The coupling by the
blown air flow between the lips and the air column inside the bore is modelled through a classical
nonlinear algebraic equation [Hirschberg et al., 1995|. This model is detailed in section A.
Even such a simple model has more parameters to tune than the simplest models of woodwind
instruments. The latter can indeed be written with respect to two dimensionless parameters
only [Hirschberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013].
However, for each valve position, brass players are able to play on multiple acoustic modes
(or registers) of the air column by modifying significantly the mechanical characteristics of
their lips. Therefore, the lip dynamics cannot be ignored, which increases the number of
parameters to tune. A bibliographical review is given in section B to give grounds for the
values chosen for each parameter of the model. In section C, details are given on how LSA
is applied to the model. In order to exhibit behaviors of the nonlinear model to compare
with LSA results, many options are available. For instance, the Harmonic Balance Method
gives a Fourier series approximation of the steady state of periodic regimes, including unstable
ones |Gilbert et al., 1989, Menguy and Gilbert, 2000, Cochelin and Vergez, 2009].  Since the
pioneering work of [Mclntyre et al., 1983, Schumacher, 1981], it is also possible to carry out
time-domain simulations at moderate computational cost, providing access to transients and
possibly non-periodic solutions. This latter approach is retained (see section D). Section III
confronts the results of LSA and numerical simulation for different sets of parameter values.
Different registers are explored, but also less common regimes such as quasi-periodicity and
period-doubling. In section IV, we focus on the lowest register of brass instruments, called
the pedal note, a particularly interesting case where LSA provides unexpected information on

numerical simulation results.



IT Tools

A Brass instrument model

In most wind instruments |[Fletcher, 1993|, including brass instruments [Cullen et al., 2000,
Eliott and Bowsher, 1982, Yoshikawa, 1995|, the oscillation relies on the coupling between a non-
linear exciter and a linear resonator. More generally, the closed-loop system representation shown
in fig. 1 is widely used by the musical acoustics community, since the seminal work of von Helmholtz
[von Helmholtz, 1954, McIntyre et al., 1983|.

Nonlinear Exciter - Linear resonator
(Valve) (Bore)

T

Figure 1: Closed-loop model suitable for the description of most self-sustained musical instruments.
Self-sustained oscillations are generated by the coupling between a localized nonlinear exciter and
a (linear) resonator. For brass instrument, the lip reed provides the excitation while the resonator
is the air inside the bore. Both elements are non-linearly coupled through the air low between the
lips.

For brass instruments, the exciter consists of the lips of the musician, represented by a linear,
oscillator-like valve, linking the height between the lips h(¢) and the pressure difference across the
lips 0p(t) = py — p(t). pp is the blowing pressure (pressure in the mouth, assumed to be static) and
p(t) the oscillating pressure signal inside the mouthpiece (the input of the bore). The resonator is
the bore of a trombone or a saxhorn (see section IV.B). These resonators are represented by their
input impedance, which links, in the frequency domain, the pressure at the input of the resonator
P(w) and the acoustic flow at the same point U(w):

P(w)
Z(w) = U(w) (1)

Those two linear elements are non-linearly coupled by the airflow through the lip channel. The
nonlinear exciter of fig. 1 consists in this coupling and the lip valve. The air jet is assumed to be
laminar in the lip channel, but turbulent in the mouthpiece, all its kinetic energy being dissipated
without pressure recovery. Applying the Bernoulli law and the mass conservation law between the
mouth and the lip channel gives the following expression of the flow between lips, depending on

the pressure difference and the height of the lip channel [Hirschberg et al., 1995

u(t) = \/%Lhm Ol )

with u(t) being the airflow rate (m3s™'), h(t) the height of the channel between the lips (m),
p = 1.19kg.m ™2 the density of the air at 20°C and L the width of the lip channel (m).
A one degree of freedom valve (refered to hereafter as "1-DOF valve") [Fletcher, 1993] is enough

to model the lips for common playing situations [Yoshikawa, 1995| with a tractable number of
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parameters. Two kinds of 1-DOF valves can be considered : "striking outward", which tends to
open when dp grows, and "striking inward" which presents the opposite behavior.

While inward-striking valves are globally recognized as a satisfying way to represent woodwind
reeds [Wilson and Beavers, 1974, Dalmont et al., 1995| there is no consensus about the modeling
of the lip reed, as neither the outward nor the inward valve model reproduces all the behav-
iors observed with real musicians. Particularly, a trombonist (or any brass player) is able to
get a playing frequency f,. above and below the resonance frequency f,., of the n'* acoustic
mode of the instrument |[Campbell, 2004]. Whereas a 1-DOF inward or outward model is lim-
ited to playing frequencies respectively below or above f,., to meet the regeneration condition
explained in |[Eliott and Bowsher, 1982]. Moreover, measurements of the mechanical response of
artificial [Cullen et al., 2000] and natural lips [Newton et al., 2008] revealed the coexistence of both
inward and outward resonances: this allows f,s. to be below or above f,.,, at threshold. However,
situations where f,s. is below f,., (inward-striking behavior) are mostly specific to some musical
effects: for regular playing situations, the playing frequency is above f,.. Moreover, real human
lips open when air is blown, which is clearly an outward behavior. The relevance of this choice
will be reinforced throughout this article, by comparing the results of the model analysis to known
behaviors of brasswinds.

The outward-striking valve gives a relation between the height of the channel between the lips

and the pressure difference across the lips :

@h o dh
di2 ' Q dt

where w; = 27 f; (rad/s) is the lips resonance angular frequency; @, the (dimensionless) quality

- wh(h — ho) = %@b (), (3)

factor of the lips; ho the value of h(t) at rest; u an equivalent surface mass of the lips (kg.m™2).

