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Abstra
t

A physi
al model of brass instrument is 
onsidered in this paper : a one degree-of-freedom

outward striking valve for the lips, non-linearly 
oupled to a modal representation of the air


olumn. It is studied through linear stability analysis of the equilibrium solution. This ap-

proa
h provides the threshold value of the blowing pressure at whi
h an instability o

urs,

and the value of the frequen
y of this instability. The validity of the results of this method

is theoreti
ally limited to the neighborhood of the equilibrium solution. This paper 
he
ks

the e�
ien
y of linear stability analysis to understand the behavior of the model 
omputed

through time-domain simulations. As expe
ted, a good agreement is observed between linear

stability analysis and numeri
al simulations of the 
omplete nonlinear model around the os
il-

lation threshold. For blowing pressures far above the os
illation threshold, the pi
ture is more


ontrasted. In most 
ases tested, a periodi
 regime 
oherent with the linear stability analysis

results is observed, but over-blowing, quasi-periodi
ity and period-doubling also o

ur. In-

terestingly, linear stability analysis predi
ts the produ
tion of the pedal note by a trombone,

for whi
h only nonlinear hypotheses had been previously proposed. LSA also predi
ts the

produ
tion of a saxhorn note that had never been do
umented, but known by musi
ians.

I Introdu
tion

Linear Stability Analysis (LSA) 
an be used to analyze the behaviour of dynami
al systems around

equilibrium points (i.e. non-os
illating solutions). LSA 
onsists in writing a linearized version of

the system around a given equilibrium point. Its stability is then assessed by studying the response

of the linearized system to harmoni
 perturbations.
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LSA has already been applied to physi
al models of musi
al instruments: woodwind in-

struments [Wilson and Beavers, 1974, Silva et al., 2008, Karkar et al., 2012℄, �ute-like instruments

[Terrien et al., 2014℄ and brass instruments [Cullen et al., 2000, Silva et al., 2007℄. By de�nition,

the validity of the results of LSA is theoreti
ally limited to the neighborhood of the equilibrium

solution. However, re
ent results on �utes have highlighted that important features of periodi


regimes su
h as their frequen
ies are explained by LSA [Terrien et al., 2014℄. This paper examines

how far LSA 
an be used to understand some aspe
ts of the behavior of a physi
al model of brass

instruments.

Physi
al models of brass instuments have been proposed in multiple stud-

ies [Eliott and Bowsher, 1982, Flet
her, 1993, Ada
hi and Sato, 1996b, Cullen et al., 2000,

Campbell, 2004, Silva et al., 2007, Myers et al., 2012℄. Sin
e we are interested in studying a

simple model, a one degree-of-freedom system to model the lips is retained: the outward-striking

valve. For the same reason, the nonlinear propagation in the bore of the instrument responsible

of "brassy sounds" at high sound levels [Myers et al., 2012℄ is ignored. The 
oupling by the

blown air �ow between the lips and the air 
olumn inside the bore is modelled through a 
lassi
al

nonlinear algebrai
 equation [Hirs
hberg et al., 1995℄. This model is detailed in se
tion A.

Even su
h a simple model has more parameters to tune than the simplest models of woodwind

instruments. The latter 
an indeed be written with respe
t to two dimensionless parameters

only [Hirs
hberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013℄.

However, for ea
h valve position, brass players are able to play on multiple a
ousti
 modes

(or registers) of the air 
olumn by modifying signi�
antly the me
hani
al 
hara
teristi
s of

their lips. Therefore, the lip dynami
s 
annot be ignored, whi
h in
reases the number of

parameters to tune. A bibliographi
al review is given in se
tion B to give grounds for the

values 
hosen for ea
h parameter of the model. In se
tion C, details are given on how LSA

is applied to the model. In order to exhibit behaviors of the nonlinear model to 
ompare

with LSA results, many options are available. For instan
e, the Harmoni
 Balan
e Method

gives a Fourier series approximation of the steady state of periodi
 regimes, in
luding unstable

ones [Gilbert et al., 1989, Menguy and Gilbert, 2000, Co
helin and Vergez, 2009℄. Sin
e the

pioneering work of [M
Intyre et al., 1983, S
huma
her, 1981℄, it is also possible to 
arry out

time-domain simulations at moderate 
omputational 
ost, providing a

ess to transients and

possibly non-periodi
 solutions. This latter approa
h is retained (see se
tion D). Se
tion III


onfronts the results of LSA and numeri
al simulation for di�erent sets of parameter values.

Di�erent registers are explored, but also less 
ommon regimes su
h as quasi-periodi
ity and

period-doubling. In se
tion IV, we fo
us on the lowest register of brass instruments, 
alled

the pedal note, a parti
ularly interesting 
ase where LSA provides unexpe
ted information on

numeri
al simulation results.
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II Tools

A Brass instrument model

In most wind instruments [Flet
her, 1993℄, in
luding brass instruments [Cullen et al., 2000,

Eliott and Bowsher, 1982, Yoshikawa, 1995℄, the os
illation relies on the 
oupling between a non-

linear ex
iter and a linear resonator. More generally, the 
losed-loop system representation shown

in �g. 1 is widely used by the musi
al a
ousti
s 
ommunity, sin
e the seminal work of von Helmholtz

[von Helmholtz, 1954, M
Intyre et al., 1983℄.

Figure 1: Closed-loop model suitable for the des
ription of most self-sustained musi
al instruments.

Self-sustained os
illations are generated by the 
oupling between a lo
alized nonlinear ex
iter and

a (linear) resonator. For brass instrument, the lip reed provides the ex
itation while the resonator

is the air inside the bore. Both elements are non-linearly 
oupled through the air �ow between the

lips.

For brass instruments, the ex
iter 
onsists of the lips of the musi
ian, represented by a linear,

os
illator-like valve, linking the height between the lips h(t) and the pressure di�eren
e a
ross the

lips δp(t) = pb−p(t). pb is the blowing pressure (pressure in the mouth, assumed to be stati
) and

p(t) the os
illating pressure signal inside the mouthpie
e (the input of the bore). The resonator is

the bore of a trombone or a saxhorn (see se
tion IV.B). These resonators are represented by their

input impedan
e, whi
h links, in the frequen
y domain, the pressure at the input of the resonator

P (ω) and the a
ousti
 �ow at the same point U(ω):

Z(ω) =
P (ω)

U(ω)
. (1)

Those two linear elements are non-linearly 
oupled by the air�ow through the lip 
hannel. The

nonlinear ex
iter of �g. 1 
onsists in this 
oupling and the lip valve. The air jet is assumed to be

laminar in the lip 
hannel, but turbulent in the mouthpie
e, all its kineti
 energy being dissipated

without pressure re
overy. Applying the Bernoulli law and the mass 
onservation law between the

mouth and the lip 
hannel gives the following expression of the �ow between lips, depending on

the pressure di�eren
e and the height of the lip 
hannel [Hirs
hberg et al., 1995℄:

u(t) =

√

2

ρ
Lh(t)

√

pb − p(t), (2)

with u(t) being the air�ow rate (m3s−1
), h(t) the height of the 
hannel between the lips (m),

ρ = 1.19kg.m−3
the density of the air at 20◦C and L the width of the lip 
hannel (m).

A one degree of freedom valve (refered to hereafter as "1-DOF valve") [Flet
her, 1993℄ is enough

to model the lips for 
ommon playing situations [Yoshikawa, 1995℄ with a tra
table number of
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parameters. Two kinds of 1-DOF valves 
an be 
onsidered : "striking outward", whi
h tends to

open when δp grows, and "striking inward" whi
h presents the opposite behavior.

While inward-striking valves are globally re
ognized as a satisfying way to represent woodwind

reeds [Wilson and Beavers, 1974, Dalmont et al., 1995℄ there is no 
onsensus about the modeling

of the lip reed, as neither the outward nor the inward valve model reprodu
es all the behav-

iors observed with real musi
ians. Parti
ularly, a trombonist (or any brass player) is able to

get a playing frequen
y fosc above and below the resonan
e frequen
y fac,n of the nth
a
ousti


mode of the instrument [Campbell, 2004℄. Whereas a 1-DOF inward or outward model is lim-

ited to playing frequen
ies respe
tively below or above fac,n to meet the regeneration 
ondition

explained in [Eliott and Bowsher, 1982℄. Moreover, measurements of the me
hani
al response of

arti�
ial [Cullen et al., 2000℄ and natural lips [Newton et al., 2008℄ revealed the 
oexisten
e of both

inward and outward resonan
es: this allows fosc to be below or above fac,n at threshold. However,

situations where fosc is below fac,n (inward-striking behavior) are mostly spe
i�
 to some musi
al

e�e
ts: for regular playing situations, the playing frequen
y is above fac. Moreover, real human

lips open when air is blown, whi
h is 
learly an outward behavior. The relevan
e of this 
hoi
e

will be reinfor
ed throughout this arti
le, by 
omparing the results of the model analysis to known

behaviors of brasswinds.

The outward-striking valve gives a relation between the height of the 
hannel between the lips

and the pressure di�eren
e a
ross the lips :

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pb − p(t)), (3)

where ωl = 2πfl (rad/s) is the lips resonan
e angular frequen
y; Ql the (dimensionless) quality

fa
tor of the lips; h0 the value of h(t) at rest; µ an equivalent surfa
e mass of the lips (kg.m−2).

This model assumes the mouth pressure to be 
onstant. A more a

urate model would 
onsider

the os
illating pressure 
omponent in the mouth, along with a model of the tunable resonant


avity formed by the vo
al tra
t [Eliott and Bowsher, 1982℄. A signi�
ant role of the vo
al tra
t

has been shown for saxophone playing [Clin
h et al., 1982, Guillemain et al., 2010, Fritz, 2005℄.

But a signi�
ant role for trombone, and more generally for brass instruments, has yet to be

exhibited [Fréour and S
avone, 2013, Chen et al., 2012℄.

Nonlinear e�e
ts in the resonator should be taken into a

ount to a

urately des
ribe the behav-

ior of brass instruments at medium/high playing levels [Hirs
hberg et al., 1996, Myers et al., 2012℄

parti
ularly the "brassy sound" related to the formation of sho
k waves. However, the main ob-

je
tive of this paper is the study of os
illation around threshold (i.e. at low levels), therefore

the a
ousti
 propagation along the bore 
an reasonably be 
onsidered linear. Hen
e, the input

impedan
e is 
onsidered enough to des
ribe the resonator.

For this arti
le, input impedan
es of a Courtois T149 tenor trombone (and when mentioned, a

Couesnon "Ex
elsior" baritone-saxhorn in Bb
) have been used. Impedan
es have been measured

with the impedan
e sensor des
ribed in [Ma
aluso and Dalmont, 2011℄. These are �tted by a

4



sum of 
omplex modes (Lorentzian fun
tions). The 
hara
teristi
 impedan
e of the resonator is

Zc = ρc/S, with S being the input 
ross se
tion of the bore at the mouthpie
e rim. The modal-

�tted impedan
e is written:

Z(ω) = Zc

N
∑

n=1

Cn

jω − sn
, (4)

sn and Cn being respe
tively the poles and the residues of the nth

omplex mode. Comparison

between the measured trombone impedan
e and an 18-mode �t 
an be found on �g. 2. The

maximum relative di�eren
e between �t and measure, for frequen
ies above 30Hz is lower than

2.6% for the magnitude, and 4.7% for the phase. The measurement in low frequen
y are slightly

biased by the pre
ision of the impedan
e sensor.
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Figure 2: (
olor online) Magnitude (top) and phase (bottom) of the input impedan
e of a Courtois

tenor trombone. Plain 
urve depi
ts the measured impedan
e, dashed 
urve is the �tted version

with 18 
omplex modes.The di�eren
e between �t and measure is also plotted.

The dynami
s of the system des
ribed by eq. 2, 3 and 4 
an be put in a state-spa
e represen-

tation Ẋ = F (X), where F is a nonlinear ve
tor fun
tion, and X the state ve
tor, 
ontaining the

observables of the system. Taking p(t) =
∑N

n=1 2Re(pn(t)), where pn is the nth
modal 
omponent

of the pressure at the input of the bore:















d2h(t)
dt2

= −ω2
l h(t)− ωl

Ql

dh(t)
dt

− p(t)
µ

+ ω2
l h0 +

pb
µ

u(t) =
√

2
ρ
Lh(t)

√

pb − p(t)

dpn
dt

= ZcCnu(t) + snpn(t) for n ∈ [1 : N ].

(5)

This leads to the following state ve
tor, similar to the one proposed in [Silva et al., 2014℄:

X =

[

h(t);
dh

dt
; pn(t)

]

n ∈ [1 : N ]. (6)
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B Choi
e of lip parameters

Setting the values for the parameters of the lip model is not obvious, as measuring the me
hani-


al impedan
e (displa
ement over for
e ratio) in playing 
ondition seems out of rea
h. Adjusting

parameters to get results 
omparable with measured signals seems unprodu
tive. Even if a one-

DOF model depends on a small number of parameters, di�erent sets of parameters values may

lead to similar results. Moreover, 
ontrary to woodwind instrument valves whi
h remain fairly

steady regardless of the played note, the lip valve parameters of a trombonist vary while play-

ing. Parti
ularly, the lip resonan
e frequen
y is adjusted to sele
t the intended register of the

instrument.

A preliminary bibliographi
al review on lips parameter values has been done. Results from the

literature are gathered in table 1 along with a brief "abstra
t" of the method used in the reviewed

arti
les.