This model assumes the mouth pressure to be constant. A more accurate model would consider
the oscillating pressure component in the mouth, along with a model of the tunable resonant
cavity formed by the vocal tract [Eliott and Bowsher, 1982|. A significant role of the vocal tract
has been shown for saxophone playing [Clinch et al., 1982, Guillemain et al., 2010, Fritz, 2005].
But a significant role for trombone, and more generally for brass instruments, has yet to be
exhibited [Fréour and Scavone, 2013, Chen et al., 2012].

Nonlinear effects in the resonator should be taken into account to accurately describe the behav-
ior of brass instruments at medium /high playing levels [Hirschberg et al., 1996, Myers et al., 2012]
particularly the "brassy sound" related to the formation of shock waves. However, the main ob-
jective of this paper is the study of oscillation around threshold (i.e. at low levels), therefore
the acoustic propagation along the bore can reasonably be considered linear. Hence, the input
impedance is considered enough to describe the resonator.

For this article, input impedances of a Courtois T149 tenor trombone (and when mentioned, a
Couesnon "Excelsior" baritone-saxhorn in B’) have been used. Impedances have been measured

with the impedance sensor described in [Macaluso and Dalmont, 2011]. These are fitted by a



sum of complex modes (Lorentzian functions). The characteristic impedance of the resonator is
Z. = pc/S, with S being the input cross section of the bore at the mouthpiece rim. The modal-

fitted impedance is written:

2wy =23 4

s, and C,, being respectively the poles and the residues of the n* complex mode. Comparison
between the measured trombone impedance and an 18-mode fit can be found on fig. 2. The
maximum relative difference between fit and measure, for frequencies above 30Hz is lower than
2.6% for the magnitude, and 4.7% for the phase. The measurement in low frequency are slightly

biased by the precision of the impedance sensor.
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Figure 2: (color online) Magnitude (top) and phase (bottom) of the input impedance of a Courtois
tenor trombone. Plain curve depicts the measured impedance, dashed curve is the fitted version
with 18 complex modes.The difference between fit and measure is also plotted.

The dynamics of the system described by eq. 2, 3 and 4 can be put in a state-space represen-
tation X = F(X), where F is a nonlinear vector function, and X the state vector, containing the
observables of the system. Taking p(t) = 25:1 2Re(pn(t)), where p, is the n'® modal component
of the pressure at the input of the bore:

d2h(t wy dh(t t
2 = —wph(t) — 80 2O 4 2p, 4 B

i
u(t) = \/2Lh(t) /5o — (D) (5)

%ﬂ = Z.Cru(t) + supn(t) for n € [1: NJ.

This leads to the following state vector, similar to the one proposed in [Silva et al., 2014]:

dh

X=quﬂmﬂnqrm‘ (©)



B Choice of lip parameters

Setting the values for the parameters of the lip model is not obvious, as measuring the mechani-
cal impedance (displacement over force ratio) in playing condition seems out of reach. Adjusting
parameters to get results comparable with measured signals seems unproductive. Even if a one-
DOF model depends on a small number of parameters, different sets of parameters values may
lead to similar results. Moreover, contrary to woodwind instrument valves which remain fairly
steady regardless of the played note, the lip valve parameters of a trombonist vary while play-
ing. Particularly, the lip resonance frequency is adjusted to select the intended register of the
instrument.

A preliminary bibliographical review on lips parameter values has been done. Results from the

literature are gathered in table 1 along with a brief "abstract" of the method used in the reviewed

articles.
Reference ho(m) L(m) | fi(Hz) | 1/u((m?kg™!) Q "Abstract"
[Gilbert and Aumond, 2008] | 5,8.107* | 14.1073 | 60-260 0.27 0.15-0.037 No information;
Variable (); value
[Gazengel et al., 2007] human lip;
Soft N/A N/A 115.7 N/A 0.79 saxophone-like
Medium N/A N/A | 479.87 N/A 0.46 position; 3 muscular
Tight N/A N/A 1073 N/A 0.46 tensions
[Cullen et al., 2000] 1%* (Outward) mode
Soft 6,3.104 | 18.107% | 189 0,07 10,5 artificial lips
Medium 5,3.107% | 12.107% | 203,5 0,11 6
Tight 4,4107% | 11.1073 222 0,09 9
[Newton et al., 2008] N/A N/A 32 N/A 1,2-1,8 Human lips
High-speed camera
Richards et al. (unpub.) 5.107% | 7.1073 167 0,19 3,7 artificial lips
fit for good results
[Eliott and Bowsher, 1982] N/A N/A 200 0,2 0,5 £+ 0,03 || @; measured on cheek
[Rodet and Vergez, 1996| N/A N/A 428 4 0,67 2,88 Trumpet; adjusted
for simulation
[Adachi and Sato, 1996b)] 1073 7.107% | 60-700 | S(27)%f;/1.5 0.5-3 Adj. for simulation

Table 1: Recording of different values of lip parameters from literature, along with a brief expla-
nation of the method. in some articles, certain values are not available (N/A). For papers using
2-DOF lip models, only the first, outward DOF is recorded.

This work completes a similar review performed by M. Newton in his PhD thesis [Newton, 2009,
p.119]. Many authors do not give the parameter values they use, nor give explanations about their

method to get these values, unless the fact that these parameters allow periodic self-sustained



oscillation of the model. The measures on human or artificial lips were made in conditions as
similar as possible to the playing conditions.

Our initial intention was to stick as close as possible to the values measured on natural
lips [Gazengel et al., 2007, Newton et al., 2008]. Geometric parameters (width and height at rest
of the lip channel) given in all studies are very steady, around hg = 5.107*m and L = 12.10 3m.
Parametric studies performed by the authors have shown that variations of these do not drastically
change the qualitative behavior of the model. Similar observations have been made about u, even
if the range of the values gathered is a little wider (u € [3.7 : 11.1] for the trombone).
Measurements from |[Gazengel et al., 2007, Newton et al., 2008] tend to give low quality-factor
values between 0.5 and 2. However, preliminary analysis carried out with ); =~ 1 showed very
unrealistic pressure thresholds (order of magnitude : 10* to 10°Pa). Thus, an intermediate value
for @, was chosen, closer to the values measured on artificial lips (Q; € [5 : 10]).

In all the simulations of this paper, the set of parameters used for simulation and linear stability

analysis is given in table 2:

ho(m) | L(m) | 1/p(m?*kg™) | Q
510~ | 12.10°3 0.1 7

Table 2: Lip parameters retained for the article

C Stability of the equilibrium solution

Linearizing a closed-loop system to assess potential instabilities is a widely used method, as much in
the dynamical systems community [Bergé et al., 1995| as in musical acoustics for brasswind, wood-
wind and flute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,
Terrien et al., 2014]. Basically, the equations describing the system are linearized around a known
equilibrium solution. Then, the stability of this solution is evaluated.
Considering the system described in section A, the static equilibrium consists in an equilibrium
lip opening h.. This equilibrium position is slightly larger than the lip opening at rest hgy, due
to the constraint of the blowing pressure on the inner face of the lips. Similarly, there is a small
static overpressure p. at the input of the bore of the instrument. Mathematically, this equilibrium
is obtained by canceling all time derivatives in the system, as described in appendix A. The value
of p. is obtained by solving:
2
A3+%+h0uwl214—%:
with 8 = %12:0)\/% The value of Z(w = 0) is taken from the fitted version of the impedance.

This equation has 1 or 3 real roots. In the latter case, the smallest real positive root should be

0, (7)

considered to compute p. = p, — A? [Silva, 2009], as Z(w = 0) is small. The lip channel height at
equilibrium 5, is then given by eq. 3 with h=h=0.

The linearized function F can be written as:



F(X) = F(X.) + Jr(X)(X — X,), (8)

with Jr(X) being the Jacobian matrix of the function F' and X, the state vector at the equilibrium
solution. The solutions of X = F(X) are under the form :

X(t)— X, =WeM, (9)

where W is a constant vector of same dimension as X.

Thus, the eigenvalues of the Jacobian matrix give information about the stability of the equilibrium
solution for a given set of parameters. If at least one of these eigenvalues A has a positive real
part, the amplitude of the linearized solution tends toward infinity, which means the equilibrium is
unstable and the solution starts oscillating. In the transient phase of the oscillation, the exponential
growth of the amplitude is determined by the positive real part of A\, and the angular frequency
is given by the imaginary part of the eigenvalue w = I'm(\). However, the nonlinearities of the
system limit the final amplitude and also affect the oscillation frequency of the steady state.

This method only allows the detection of instabilities emanating from the equilibrium solution. If
a stable oscillating regime coexists along with the stable equilibrium solution, it won’t be de-
tected. This situation occurs for example in certain woodwind instruments, where the Hopf
bifurcation (connecting the equilibrium solution to the oscillating one) is inverse for certain
cases |[Farner et al., 2006].

D Time-domain simulation

Another approach for studying musical instruments is solving (numerically) the equations of the
chosen model, for a given set of parameters. Results of this resolution are time-domain simulated
signals of each observable of the state vector, which also give information on the transient of the
signals.

Multiple numerical methods have been developed and used to simulate wind instruments with
models similar to the one presented in section A. The primary difference is in the numerical
modeling of the acoustics of the resonator. The reflection function of the bore has been widely
used [Mclntyre et al., 1983, Schumacher, 1981, Adachi and Sato, 1996a, Vergez and Rodet, 1997,
Gilbert and Aumond, 2008]. The modal decomposition of the bore has been chosen for this article,
and computations are carried out with the open-source MoReeSC software tool, freely available
on its website. Principles and results of this library are described in [Silva et al., 2014]. This sim-
ulation tool uses a control-theory-like modeling which is similar to the one presented in section A.
This eases the numerous comparisons between linear stability analysis results and the behavior
of simulated signals. It allows the simulation of the behavior of the model with a high number
of acoustic modes for the resonator (18 in this paper), and offers a large flexibility to modify the

model parameters, as it will be done in section 4.



IIT Results

A Linear Stability Analysis

The linear stability analysis method detailed in section C is applied to the model defined in
section A, with the set of lip parameters defined in Table 2. The resonator is modeled with a
modal fit (N=18 in eq. 4).

For each value of f; under study (here f; € [20 : 500Hz]), the eigenvalues of the Jacobian matrix
Jr(X.) presented in eq. 8 have been computed for increasing values of p, until a first instability
occurs. Results are reported in Fig. 3. For each value of f;, the top plot represents the lowest value
of p, giving an unstable equilibrium solution, further referred to as threshold pressure pscsn. The
bottom plot represents the imaginary part of the corresponding eigenvalue divided by 27, which
is the oscillation frequency at threshold, further called f;,..sn. Each horizontal dashed line on this
bottom plot represents the n'* acoustic resonance frequency of the instrument f,.,, given by the
maxima of the input impedance amplitude.

It should be noted that, for p, values higher than ps...sn, other pairs of conjugate eigenvalues may
have a positive real part. This means a system with multiple instabilities. If different oscillating
solutions are stable with these parameters, the system would be able to start oscillating on different
registers. In fig.3 and similar figures, the first instability (the one corresponding to the lowest py)
is recorded for each f; value (curve). The second instability is recorded for a smaller range of f;
(dashed curve).