Referen
e h0(m) L(m) fl(Hz) 1/µ((m2kg−1) Ql "Abstra
t"

[Gilbert and Aumond, 2008℄ 5, 8.10−4 14.10−3
60�260 0.27 0.15�0.037 No information;

Variable Ql value

[Gazengel et al., 2007℄ human lip;

Soft N/A N/A 115.7 N/A 0.79 saxophone-like

Medium N/A N/A 479.87 N/A 0.46 position; 3 mus
ular

Tight N/A N/A 1073 N/A 0.46 tensions

[Cullen et al., 2000℄ 1st (Outward) mode

Soft 6, 3.10−4 18.10−3
189 0,07 10,5 arti�
ial lips

Medium 5, 3.10−4 12.10−3
203,5 0,11 6

Tight 4, 4.10−4 11.10−3
222 0,09 9

[Newton et al., 2008℄ N/A N/A 32 N/A 1,2�1,8 Human lips

High-speed 
amera

Ri
hards et al. (unpub.) 5.10−4 7.10−3
167 0,19 3,7 arti�
ial lips

�t for good results

[Eliott and Bowsher, 1982℄ N/A N/A 200 0,2 0,5 ± 0,03 Ql measured on 
heek

[Rodet and Vergez, 1996℄ N/A N/A 428,4 0,67 2,88 Trumpet; adjusted

for simulation

[Ada
hi and Sato, 1996b℄ 10−3 7.10−3
60�700 S(2π)2fl/1.5 0.5�3 Adj. for simulation

Table 1: Re
ording of di�erent values of lip parameters from literature, along with a brief expla-

nation of the method. in some arti
les, 
ertain values are not available (N/A). For papers using

2-DOF lip models, only the �rst, outward DOF is re
orded.

This work 
ompletes a similar review performed by M. Newton in his PhD thesis [Newton, 2009,

p.119℄. Many authors do not give the parameter values they use, nor give explanations about their

method to get these values, unless the fa
t that these parameters allow periodi
 self-sustained
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os
illation of the model. The measures on human or arti�
ial lips were made in 
onditions as

similar as possible to the playing 
onditions.

Our initial intention was to sti
k as 
lose as possible to the values measured on natural

lips [Gazengel et al., 2007, Newton et al., 2008℄. Geometri
 parameters (width and height at rest

of the lip 
hannel) given in all studies are very steady, around h0 = 5.10−4m and L = 12.10−3m.

Parametri
 studies performed by the authors have shown that variations of these do not drasti
ally


hange the qualitative behavior of the model. Similar observations have been made about µ, even

if the range of the values gathered is a little wider (µ ∈ [3.7 : 11.1] for the trombone).

Measurements from [Gazengel et al., 2007, Newton et al., 2008℄ tend to give low quality-fa
tor

values between 0.5 and 2. However, preliminary analysis 
arried out with Ql ≈ 1 showed very

unrealisti
 pressure thresholds (order of magnitude : 104 to 105Pa). Thus, an intermediate value

for Ql was 
hosen, 
loser to the values measured on arti�
ial lips (Ql ∈ [5 : 10]).

In all the simulations of this paper, the set of parameters used for simulation and linear stability

analysis is given in table 2:

h0(m) L(m) 1/µ(m2kg−1) Ql

5.10−4 12.10−3
0.11 7

Table 2: Lip parameters retained for the arti
le

C Stability of the equilibrium solution

Linearizing a 
losed-loop system to assess potential instabilities is a widely used method, as mu
h in

the dynami
al systems 
ommunity [Bergé et al., 1995℄ as in musi
al a
ousti
s for brasswind, wood-

wind and �ute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,

Terrien et al., 2014℄. Basi
ally, the equations des
ribing the system are linearized around a known

equilibrium solution. Then, the stability of this solution is evaluated.

Considering the system des
ribed in se
tion A, the stati
 equilibrium 
onsists in an equilibrium

lip opening he. This equilibrium position is slightly larger than the lip opening at rest h0, due

to the 
onstraint of the blowing pressure on the inner fa
e of the lips. Similarly, there is a small

stati
 overpressure pe at the input of the bore of the instrument. Mathemati
ally, this equilibrium

is obtained by 
an
eling all time derivatives in the system, as des
ribed in appendix A. The value

of pe is obtained by solving:

A3 +
A2

β
+ h0µω

2
l A− pb

β
= 0, (7)

with β = LZ(ω=0)

µω2

l

√

2
ρ
. The value of Z(ω = 0) is taken from the �tted version of the impedan
e.

This equation has 1 or 3 real roots. In the latter 
ase, the smallest real positive root should be


onsidered to 
ompute pe = pb −A2
[Silva, 2009℄, as Z(ω = 0) is small. The lip 
hannel height at

equilibrium he is then given by eq. 3 with ḧ = ḣ = 0.

The linearized fun
tion F̃ 
an be written as:

7



F̃ (X) = F (Xe) + JF (Xe)(X −Xe), (8)

with JF (X) being the Ja
obian matrix of the fun
tion F and Xe the state ve
tor at the equilibrium

solution. The solutions of Ẋ = F̃ (X) are under the form :

X(t)−Xe = Weλt, (9)

where W is a 
onstant ve
tor of same dimension as X.

Thus, the eigenvalues of the Ja
obian matrix give information about the stability of the equilibrium

solution for a given set of parameters. If at least one of these eigenvalues λ has a positive real

part, the amplitude of the linearized solution tends toward in�nity, whi
h means the equilibrium is

unstable and the solution starts os
illating. In the transient phase of the os
illation, the exponential

growth of the amplitude is determined by the positive real part of λ, and the angular frequen
y

is given by the imaginary part of the eigenvalue ω = Im(λ). However, the nonlinearities of the

system limit the �nal amplitude and also a�e
t the os
illation frequen
y of the steady state.

This method only allows the dete
tion of instabilities emanating from the equilibrium solution. If

a stable os
illating regime 
oexists along with the stable equilibrium solution, it won't be de-

te
ted. This situation o

urs for example in 
ertain woodwind instruments, where the Hopf

bifur
ation (
onne
ting the equilibrium solution to the os
illating one) is inverse for 
ertain


ases [Farner et al., 2006℄.

D Time-domain simulation

Another approa
h for studying musi
al instruments is solving (numeri
ally) the equations of the


hosen model, for a given set of parameters. Results of this resolution are time-domain simulated

signals of ea
h observable of the state ve
tor, whi
h also give information on the transient of the

signals.

Multiple numeri
al methods have been developed and used to simulate wind instruments with

models similar to the one presented in se
tion A. The primary di�eren
e is in the numeri
al

modeling of the a
ousti
s of the resonator. The re�e
tion fun
tion of the bore has been widely

used [M
Intyre et al., 1983, S
huma
her, 1981, Ada
hi and Sato, 1996a, Vergez and Rodet, 1997,

Gilbert and Aumond, 2008℄. The modal de
omposition of the bore has been 
hosen for this arti
le,

and 
omputations are 
arried out with the open-sour
e MoReeSC software tool, freely available

on its website. Prin
iples and results of this library are des
ribed in [Silva et al., 2014℄. This sim-

ulation tool uses a 
ontrol-theory-like modeling whi
h is similar to the one presented in se
tion A.

This eases the numerous 
omparisons between linear stability analysis results and the behavior

of simulated signals. It allows the simulation of the behavior of the model with a high number

of a
ousti
 modes for the resonator (18 in this paper), and o�ers a large �exibility to modify the

model parameters, as it will be done in se
tion 4.
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III Results

A Linear Stability Analysis

The linear stability analysis method detailed in se
tion C is applied to the model de�ned in

se
tion A, with the set of lip parameters de�ned in Table 2. The resonator is modeled with a

modal �t (N=18 in eq. 4).

For ea
h value of fl under study (here fl ∈ [20 : 500Hz]), the eigenvalues of the Ja
obian matrix

JF (Xe) presented in eq. 8 have been 
omputed for in
reasing values of pb, until a �rst instability

o

urs. Results are reported in Fig. 3. For ea
h value of fl, the top plot represents the lowest value

of pb giving an unstable equilibrium solution, further referred to as threshold pressure pthresh. The

bottom plot represents the imaginary part of the 
orresponding eigenvalue divided by 2π, whi
h

is the os
illation frequen
y at threshold, further 
alled fthresh. Ea
h horizontal dashed line on this

bottom plot represents the nth
a
ousti
 resonan
e frequen
y of the instrument fac,n given by the

maxima of the input impedan
e amplitude.

It should be noted that, for pb values higher than pthresh, other pairs of 
onjugate eigenvalues may

have a positive real part. This means a system with multiple instabilities. If di�erent os
illating

solutions are stable with these parameters, the system would be able to start os
illating on di�erent

registers. In �g.3 and similar �gures, the �rst instability (the one 
orresponding to the lowest pb)

is re
orded for ea
h fl value (
urve). The se
ond instability is re
orded for a smaller range of fl

(dashed 
urve).

On the [20 : 500Hz] frequen
y range represented, both plots of Fig. 3 
an be divided into 9 ranges

of fl, ea
h 
orresponding to one regime or register of the instrument: [30 : 63Hz] (�rst regime),

[72 : 123Hz] (se
ond), [124 : 179Hz], [180 : 234Hz], [235 : 288Hz], [289 : 352Hz], [353 : 404Hz],

[405 : 460Hz], [462 :> 500Hz]. On the bottom plot, the os
illating frequen
y fthresh stays on

plateaus just above ea
h value of fac,n. This is the usual behavior of an outward valve at threshold,

whi
h os
illates at a frequen
y just above the resonan
e frequen
y of the nth
a
ousti
 mode of the

bore implied in the instability of the equilibrium solution (fthresh > fac,n)[Campbell, 2004℄. For

ea
h regime, fthresh monotonously follows the variation of fl. This mat
hes the experien
e of the

brass player, who 
an slightly "bend" the sound (in
rease or de
rease the pit
h) by adjusting fl

through the mus
ular tension of the lips, and adapting the blowing pressure to the 
hange of pthresh.

The width of ea
h plateau, i.e. the attainable musi
al range on ea
h register, has analyti
 limits

depending on the lip quality fa
tor Ql as detailed in [Silva et al., 2007℄.

In terms of pb, it 
an be observed in Fig. 3 (top) that the os
illation threshold globally in
reases

with the rank of the register. A greater pb value is required to rea
h the higher notes of the

instrument, in a

ordan
e with the musi
al experien
e. Simultaneously to the fthresh plateaus,

the os
illation thresholds have U-shaped parts, qualitatively similar with the ones presented in

[Silva et al., 2007℄. Those U-shapes have a minimum value popt for ea
h register (indi
ated by


ir
les) whi
h depends signi�
antly on the losses of the resonator a

ording to [Silva et al., 2007℄.

In the following, we assume that popt and the asso
iated lip resonan
e frequen
y fopt are the

9



optimal playing 
on�guration for a human performer. This hypothesis is related to the strategy of

musi
ians, who 
laim to minimize the e�ort to produ
e a sound on a given regime. The popt values

are between 500Pa and 10kPa of the same order of magnitude as the blowing pressures re
orded

in our measurements. The pressure threshold in
reases faster when fl is above fopt than below (see

zoom-box on �g. 3 bottom). These results are 
ompatible with brasswind playing experien
e, as

it requires less e�ort for a musi
ian to "bend down" a note than "bending" it up.

The following will fo
us on some examples of [pb, fl] points to illustrate the di�erent behaviors

observed on the model. For ea
h 
ase, the agreement between the results of the linear stability

analysis and the sound produ
ed by the time-domain simulation des
ribed in se
tion D will be

dis
ussed.
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Figure 3: (
olor online) Results of the linear stability analysis of the model detailed in se
tion A

with parameters from table 2. For a range of lip resonan
e frequen
y fl, the top plot presents

the threshold mouth pressure pthresh, while the bottom plot shows the 
orresponding os
illation

frequen
y fthresh. Dotted lines are the values of fac,n. The magni�ed subplot (zoom on 4th regime)

highlights the asymmetri
al fthresh behavior above and below popt. Cir
les point the "optimal"

values popt and fopt. Thinner dashed lines represent the se
ond destabilization threshold (top) and

the 
orresponding frequen
y (bottom).
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B Exa
t mat
h between simulation and linear stability analysis

The simulated pressure at the input of the instrument is 
ompared with the LSA results. In

parti
ular, the pressure threshold pthresh is assessed by performing simulations with pb in the

vi
inity of pthresh. The fthresh values are also 
ompared with fosc. This latter quantity is measured

thanks to the instantaneous frequen
y dete
tion fun
tion "Mirpit
h" from the MIR toolbox. This

MATLAB toolbox 
ontains numerous fun
tions for musi
 information retrieval, in
luding Mirpit
h

whi
h estimates the frequen
y of a musi
al sound.

A simulation with the exa
t value of pthresh would theoreti
ally lead to in�nite transient times

(time until the steady state is rea
hed). Therefore, values of pb slightly below and above pthresh are

tested. The 
hosen lip resonan
e frequen
y is fl = 90Hz, everything else being given in Table 2.

The 
orresponding mouthpie
e pressure signals are represented in the two �rst plots of Fig. 4. The

third plot shows a situation where pb is mu
h higher than pthresh.

When the mouth pressure is a bit below the threshold (pb = 1210Pa whereas pthresh = 1222Pa)

(Fig 4 left), the os
illation de
reases exponentially towards the stati
, non-os
illating solution. The

thi
k line represents exponential de
rease given by eq. 9. In this 
ase, λ is the eigenvalue of JF

with the highest (negative) real part. The 
al
ulated os
illation's frequen
y (dash-dotted line) is


onstant and equal to fthresh = 116Hz = Im(λ)/2π.