On the [20 : 500Hz| frequency range represented, both plots of Fig. 3 can be divided into 9 ranges
of fi, each corresponding to one regime or register of the instrument: [30 : 63Hz] (first regime),
[72 : 123Hz] (second), [124 : 179Hz], [180 : 234Hz|, [235 : 288Hz|, [289 : 352Hz|, [353 : 404Hz],
[405 : 460Hz], [462 :> 500Hz]. On the bottom plot, the oscillating frequency fin,esn stays on
plateaus just above each value of f,.,. This is the usual behavior of an outward valve at threshold,
which oscillates at a frequency just above the resonance frequency of the n'* acoustic mode of the
bore implied in the instability of the equilibrium solution (finresn > facn)|Campbell, 2004]. For
each regime, fin.sn monotonously follows the variation of f;. This matches the experience of the
brass player, who can slightly "bend" the sound (increase or decrease the pitch) by adjusting f;
through the muscular tension of the lips, and adapting the blowing pressure to the change of pipesh-
The width of each plateau, i.e. the attainable musical range on each register, has analytic limits
depending on the lip quality factor @; as detailed in [Silva et al., 2007].

In terms of py, it can be observed in Fig. 3 (top) that the oscillation threshold globally increases
with the rank of the register. A greater p, value is required to reach the higher notes of the
instrument, in accordance with the musical experience. Simultaneously to the fi,..sn plateaus,
the oscillation thresholds have U-shaped parts, qualitatively similar with the ones presented in
[Silva et al., 2007]. Those U-shapes have a minimum value p,, for each register (indicated by
circles) which depends significantly on the losses of the resonator according to [Silva et al., 2007].

In the following, we assume that p,, and the associated lip resonance frequency f,, are the



optimal playing configuration for a human performer. This hypothesis is related to the strategy of
musicians, who claim to minimize the effort to produce a sound on a given regime. The p,,: values
are between 500Pa and 10k Pa of the same order of magnitude as the blowing pressures recorded
in our measurements. The pressure threshold increases faster when f; is above f,,; than below (see
zoom-box on fig. 3 bottom). These results are compatible with brasswind playing experience, as
it requires less effort for a musician to "bend down" a note than "bending" it up.

The following will focus on some examples of [p,, fi] points to illustrate the different behaviors
observed on the model. For each case, the agreement between the results of the linear stability
analysis and the sound produced by the time-domain simulation described in section D will be

discussed.

15000

10000

5000

pthresh (Pa)

100 200 300 400 500

Figure 3: (color online) Results of the linear stability analysis of the model detailed in section A
with parameters from table 2. For a range of lip resonance frequency f;, the top plot presents
the threshold mouth pressure pi,esn, While the bottom plot shows the corresponding oscillation
frequency finresn- Dotted lines are the values of f,.,. The magnified subplot (zoom on 4th regime)
highlights the asymmetrical fiycs, behavior above and below p,,. Circles point the "optimal"
values p,,: and f,,;. Thinner dashed lines represent the second destabilization threshold (top) and
the corresponding frequency (bottom).
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B Exact match between simulation and linear stability analysis

The simulated pressure at the input of the instrument is compared with the LSA results. In
particular, the pressure threshold pi.esn is assessed by performing simulations with p, in the
vicinity of pipresn- The finresn values are also compared with f,s.. This latter quantity is measured
thanks to the instantaneous frequency detection function "Mirpitch" from the MIR toolbox. This
MATLAB toolbox contains numerous functions for music information retrieval, including Mirpitch
which estimates the frequency of a musical sound.

A simulation with the exact value of piresn Would theoretically lead to infinite transient times
(time until the steady state is reached). Therefore, values of pj, slightly below and above pyj,csn are
tested. The chosen lip resonance frequency is f; = 90Hz, everything else being given in Table 2.
The corresponding mouthpiece pressure signals are represented in the two first plots of Fig. 4. The
third plot shows a situation where p, is much higher than pesh-

When the mouth pressure is a bit below the threshold (p, = 1210Pa whereas pypqesn, = 1222Pa)
(Fig 4 left), the oscillation decreases exponentially towards the static, non-oscillating solution. The
thick line represents exponential decrease given by eq. 9. In this case, ) is the eigenvalue of Jp
with the highest (negative) real part. The calculated oscillation’s frequency (dash-dotted line) is
constant and equal to fipresn = 116Hz = Im(\) /2.

When the mouth pressure is slightly above the threshold (p, = 1234Pa) (Fig 4 center), the signal
envelope increases exponentially during the transient phase (also following eq. 9, plotted in thick
line) at beginning, before reaching a steady-state regime. The calculated oscillation frequency fos.
(dash-dots) begins at finresn, = 116Hz; it becomes quite higher in the permanent regime (126Hz

that is 8.6% or 143 musical cents above finresn)-

p,=1210Pa p,=1234Pa p,=3000Pa
150 140 2000 140 4000 I [ 140
— 2000
N —_
_ 1w F 130 &~ ””‘\H““ il | M “HH\‘MH \ |
g > & s, mHHU\ i W ‘ 1 W A= 3
~ [= » c =4
g 3 ¢ | &
o I o - @ -2000 I L
a 120 ; @ 120 g & 120 ¢
? © 8
o -4000
50 110 -2000 110 -6000 110
0 5 10 15 0 5 10 15 0 0.2 0.4 0.6 0.8 1
time(s) time(s) time(s)

Figure 4: (color online) Time-domain simulations with parameters from table 2 and f; = 90Hz,
with mouth pressure p, lower (left) and higher (middle) than the linearized model threshold
(Pthresn = 1222Pa). Mouth pressure (steady) and mouthpiece (oscillating) pressures are plot-
ted (left vertical axis) along with the expected exponential growth /diminution of amplitude (thick
curves: envelope of eq. 9). The expected oscillation frequency at threshold is fipesn = 116Hz. The
third plot (right) corresponds to a blowing pressure much higher than the threshold (p, = 3kPa;
zoom on first second of signal). The dash-dotted curve depicts the instantaneous playing frequency.