When the mouth pressure is slightly above the threshold (pb = 1234Pa) (Fig 4 
enter), the signal

envelope in
reases exponentially during the transient phase (also following eq. 9, plotted in thi
k

line) at beginning, before rea
hing a steady-state regime. The 
al
ulated os
illation frequen
y fosc

(dash-dots) begins at fthresh = 116Hz; it be
omes quite higher in the permanent regime (126Hz

that is 8.6% or 143 musi
al 
ents above fthresh).
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Figure 4: (
olor online) Time-domain simulations with parameters from table 2 and fl = 90Hz,
with mouth pressure pb lower (left) and higher (middle) than the linearized model threshold

(pthresh = 1222Pa). Mouth pressure (steady) and mouthpie
e (os
illating) pressures are plot-

ted (left verti
al axis) along with the expe
ted exponential growth/diminution of amplitude (thi
k


urves: envelope of eq. 9). The expe
ted os
illation frequen
y at threshold is fthresh = 116Hz. The
third plot (right) 
orresponds to a blowing pressure mu
h higher than the threshold (pb = 3kPa;
zoom on �rst se
ond of signal). The dash-dotted 
urve depi
ts the instantaneous playing frequen
y.

As expe
ted, the behavior of time-domain simulations is a

urately predi
ted by the linear stability

analysis as long as pb remains in the vi
inity of the 
al
ulated threshold (left and 
enter plot).
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pthresh is a

urately 
omputed, and the value of the eigenvalue with the largest real part predi
ts

the frequen
y and the amplitude of the os
illation at the beginning. However, the amplitude

gets �nally limited by nonlinear phenomena. Thus, this linearized tool is unable to predi
t the

amplitude of the established regime's waveform.

The third plot shows the results with pb = 3kPa mu
h higher than pthresh. The two methods

still give 
oherent information, but the os
illating frequen
y fosc = 130.5Hz is 8% higher than

Im(λ)/(2π) = 120.8Hz. The di�eren
e is 134 musi
al 
ents, larger than a semitone. fosc is higher

in this situation than near the threshold, whi
h 
an be 
orrelated with the musi
al experien
e: the

pit
h rises when the player in
reases its blowing pressure [Campbell and Greated, 1994℄. But this

remark should be 
onsidered 
autiously be
ause in pra
ti
e, the 
ontrol of mouth pressure and lips

mus
ular a
tivity are always 
orrelated for a brass player.

This example is representative of most 
ases tested, as the linear stability analysis predi
ts 
orre
tly

whether there will be an os
illation or not, with a good estimation of the os
illation frequen
y at

threshold. Moreover, a strong 
orrelation between the duration of the transient and the value of

the real part of the unstable eigenvalue has been observed. However this reliability is limited to

mouth pressures near the os
illation threshold. On the other hand, the linear stability analysis


an predi
t neither the �nal amplitude of the permanent regime of os
illation, nor the steady-state

waveform. This latest observation will be further highlighted in the following sub-se
tion.

C Unforeseen behaviors

The linear stability analysis provides a lot of pertinent information about the os
illation threshold

and the transient phase. This is parti
ularly true when pb is near pthresh. However, some

simulations (detailed below) show nonlinear phenomena, obviously out of rea
h for this method.

Quasi-periodi
 os
illations

Firstly, the previous 
omparison is reprodu
ed with a di�erent lip resonan
e frequen
y. Three

simulations are performed with the parameters of table 2 and fl = 110Hz. Now, pthresh is equal to

711Pa. Again, three di�erent pb values are tested: pb = 701Pa, pb = 720Pa and pb = 2kPa. Results

are plotted on Fig. 5. When pb is near the threshold, results are very similar to the previous 
ase

with fl = 90Hz (Fig. 5 left and middle). But when pb gets large enough, the os
illation of the

mouthpie
e pressure be
omes quasi-periodi
 (�g. 5 right).
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Figure 5: (
olor online) Simulation results for fl = 110Hz, the pressure threshold being pthresh =
711Pa. Like in �g. 4 three simulations are shown with pb = 701Pa (left), pb = 720Pa (middle) and

pb = 2kPa (right, mu
h higher than pthresh). Other parameters (lip 
hara
teristi
s) are given in

Table 2.

This illustrates the aforementioned limitation of linear stability analysis. The existen
e of

an os
illating solution is attested in the vi
inity of the bifur
ation, and the pressure threshold

of the instrument is a

urately predi
ted, but the waveform of the permanent regime is out of rea
h.

Period doubling

When initialized with fl = 55Hz, pb = 400Pa (pthresh being 161Pa) and the other lip parameters

given in Table 2, the time-domain simulation result os
illates at 32.5Hz, signi�
antly under the

trombone's �rst a
ousti
 resonan
e (fac,1 = 38Hz). This is an unexpe
ted behavior. This os
illation


annot be dire
tly sustained by any a
ousti
 resonan
e, as the 1-DOF outward valve modeling the

lips produ
es playing frequen
ies above the a
ousti
 resonan
e frequen
y (fosc > fac,n) at least near

the pressure threshold, to 
omply with the regeneration 
ondition [Eliott and Bowsher, 1982℄.

Figure 6 
ompares the spe
trum of the simulated mouthpie
e pressure with the aforementioned

parameters (dotted plot) and the fthresh values in a very similar situation, the parameters being the

same ex
ept fl = 50Hz, i.e. 5Hz lower (plain plot). When fl = 50Hz, fosc = 65Hz is slightly higher

than fthresh = 56.3Hz; while for fl = 55Hz, the simulation's os
illation frequen
y is very 
lose to

the half of fthresh. We 
on
lude that, by in
reasing progressively fl, the periodi
 solution undergoes

a �ip bifur
ation [Bergé et al., 1995℄. A quite small variation of the lip resonan
e frequen
y 
an

lead to a regime with a sub-harmoni
 frequen
y and its harmoni
s. To the authors knowledge,

period doubling had never been observed on a model of brass instruments. However, trombone

players whose fa
ial mus
les (embou
hure) get exhausted by ex
essive pra
ti
e sometimes noti
e

their sound being an o
tave lower than what they expe
t.
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Figure 6: (
olor online) Spe
tra of the simulated mouthpie
e pressures of a trombone, with

(pb = 400Pa) for both situations, fl = 50Hz (plain) and fl = 55Hz (dotted) (other parameters from

table 2). The values of fthresh are pointed by a diamond (fl = 50Hz) and a 
ross (ffl = 55Hz).
The plain verti
al line indi
ates the �rst a
ousti
 resonan
e frequen
y of the trombone bore,

fac,1 = 38Hz.

Se
ond destabilization

Besides these two nonlinear phenomena, other di�eren
es between our linear stability analysis

tool and time-domain simulation are possible. A third example is given with fl = 120Hz, the

parameters given in table 2 and a high blowing pressure (pb = 6.5kPa while the threshold is

pthresh = 1056Pa). While fthresh = 128.4Hz is just above the 2nd a
ousti
 resonan
e frequen
y of

the bore (fac,2 = 112Hz), the simulation's os
illation frequen
y is fosc = 187.5Hz, near the 3rd

resonan
e frequen
y (fac,3 = 170Hz). Figure 7 shows the spe
trum of a simulation os
illating on

the third register, while the predi
ted os
illation at threshold 
orresponds to the se
ond one.
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Figure 7: (
olor online) Spe
trum of simulation result for fl = 120Hz and pb = 6.5kPa with other

parameters taken from table 2. The self-sustained os
illation o

urs at fosc = 187.5Hz, 
orrespond-
ing to the third register; while linear stability analysis predi
ts an os
illation at fthresh = 128.4Hz
(plain line) for pthresh = 1056Pa. Ea
h dash-dotted line represents the nth

a
ousti
 resonan
e

frequen
y fac,n of the trombone bore.