As expected, the behavior of time-domain simulations is accurately predicted by the linear stability

analysis as long as p, remains in the vicinity of the calculated threshold (left and center plot).
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DPinresh 18 accurately computed, and the value of the eigenvalue with the largest real part predicts
the frequency and the amplitude of the oscillation at the beginning. However, the amplitude
gets finally limited by nonlinear phenomena. Thus, this linearized tool is unable to predict the
amplitude of the established regime’s waveform.

The third plot shows the results with p, = 3kPa much higher than pcsp. The two methods
still give coherent information, but the oscillating frequency f,,. = 130.5Hz is 8% higher than
Im(X\)/(2m) = 120.8Hz. The difference is 134 musical cents, larger than a semitone. f,g. is higher
in this situation than near the threshold, which can be correlated with the musical experience: the
pitch rises when the player increases its blowing pressure [Campbell and Greated, 1994|. But this
remark should be considered cautiously because in practice, the control of mouth pressure and lips
muscular activity are always correlated for a brass player.

This example is representative of most cases tested, as the linear stability analysis predicts correctly
whether there will be an oscillation or not, with a good estimation of the oscillation frequency at
threshold. Moreover, a strong correlation between the duration of the transient and the value of
the real part of the unstable eigenvalue has been observed. However this reliability is limited to
mouth pressures near the oscillation threshold. On the other hand, the linear stability analysis
can predict neither the final amplitude of the permanent regime of oscillation, nor the steady-state

waveform. This latest observation will be further highlighted in the following sub-section.

C Unforeseen behaviors

The linear stability analysis provides a lot of pertinent information about the oscillation threshold
and the transient phase. This is particularly true when p, is near pu,esn. However, some

simulations (detailed below) show nonlinear phenomena, obviously out of reach for this method.

Quasi-periodic oscillations

Firstly, the previous comparison is reproduced with a different lip resonance frequency. Three
simulations are performed with the parameters of table 2 and f; = 110Hz. Now, pesn is equal to
711Pa. Again, three different p, values are tested: p, = 701Pa, p, = 720Pa and p, = 2kPa. Results
are plotted on Fig. 5. When pj is near the threshold, results are very similar to the previous case
with f; = 90Hz (Fig. 5 left and middle). But when p, gets large enough, the oscillation of the

mouthpiece pressure becomes quasi-periodic (fig. 5 right).
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Figure 5: (color online) Simulation results for f; = 110Hz, the pressure threshold being pipresn =
711Pa. Like in fig. 4 three simulations are shown with p, = 701Pa (left), p, = 720Pa (middle) and
pp = 2kPa (right, much higher than p,csn). Other parameters (lip characteristics) are given in
Table 2.

This illustrates the aforementioned limitation of linear stability analysis. The existence of
an oscillating solution is attested in the vicinity of the bifurcation, and the pressure threshold

of the instrument is accurately predicted, but the waveform of the permanent regime is out of reach.

Period doubling

When initialized with f; = 55Hz, p, = 400Pa (pipresn being 161Pa) and the other lip parameters
given in Table 2, the time-domain simulation result oscillates at 32.5Hz, significantly under the
trombone’s first acoustic resonance ( f,.1 = 38Hz). This is an unexpected behavior. This oscillation
cannot be directly sustained by any acoustic resonance, as the 1-DOF outward valve modeling the
lips produces playing frequencies above the acoustic resonance frequency (fose > facn) at least near
the pressure threshold, to comply with the regeneration condition |Eliott and Bowsher, 1982].
Figure 6 compares the spectrum of the simulated mouthpiece pressure with the aforementioned
parameters (dotted plot) and the fij,.cs, values in a very similar situation, the parameters being the
same except f; = 50Hz, i.e. 5Hz lower (plain plot). When f; = 50Hz, f,s. = 65Hz is slightly higher
than fip.esn = 56.3Hz; while for f; = 55Hz, the simulation’s oscillation frequency is very close to
the half of fi.esn. We conclude that, by increasing progressively f;, the periodic solution undergoes
a flip bifurcation [Bergé et al., 1995]. A quite small variation of the lip resonance frequency can
lead to a regime with a sub-harmonic frequency and its harmonics. To the authors knowledge,
period doubling had never been observed on a model of brass instruments. However, trombone
players whose facial muscles (embouchure) get exhausted by excessive practice sometimes notice

their sound being an octave lower than what they expect.
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Figure 6: (color online) Spectra of the simulated mouthpiece pressures of a trombone, with
(py = 400Pa) for both situations, f; = 50Hz (plain) and f; = 55Hz (dotted) (other parameters from
table 2). The values of ficsn are pointed by a diamond (f; = 50H z) and a cross (ff; = 55H z).
The plain vertical line indicates the first acoustic resonance frequency of the trombone bore,
fac1 = 38Hz.

Second destabilization

Besides these two nonlinear phenomena, other differences between our linear stability analysis
tool and time-domain simulation are possible. A third example is given with f; = 120Hz, the
parameters given in table 2 and a high blowing pressure (p, = 6.5kPa while the threshold is
Dinresh, = 1056Pa). While fi.esn = 128.4Hz is just above the 2n? acoustic resonance frequency of
the bore (f,.o = 112Hz), the simulation’s oscillation frequency is f,s. = 187.5Hz, near the 3rd
resonance frequency (f,.3 = 170Hz). Figure 7 shows the spectrum of a simulation oscillating on

the third register, while the predicted oscillation at threshold corresponds to the second one.
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Figure 7: (color online) Spectrum of simulation result for f; = 120Hz and p, = 6.5kPa with other
parameters taken from table 2. The self-sustained oscillation occurs at f,,. = 187.5Hz, correspond-
ing to the third register; while linear stability analysis predicts an oscillation at fip,esn = 128.4Hz
(plain line) for puesn = 1056Pa. Each dash-dotted line represents the nt" acoustic resonance
frequency f,.n of the trombone bore.