Retaining the lowest pb whi
h destabilizes the equilibrium solution is not enough, here, to predi
t

the behavior of the system with higher blowing pressure. Yet, this os
illation on the third regime


an be dete
ted by re
ording other pairs of eigenvalues of the Ja
obian matrix having a positive real

part, for pb > pthresh. The dashed plot on �g 3 shows the pressure threshold 
orresponding to the

se
ond pair of su
h eigenvalues (noted λ2), and the asso
iated frequen
y. For fl = 120Hz the se
ond

threshold is 6116Pa with an os
illation frequen
y equal to Im(λ2)/2π = 172Hz, 
orresponding

to the simulated third regime. This is 
onsistent with the behavior observed in the numeri
al

simulation.
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For a better understanding of the origin of the di�erent instabilities, another approa
h to perform

linear stability analysis may be preferred, as it gives visual information about the stability margins

of the di�erent registers. It 
onsists in studying a linearized version of the open-loop transfer

fun
tion (OLTF) of the system de�ned by eq. 2, 3 and 4 [Ferrand et al., 2010℄. This OLTF is

divided into two parts: the ex
iter's admittan
e Ya whi
h des
ribes the lip reed behavior, from

eq. 2 and 3, and the resonator, on
e again modeled with a modal �t of its input impedan
e Z (see

eq. 4).

The linearization of the ex
iter's admittan
e Ya simpli�es to a 1st degree Taylor expansion of eq. 2

near the equilibrium point; eq. 3 is then put into the result. Details of the 
al
ulation 
an be found

in Appendix B and leads to the following expression of Ya:

Ya = Lhe

√

2pe
ρ

(

−D(ω)

Khe

− 1

2pe

)

, (10)

where D represent the dynami
s of the lip reed (see Appendix B).

The stability of the OLTF, noted HOL, is then studied with the Barkhausen 
riterion, whi
h

points out possibly unstable points when HOL = Ya.Z = 1. On a Bode diagram, unstable points

are those of HOL having a 0dB magnitude and 0

◦
phase. This method has already been used

for 
larinet models with inward valves, and for brass and �ute-like instruments [Benade, 1976,

Ferrand et al., 2010, Terrien et al., 2014℄.

Figure 8 shows the Bode diagram of the OLTF of the system fed with the parameters of Figure 7.

The unstable points are easily re
ognized. The 
omputation is fast enough to observe evolution

on the Bode plot in real time while modifying a parameter.
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Figure 8: (
olor online) Bode diagram of the open-loop transfer fun
tion of the trombone model

with parameters of table 2, fl = 120Hz and pb = 6.5kPa. There are two instability points 
rossess),
with a 0dB magnitude and a zero phase.

Here, the Bode diagram presents two points of 0dB magnitude and 0

◦
phase, whi
h means two

instabilities of the equilibrium solution, at 132Hz and 172Hz. In the terms of the �rst linear
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stability analysis tool des
ribed in C, these frequen
ies 
orrespond to the imaginary part of the

eigenvalues of JF having a positive real part when these are 
al
ulated with pb = 6500Pa. The

value obtained with OLTF di�ers from the one obtained with the �rst linear stability method,

be
ause fthresh = 128Hz is obtained at pb = pthresh = 1056Pa while the OLTF value is obtained

with pb = 6.5kPa. The se
ond destabilization thresholds mat
h well, be
ause the destabilization

threshold of the third regime is 6116Pa nearer from pb = 6.5kPa. This frequen
y is lower than the

a
tual fosc = 189Hz value, but it 
orresponds to the same se
ond regime.

Both linear stability analysis methods show multiple instabilities of the stati
 solution, whi
h means

multiple possible regimes of os
illation. But they give neither information about the stability of

these regimes, nor about whi
h regime the instrument will a
tually os
illate on. This is determined

by the stability of the di�erent os
illating solutions, whi
h depends on nonlinear elements out of

rea
h of the method.

IV Lowest regime of os
illation

This se
tion fo
uses on the results of linear stability analysis and time-domain simulation on the

lowest register, related to the �rst a
ousti
 resonan
e of the air 
olumn inside the bore. This lowest

playable note is 
alled "pedal note" by musi
ians. For the trombone with its slide fully pulled in,

and the saxhorn with no valve depressed (neutral positions), the pedal note is a Bb
1 at 58Hz in the

musi
al s
ale.

A The Trombone's "pedal note"

To 
ompare more easily the os
illation frequen
ies of the di�erent registers of the trombone, the

ratio between the threshold frequen
y fthresh and the resonan
e frequen
y of the 
orresponding

a
ousti
al mode fac,n is 
omputed. Fig. 9 gives pthresh and fthresh similarly to �g. 3 on a smaller fl

range, along with the fthresh/fac,n ratio on the bottom plot.

When fo
using on the values at the minimum of pressure threshold fopt (
ir
les) as des
ribed in

se
tion III, this ratio appears to be signi�
antly higher for the �rst register than for the other ones:

fthresh/fac,1 = 1.47 while fthresh/fac,n ∈ [1.04 : 1.09] for n ≥ 2. However, for all the �ve lowest

registers, fthresh is less than 5% from the frequen
y of the referen
e note (the note supposed to be

played on the instrument for this register, following the tempered s
ale) when fl = fopt. Given

this, the linear stability analysis gives a reliable estimation of the referen
e note for these registers,

in
luding the pedal note.

This high fthresh/fac,1 ratio is 
oherent with the experien
e of trombone players, who are able to

play a "pedal" Bb
1 in tune with the other regimes of os
illation. The trombone's �rst resonan
e

is at fac,1 = 38Hz whereas for n ≥ 2, fac,n+1 − fac,n ≈ 58Hz whi
h means a major inharmoni
ity

of the lowest resonan
e 
ompared to the other ones. However, musi
ians are able to play Bb
1 as if

there were no inharmoni
ity [Bouasse, 1986, Velut et al., 2014℄. This ability to predi
t the pedal

note of the trombone with the linearization of an outward-valve model is unexpe
ted. It makes
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lear that the produ
tion of the pedal note involves the same phenomena than the other regimes.
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Figure 9: (
olor online) Results of linear stability analysis (with lip parameters from table 2) are

re
alled on top and middle plots (narrower fl range than in �g. 3), along with the fthresh/fac,n ratio
(bottom plot). Cir
les point the fopt resonan
e frequen
ies 
orresponding to the lowest pthresh.

Bouasse 
arried out an experiment by playing a trombone with a saxophone mouth-

pie
e [Bouasse, 1986℄. Gautier and Gilbert re
ently reprodu
ed this experiment, with an audio

and video re
ording provided with this paper. The result is an instrument playing a low Eb
0, whi
h

means an os
illating frequen
y just under fac,1 = 38Hz. This experiment is simulated below, and

the results presented in �g. 10. The trombone with a saxophone mouthpie
e is modeled with a

�t of the input impedan
e of a trombone mounted with the equivalent volume of a saxophone

mouthpie
e. The saxophone mouthpie
e is modeled with an inward-striking valve having the 
har-

a
teristi
s of a 
ane-reed, with fl = 1kHz, Q = 1.1; 1/µ = 4.9m2kg−1;L = 10−3m; h0 = 5.10−4m.

The os
illating frequen
y of the simulated mouthpie
e pressure sti
ks to the �rst resonan
e fre-

quen
y (fosc/fac,1 = 0.99). The signal is nearly sinusoidal, be
ause of the la
k of a
ousti
 resonan
es

mat
hing the harmoni
s of this frequen
y.
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Figure 10: (
olor online) Results of simulation of a trombone with a tenor saxophone mouthpie
e,

modeled by an inward-striking valve with reed resonan
e frequen
y fl = 1kHz, L = 1cm, h0 =
5.10−4m, Ql = 1.1, 1/µ = 4.9m2kg−1

. The blowing pressure pb = 1800Pa is slightly above pthresh =
1760Pa. Left plot shows the blowing pressure (steady) and the mouthpie
e pressure (os
illating).

Right plot is the spe
trum of the mouthpie
e pressure, showing an os
illation frequen
y of fthresh =
37.85Hz just under the �rst a
ousti
 resonan
e fac,1 = 38Hz. Dashed lines represent the resonan
e

frequen
ies of the bore for 
omparison.

These results show that the aforementioned high fosc/fac,1 ratio is spe
i�
 to outward-striking valve.

Put together, these results support the 1-DOF outward-striking modeling of a brass player's lips,

as it allows to reprodu
e even unusual behaviors of the instruments like the pedal note.

B A Saxhorn's "ghost note" ?

A 
omplementary exploration was done using the same 
omputation s
heme on a Baritone-saxhorn

in Bb
. This instrument belongs to the family of the tubas, its bore is nearly 
oni
al and it is

played on the same range as the tenor trombone. Its input impedan
e is quite similar to that of

a trombone, the main di�eren
e being on the �rst resonan
e peak whi
h is nearly harmoni
 with

the other ones. Thus, 
ontrary to the trombone, the Bb1 pedal note (lowest playable note) is 
lose

to the lowest resonan
e frequen
y.

The pedal Bb
1 is easily playable by a non-beginner musi
ian. However, the authors fortuitously

found out another playable note during pra
ti
e, whose frequen
y lies between fac,1 and fac,2.

Trials have been 
arried out on di�erent saxhorn models and brands. The note played 
an be a

Db
2 to a Eb

2, whi
h means a frequen
y ratio fosc/fac,1 between 1.19 and 1.35. We 
all it the "ghost

note" in this paper. Experien
ed saxhorn players further 
on�rmed the existen
e, and fa
ility of

emission, of this ghost note on many di�erent saxhorns and tubas, in
luding diverse transposing

instruments.

Results of the linear stability analysis of the saxhorn model are provided in �g. 11. The model is the

same as the one for the trombone, with only a 
hange in the a
ousti
 impedan
e used (eq. 4). They

are similar to those obtained with the trombone, with a parti
ularly high fthresh/fac,n ratio on the

�rst register. Again fo
using on the fopt values (
ir
les on �g. 11), the ratio is fthresh/fac,1 = 1.23.

Like for the trombone, this ratio is smaller and quite 
onstant for other modes (fthresh/fac,n < 1.05,

n ≥ 2). Time-domain simulation on a saxhorn model on the �rst register, (with pb = popt + 1%,

fl = fopt and other parameters 
oming from table 2) 
on�rm these values, with fosc/fac,1 = 1.23.

18



50 100 150 200 250 300

f th
re

sh
 (

H
z)

0

200

400

f
l
 (Hz)

50 100 150 200 250 300

f th
re

sh
/f

ac
,n

 r
at

io

0

1

2

50 100 150 200 250 300

p
th

re
sh

 (
P

a)

0

5000

10000

saxhorn

Figure 11: (
olor online) Results of linear stability analysis (with lip parameters from table 2) of

the saxhorn are given under the same form as those of the trombone in �g. 9. Cir
les point popt
(top) and fopt (bottom).

The gap between the lowest played note and the �rst a
ousti
 resonan
e is smaller for the ghost note

of the saxhorn (fthresh/fac,1 = 1.23) than for the pedal note of the trombone (fthresh/fac,1 = 1.47).

However, both are signi�
antly higher than for other modes (fthresh/fac,n ≤ 1.09 otherwise). Time-

domain simulations have been 
arried out [Velut et al., 2014℄ with a di�erent set of parameters,

that similarly predi
t a high fosc/fac,1 ratio, higher for the trombone than for the saxhorn. A

simple linearized model thus allows to predi
t the appearan
e of the pedal note of the trombone

and the ghost note of the saxhorn, whi
h is surprising. However, a set of parameters simulating

the pedal Bb
1 of the saxhorn with this model is yet to be found, if it in fa
t exists.

C Shift of the lowest resonan
e of the input impedan
es

The trombone and the saxhorn give two examples of high fthresh/fac,1 ratios on the lowest register

of the instrument. The trombone has a higher ratio than the saxhorn while its �rst register's

resonan
e frequen
y is lower. To assess this negative 
orrelation between fac,1 and the fthresh/fac,1

ratio, the �rst resonan
e frequen
y of the input impedan
e of the 
onsidered instruments is 
hanged

in the model. This is done by modifying the {C1, s1} values in eq. 4 while keeping the other modes

un
hanged, as well as the �rst mode's amplitude and quality fa
tor.

For ea
h value of fac,1 tested, the fthresh/fac,1 value is re
orded at fopt. Results of both saxhorn and

trombone are reported on �g. 12. The ratio tends to grow (with a di�erent derivative) when the
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resonan
e frequen
y tends toward zero. Therefore, the lower fac,1, the larger fthresh/fac,1. Thus, as

far as the outward model is 
on
erned, the gap between the playing frequen
y and the resonan
e

frequen
y is all the larger as the resonan
e frequen
y is low.
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Figure 12: (
olor online) Ratio between the predi
ted os
illation frequen
y fthresh and the a
ousti


resonan
e frequen
y fac,1 for di�erent values of the latter. Plain 
urve plots the results for the

trombone, the dashed one is for saxhorn. All values are taken for fl = fopt. Verti
al dash-dotted
lines are the original �rst resonan
e frequen
ies of a trombone (38Hz) and a saxhorn (62Hz). For
the further registers, fthresh/fac,n < 1.09.

V Con
lusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to

understand various near-threshold behaviors of the 
omplete nonlinear model of a brass musi
al

instrument (trombone or saxhorn).