Retaining the lowest p, which destabilizes the equilibrium solution is not enough, here, to predict
the behavior of the system with higher blowing pressure. Yet, this oscillation on the third regime
can be detected by recording other pairs of eigenvalues of the Jacobian matrix having a positive real
part, for p, > pinresn- The dashed plot on fig 3 shows the pressure threshold corresponding to the
second pair of such eigenvalues (noted \3), and the associated frequency. For f; = 120Hz the second
threshold is 6116Pa with an oscillation frequency equal to Im(\y)/2m = 172Hz, corresponding
to the simulated third regime. This is consistent with the behavior observed in the numerical

simulation.

14



For a better understanding of the origin of the different instabilities, another approach to perform
linear stability analysis may be preferred, as it gives visual information about the stability margins
of the different registers. It consists in studying a linearized version of the open-loop transfer
function (OLTF) of the system defined by eq. 2, 3 and 4 [Ferrand et al., 2010]. This OLTF is
divided into two parts: the exciter’s admittance Y, which describes the lip reed behavior, from
eq. 2 and 3, and the resonator, once again modeled with a modal fit of its input impedance Z (see
eq. 4).

The linearization of the exciter’s admittance Y, simplifies to a 15 degree Taylor expansion of eq. 2
near the equilibrium point; eq. 3 is then put into the result. Details of the calculation can be found

in Appendix B and leads to the following expression of Y:

2p. [ D(w) 1
Y, = Lh e 1
o= o2 (550 - L), (10)

where D represent the dynamics of the lip reed (see Appendix B).
The stability of the OLTF, noted Hpy, is then studied with the Barkhausen criterion, which
points out possibly unstable points when Hp;, = Y,.Z = 1. On a Bode diagram, unstable points

are those of Hpy having a 0dB magnitude and 0° phase. This method has already been used
for clarinet models with inward valves, and for brass and flute-like instruments [Benade, 1976,
Ferrand et al., 2010, Terrien et al., 2014].

Figure 8 shows the Bode diagram of the OLTF of the system fed with the parameters of Figure 7.
The unstable points are easily recognized. The computation is fast enough to observe evolution

on the Bode plot in real time while modifying a parameter.
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Figure 8: (color online) Bode diagram of the open-loop transfer function of the trombone model
with parameters of table 2, f; = 120Hz and p, = 6.5kPa. There are two instability points crossess),
with a 0dB magnitude and a zero phase.

Here, the Bode diagram presents two points of 0dB magnitude and 0° phase, which means two

instabilities of the equilibrium solution, at 132Hz and 172Hz. In the terms of the first linear
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stability analysis tool described in C, these frequencies correspond to the imaginary part of the
eigenvalues of Jp having a positive real part when these are calculated with p, = 6500Pa. The
value obtained with OLTF differs from the one obtained with the first linear stability method,
because finresn = 128Hz is obtained at p, = pinresn = 1056Pa while the OLTF value is obtained
with p, = 6.5kPa. The second destabilization thresholds match well, because the destabilization
threshold of the third regime is 6116Pa nearer from p, = 6.5kPa. This frequency is lower than the
actual f,s. = 189Hz value, but it corresponds to the same second regime.

Both linear stability analysis methods show multiple instabilities of the static solution, which means
multiple possible regimes of oscillation. But they give neither information about the stability of
these regimes, nor about which regime the instrument will actually oscillate on. This is determined
by the stability of the different oscillating solutions, which depends on nonlinear elements out of
reach of the method.

IV Lowest regime of oscillation

This section focuses on the results of linear stability analysis and time-domain simulation on the
lowest register, related to the first acoustic resonance of the air column inside the bore. This lowest
playable note is called "pedal note" by musicians. For the trombone with its slide fully pulled in,
and the saxhorn with no valve depressed (neutral positions), the pedal note is a B at 58Hz in the

musical scale.

A The Trombone’s "pedal note"

To compare more easily the oscillation frequencies of the different registers of the trombone, the
ratio between the threshold frequency fin,..sn and the resonance frequency of the corresponding
acoustical mode f,.,, is computed. Fig. 9 gives pipresn and fipresy, similarly to fig. 3 on a smaller f;
range, along with the fipresn/ facn ratio on the bottom plot.

When focusing on the values at the minimum of pressure threshold f,,: (circles) as described in
section III, this ratio appears to be significantly higher for the first register than for the other ones:
finresn/ faca = 1.47 while finresn/ faem € [1.04 @ 1.09] for n > 2. However, for all the five lowest
registers, finresn 1S less than 5% from the frequency of the reference note (the note supposed to be
played on the instrument for this register, following the tempered scale) when f; = f,,;. Given
this, the linear stability analysis gives a reliable estimation of the reference note for these registers,
including the pedal note.

This high finresn/ fac1 ratio is coherent with the experience of trombone players, who are able to
play a "pedal" B? in tune with the other regimes of oscillation. The trombone’s first resonance
is at foc1 = 38Hz whereas for n > 2, fuent+1 — faen =~ 58Hz which means a major inharmonicity
of the lowest resonance compared to the other ones. However, musicians are able to play B as if
there were no inharmonicity [Bouasse, 1986, Velut et al., 2014|. This ability to predict the pedal

note of the trombone with the linearization of an outward-valve model is unexpected. It makes
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clear that the production of the pedal note involves the same phenomena than the other regimes.
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Figure 9: (color online) Results of linear stability analysis (with lip parameters from table 2) are
recalled on top and middle plots (narrower f; range than in fig. 3), along with the fipresn/ facn ratio
(bottom plot). Circles point the f,,; resonance frequencies corresponding to the lowest piyesh.-

Bouasse carried out an experiment by playing a trombone with a saxophone mouth-
piece |Bouasse, 1986]. Gautier and Gilbert recently reproduced this experiment, with an audio
and video recording provided with this paper. The result is an instrument playing a low EZ, which
means an oscillating frequency just under f,.; = 38Hz. This experiment is simulated below, and
the results presented in fig. 10. The trombone with a saxophone mouthpiece is modeled with a
fit of the input impedance of a trombone mounted with the equivalent volume of a saxophone
mouthpiece. The saxophone mouthpiece is modeled with an inward-striking valve having the char-
acteristics of a cane-reed, with f; = 1kHz, Q = 1.1;1/p = 4.9m*kg™!; L = 1073m; hg = 5.10 " m.