Cases where simulations results are perfe
tly explained by LSA in
lude obviously exponentially

de
aying or in
reasing os
illation transients around the equilibrium solution. Moreover, 
on
erning

steady states, periodi
 regimes are observed at frequen
ies 
lose to the ones given by LSA, for all

registers of the instrument. This remains true as far as the periodi
 regime emanating from the

equilibrium solution remains stable. Indeed, on
e this periodi
 regime loses its stability, it gives rise

to harmoni
s swit
hing, quasi-periodi
ity o

urring or period-doubling. Playing other harmoni
s


an be predi
ted, as multiple instabilities of the equilibrium solution are shown by LSA, but it

gives no information on whi
h os
illating solution prevails. This demands further studies of the

model with numeri
al 
ontinuation tools, su
h as AUTO or MANlab [Co
helin and Vergez, 2009℄:

to dete
t the bifur
ations between os
illation bran
hes and estimate the domain of stability of ea
h

periodi
 solution. Quasi-periodi
ity and period-doubling are nonlinear phenomenons obviously not

taken into a

ount in this method.

The most unexpe
ted results of this paper 
on
ern the lowest register of brass instruments, but

are 
onsistent with musi
ians' experien
e. Indeed, in the 
ase of the trombone, linear stability

analysis predi
ts the produ
tion of the pedal note. Thus, LSA 
learly indi
ates that for low
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enough a
ousti
 resonan
e frequen
ies, the frequen
y of the emerging instability is far beyond

the resonan
e frequen
y of the instrument. This allows the trombone's pedal note to be played

in tune, though the 
orresponding resonan
e frequen
y is misaligned with the nearly harmoni


series of the upper peaks of the input impedan
e. This is an unexpe
ted out
ome of LSA, in a

way the produ
tion of the pedal note involves the same basi
 phenomena than the other regimes.

Considering the saxhorn, LSA also suggests the produ
tion of a note - designated as the "ghost

note" in this paper - that had never been do
umented but the playability of whi
h is 
on�rmed by

advan
ed players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing

frequen
y at threshold and the a
ousti
 resonan
e frequen
y rises when the latter de
reases requires

further attention. Moreover, neither LSA nor numeri
al simulations 
ould explain the produ
tion

of the pedal note by a saxhorn. This may be due to a limitation of the 1-DOF valve model for

the lips or more simply to inadapted parameter values. Indeed, in spite of a bibliographi
al review


arried out in this paper, 
hoosing parameter values for a brass model is 
hallenging. Even if

results obtained looks reasonable, 
onsistent with players' experien
e, in vivo measurements of lip

parameters during musi
al performan
e would be very valuable.
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A Equilibrium point of the system

Prior to apply the linear stability analysis to our model, the equilibrium solution must be 
omputed

before linearizing the equations around this solution. This solution 
onsists in a 
onstant lip 
hannel

height h(t) = he, a 
onstant �ow between the lips ue and a 
onstant pressure in the instrument

p(t) = pe. Finding these values 
onsists in solving the equation system 5 with these 
onstant

values. The system be
omes:















0 = −ω2
l he − pe

µ
+ ω2

l h0 +
pb
µ

ue =
√

2
ρ
Lhe

√
pb − pe

0 = ZcCnue + snpne for n ∈ [1 : N ].

(11)

Considering the relation between p(t) and its 
omponents pn(t), and adding the variable A =
√
pb − pe this be
omes:















he = h0 +
A2

µω2

l

ue =
√

2
ρ
LheA

pe = Z(ω = 0)ue.

(12)

These three equations 
an now be mixed :

LZ(ω = 0)

µω2
l

√

2

ρ
A3 + A2 + Lh0Z(ω = 0)

√

2

ρ
A− pb = 0, (13)

whi
h leads to eq 7 given in se
tion C.

B Linearization of Open-Loop Transfer Fun
tion

This appendix details the 
al
ulations leading to the linearized expression of the open-loop transfer

fun
tion of the model. The linearization of the admittan
e Ya simpli�es to a 1st degree Taylor

expansion of eq. 2 near the equilibrium point:

ũ(p, h) = u(pe, he) +

[

∂u

∂p
(pe, he)

]

(δp(t)− δpe) +

[

∂u

∂h
(pe, he)

]

(h(t)− he).

δp = pb − p(t) is the di�erential pressure through the lips. δpe and he are the equilibrium values

of respe
tively δp and h, i.e. the values giving the equilibrium solution. Like in se
tion C, the he

value is obtained by 
omputing the roots of a 3rd order polynomial whi
h variable is X =
√
δp:

X3 +
X2

β
+K.h0.X − pb

β
= 0 (β =

Z0.L

K
.

√

2

ρ
).

he is given by eq. 3 in stati
 
onditions (all time derivative being null):

he = h0 +
δpe

(µ.ω2
l )
.

22



All 
al
ulations being done, the linearized expression of the �ow between the lips is:

ũ(p, h) = Lhe

√

2pe
ρ

(

δp(t)

2pe
+

h(t)

he

− 3

2

)

. (14)

When translated in the frequen
y domain, the lip movement equation 3 gives the following relation

between the os
illating 
omponents of the di�erential pressure δP (ω) and the height of the lip


hannel H(ω):

H(ω) = D(ω)
δP (ω)

K
, (15)

with D(ω) being the dynami
s of the lips:

D(ω) =
1

1− ω2

ω2

l

+ j ω
ωl

qr
, (16)

whi
h leads to this �nal expression of the valve admittan
e:

Ya = L.he.

√

2pe
ρ

(

−D(ω)

K.he

− 1

2.pe

)

. (17)

C Nomen
lature of symbols

The symbols and abbreviations used all along this paper are reminded here, along with their

meaning and the unit used:

• h(t): Height of the lip 
hannel (m);

• L: Width of the lip 
hannel (m);

• h0: Height of the lip 
hannel at rest (m);

• ρ: Density of air at 20

◦
C (kg.m−3);

• µ: Equivalent surfa
i
 mass of the lips (kg.m−2);

• Ql: Quality fa
tor of the lips (no unit);

• p(t) or P (ω): Pressure at the input of the bore of the instrument (Pa);

• pb: Blowing pressure (Pa);

• pthresh: Threshold value of pb, above whi
h the equilibrium solution is unstable (Pa);

• fthresh: Value of fosc at pb = pthresh (Hz);

• u(t) or U(ω): Air �ow at the input of the instrument (m3.s−1
);
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• Z(ω): Input impedan
e of the resonator (kg.m−4.s−1);

• ωl = 2.π.fl: resonan
e frequen
y of the lips (Rad.s1);

• fosc: Playing frequen
y of the instrument (Hz);

• fac,n: A
ousti
 resonan
e frequen
y of the nth
mode (Hz);

• fthresh: Os
illation frequen
y at pthresh (Hz).

• popt: Lowest value of pthresh for a given register (Pa);

• fopt: Value of fthresh at pb = popt;
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