The oscillating frequency of the simulated mouthpiece pressure sticks to the first resonance fre-
quency (fose/ faca = 0.99). The signal is nearly sinusoidal, because of the lack of acoustic resonances

matching the harmonics of this frequency.
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Figure 10: (color online) Results of simulation of a trombone with a tenor saxophone mouthpiece,
modeled by an inward-striking valve with reed resonance frequency f; = 1kHz, L = lcm, hg =
5.107%m, Q; = 1.1, 1/ = 4.9m?kg~!. The blowing pressure p, = 1800Pa is slightly above pycsn =
1760Pa. Left plot shows the blowing pressure (steady) and the mouthpiece pressure (oscillating).
Right plot is the spectrum of the mouthpiece pressure, showing an oscillation frequency of fip,csn =
37.85Hz just under the first acoustic resonance f,.1 = 38Hz. Dashed lines represent the resonance
frequencies of the bore for comparison.

These results show that the aforementioned high f,./ fac1 ratio is specific to outward-striking valve.
Put together, these results support the 1-DOF outward-striking modeling of a brass player’s lips,

as it allows to reproduce even unusual behaviors of the instruments like the pedal note.

B A Saxhorn’s "ghost note" ?

A complementary exploration was done using the same computation scheme on a Baritone-saxhorn
in B®. This instrument belongs to the family of the tubas, its bore is nearly conical and it is
played on the same range as the tenor trombone. Its input impedance is quite similar to that of
a trombone, the main difference being on the first resonance peak which is nearly harmonic with
the other ones. Thus, contrary to the trombone, the B°1 pedal note (lowest playable note) is close
to the lowest resonance frequency.

The pedal B is easily playable by a non-beginner musician. However, the authors fortuitously
found out another playable note during practice, whose frequency lies between f,.; and f,.2.
Trials have been carried out on different saxhorn models and brands. The note played can be a
D} to a ES, which means a frequency ratio foe./ fae1 between 1.19 and 1.35. We call it the "ghost
note" in this paper. Experienced saxhorn players further confirmed the existence, and facility of
emission, of this ghost note on many different saxhorns and tubas, including diverse transposing
instruments.

Results of the linear stability analysis of the saxhorn model are provided in fig. 11. The model is the
same as the one for the trombone, with only a change in the acoustic impedance used (eq. 4). They
are similar to those obtained with the trombone, with a particularly high fip,esn/ faen ratio on the
first register. Again focusing on the f,,; values (circles on fig. 11), the ratio is finresn/ fac1 = 1.23.
Like for the trombone, this ratio is smaller and quite constant for other modes ( finresn/ faen < 1.05,
n > 2). Time-domain simulation on a saxhorn model on the first register, (with p, = po,t + 1%,

fi = fopt and other parameters coming from table 2) confirm these values, with fos./ foc1 = 1.23.
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Figure 11: (color online) Results of linear stability analysis (with lip parameters from table 2) of
the saxhorn are given under the same form as those of the trombone in fig. 9. Circles point pe;
(top) and f,,+ (bottom).

The gap between the lowest played note and the first acoustic resonance is smaller for the ghost note
of the saxhorn (finresn/ facn = 1.23) than for the pedal note of the trombone (finresn/ faeq = 1.47).
However, both are significantly higher than for other modes ( fipresn/ fae.n < 1.09 otherwise). Time-
domain simulations have been carried out [Velut et al., 2014] with a different set of parameters,
that similarly predict a high f,s./fac1 ratio, higher for the trombone than for the saxhorn. A
simple linearized model thus allows to predict the appearance of the pedal note of the trombone
and the ghost note of the saxhorn, which is surprising. However, a set of parameters simulating

the pedal BY of the saxhorn with this model is yet to be found, if it in fact exists.

C Shift of the lowest resonance of the input impedances

The trombone and the saxhorn give two examples of high fipresn/ fac1 ratios on the lowest register
of the instrument. The trombone has a higher ratio than the saxhorn while its first register’s
resonance frequency is lower. To assess this negative correlation between f,.1 and the fipresn/ fac
ratio, the first resonance frequency of the input impedance of the considered instruments is changed
in the model. This is done by modifying the {C}, s;} values in eq. 4 while keeping the other modes
unchanged, as well as the first mode’s amplitude and quality factor.

For each value of f,.; tested, the finesn/ fac,1 value is recorded at f,,;. Results of both saxhorn and

trombone are reported on fig. 12. The ratio tends to grow (with a different derivative) when the
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resonance frequency tends toward zero. Therefore, the lower f,. 1, the larger finesn/ fac1- Thus, as
far as the outward model is concerned, the gap between the playing frequency and the resonance

frequency is all the larger as the resonance frequency is low.
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Figure 12: (color online) Ratio between the predicted oscillation frequency fin esn and the acoustic
resonance frequency f,.1 for different values of the latter. Plain curve plots the results for the
trombone, the dashed one is for saxhorn. All values are taken for f; = f,,. Vertical dash-dotted
lines are the original first resonance frequencies of a trombone (38Hz) and a saxhorn (62Hz). For
the further registers, finresn/ facn < 1.09.

V Conclusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to
understand various near-threshold behaviors of the complete nonlinear model of a brass musical
instrument (trombone or saxhorn).

Cases where simulations results are perfectly explained by LSA include obviously exponentially
decaying or increasing oscillation transients around the equilibrium solution. Moreover, concerning
steady states, periodic regimes are observed at frequencies close to the ones given by LSA, for all
registers of the instrument. This remains true as far as the periodic regime emanating from the
equilibrium solution remains stable. Indeed, once this periodic regime loses its stability, it gives rise
to harmonics switching, quasi-periodicity occurring or period-doubling. Playing other harmonics
can be predicted, as multiple instabilities of the equilibrium solution are shown by LSA, but it
gives no information on which oscillating solution prevails. This demands further studies of the
model with numerical continuation tools, such as AUTO or MANlab [Cochelin and Vergez, 2009]:
to detect the bifurcations between oscillation branches and estimate the domain of stability of each
periodic solution. Quasi-periodicity and period-doubling are nonlinear phenomenons obviously not
taken into account in this method.

The most unexpected results of this paper concern the lowest register of brass instruments, but
are consistent with musicians’ experience. Indeed, in the case of the trombone, linear stability

analysis predicts the production of the pedal note. Thus, LSA clearly indicates that for low
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enough acoustic resonance frequencies, the frequency of the emerging instability is far beyond
the resonance frequency of the instrument. This allows the trombone’s pedal note to be played
in tune, though the corresponding resonance frequency is misaligned with the nearly harmonic
series of the upper peaks of the input impedance. This is an unexpected outcome of LSA, in a
way the production of the pedal note involves the same basic phenomena than the other regimes.
Considering the saxhorn, LSA also suggests the production of a note - designated as the "ghost
note" in this paper - that had never been documented but the playability of which is confirmed by
advanced players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing
frequency at threshold and the acoustic resonance frequency rises when the latter decreases requires
further attention. Moreover, neither LSA nor numerical simulations could explain the production
of the pedal note by a saxhorn. This may be due to a limitation of the 1-DOF valve model for
the lips or more simply to inadapted parameter values. Indeed, in spite of a bibliographical review
carried out in this paper, choosing parameter values for a brass model is challenging. Even if
results obtained looks reasonable, consistent with players’ experience, in vivo measurements of lip

parameters during musical performance would be very valuable.
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A Equilibrium point of the system

Prior to apply the linear stability analysis to our model, the equilibrium solution must be computed
before linearizing the equations around this solution. This solution consists in a constant lip channel
height h(t) = he, a constant flow between the lips u. and a constant pressure in the instrument
p(t) = pe. Finding these values consists in solving the equation system 5 with these constant

values. The system becomes:

0= —w%he—%—FW?ho‘i‘%
Ue = \/%Lhe\/pb — Pe (11)
0= Z.Cprue + Sppne for n € [1: NJ.

Considering the relation between p(t) and its components p,(t¢), and adding the variable A =

v/P» — pe this becomes:

he = ho + 2

Wy
Ue = \/%LheA (12)
Pe = Z(w = 0)u.

These three equations can now be mixed :

LZ(w=0) [2 2
M\/jA3+A2+LhOZ(w:0)\/;4—]91):0, (13)
P p

2
Hey

which leads to eq 7 given in section C.

B Linearization of Open-Loop Transfer Function

This appendix details the calculations leading to the linearized expression of the open-loop transfer
function of the model. The linearization of the admittance Y, simplifies to a 15 degree Taylor

expansion of eq. 2 near the equilibrium point:

ou

(esh)| G9(0) =392+ | G s )~ o).

Ou

dp
dp = pp — p(t) is the differential pressure through the lips. dp. and h. are the equilibrium values

Mnmzumﬂm+[

of respectively dp and h, i.e. the values giving the equilibrium solution. Like in section C, the A,
value is obtained by computing the roots of a 3" order polynomial which variable is X = /dp:
X? _ Zo.L |2

3 Py <
X —i—F—FK.hO.X—E—O (8= 7 p).

he is given by eq. 3 in static conditions (all time derivative being null):




All calculations being done, the linearized expression of the flow between the lips is:

ii(p, h) = Lhe\/% (‘;p—;i) + ? _ ;) | (14)

When translated in the frequency domain, the lip movement equation 3 gives the following relation
between the oscillating components of the differential pressure JP(w) and the height of the lip
channel H (w):

Hw)=D 1
() = D)o, (15)
with D(w) being the dynamics of the lips:
1
D(w) = (16)

w2 TR
2 +J5,

which leads to this final expression of the valve admittance:

Y, = L.he.ﬁ (-%‘2 - 2;@) | (17)

C Nomenclature of symbols

The symbols and abbreviations used all along this paper are reminded here, along with their

meaning and the unit used:

e h(t): Height of the lip channel (m);

e L: Width of the lip channel (m);

ho: Height of the lip channel at rest (m);

p: Density of air at 20°C (kg.m™3);

w: Equivalent surfacic mass of the lips (kg.m™=2);

Q;: Quality factor of the lips (no unit);

e p(t) or P(w): Pressure at the input of the bore of the instrument (Pa);

pp: Blowing pressure (Pa);

Dinresh: Threshold value of py, above which the equilibrium solution is unstable (Pa);

fthresh: Value of fosc at Pp = Dihresh (HZ),

e u(t) or U(w): Air flow at the input of the instrument (m?.s™!);
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e Z(w): Input impedance of the resonator (kg.m=*.s71);

e w; = 2.7.f;: resonance frequency of the lips (Rad.s');

e fos: Playing frequency of the instrument (Hz);

® facn: Acoustic resonance frequency of the n® mode (H?z);
® finresn: Oscillation frequency at pypresn (Hz).

® popr: Lowest value of py.eq, for a given register (Pa);

L fopt: Value of fthresh at pp = Dopts
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