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Abstract 

One goal of reconfiguration is to save power and occupied resources. In this paper we compare two 

different kinds of reconfiguration available on field-programmable gate arrays (FPGA) and we discuss 

their pros and cons. The first method that we study is circuit merging. This type of reconfiguration 

methods consists in sharing common resources between different circuits. The second method that we 

explore is dynamic partial reconfiguration (DPR). It is specific to some FPGA, allowing well defined 

reconfigurable parts to be modified during run-time. We show that DPR, when available, has good and 

more predictable result in terms of occupied area. There is still a huge overhead in term of time and 

power consumption during the reconfiguration phase. Therefore we show that circuit merging remains an 

interesting solution on FPGA because it is not vendor specific and the reconfiguration time is around a 

clock cycle. Besides, good merging algorithms exist even-though FPGA physical synthesis flow makes it 

hard to predict the real performance of the merged circuit during the optimization. We establish our 

comparison in the context of the HoMade processor. 
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Circuit Merging versus Dynamic Partial Reconfiguration - The HoMade Implementation 

 
 INTRODUCTION  

The ability to perform run-time reconfiguration is very attractive because of the 

occupiedresources lowering it promises and the flexibility it offers. In the case of FPGAs, dynamic partial 

reconfiguration (DPR) is the reconfiguration solution that comes to mind as it becomes more usable in 

reconfigurable systems targeting different application fields.This feature consists in reprogramming on-

the-fly a given part of the FPGA without suspending the rest of the system execution. In fact, this presents 

an energy-efficient solution due to the hardware resources sharing. However, DPR technique introduced 

a new level of complexity in system design. This technique introduced by Xilinx [1] for example generates 

an overhead in terms of used logic and energy consumption. Implementing the PDR with Xilinx’s flow 

implies instantiating various predesigned components including at least one Softcore (MicroBlaze) [2], a 

bus (AXI or PLB), an ICAP controller port with bulky complex interfaces and FIFOs. In order to optimize 

their systems designers have no need to implement all IPs and interfaces provided by Xilinx. In the case 

of simple applications, some works has been based on this approach to design a hardware 

implementation of the DPR to reduce architecture complexity and to decrease the reconfiguration time 

corresponding to the transfer of partial bitstreams through the ICAP interface. It’s clear that the DPR 

presents an efficient technique in such systems but it is still limited in use because some FPGAs do not 

support it. 

Another approach to spare resources and to lower the static consumption is to use resource 

sharing between different modules of a system. In this solution, two identical components of different 

modules are transformed into a shared one plus some multiplexers (MUX) to choose the data path if 

necessary. The modules that share components can be seen as a unique reconfigurable module that can 

be configured by selecting the desired data path with the MUX. The resource sharing problem applied to 

circuit has already been well explored and it can be seen as merging the modules Data Flow Graph 

(DFG). The complex part of the problem is to find a merge that optimize a cost function that represents 

the occupancy savings. This problem which is similar to a search for sub-isomorphism between graphs is 

NP-hard[3] and different algorithms to find exact or approximate solutions have been introduced [4][5]. 
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This method has the advantage of always being available, even on low cost FPGA, because it is purely a 

design problem. 

Our final goal would be to study the integration of run-time reconfiguration into massively parallel 

processor architecture, but first we have to look at the technical reconfiguration solution that exists and 

measure their impact in a single core environment. The aim of this paper is to establish a comparison of 

the two reconfiguration methods. We made a bench mark and used the Virtex-7 to draft the comparison. 

We also used HoMade processor as an environment to perform our tests as it gives us a simple standard 

reconfiguration frame. This allows us to reduce the general reconfiguration problem to simpler cases.  

We begin by describing the different methods that exit to perform DPR and circuit merging. Then 

we briefly explain the methods we used in our comparison and how we applied them in the context of the 

HoMade processor. In Section IV we present our test bench and the results and we interpret them in the 

following section. In section VI we speak about the limitations of our comparison and our future works. 

RELATED WORK  

Resource sharing is a well-known problem in high level synthesis whose goal is to use a single 

computation circuit in different modules [5]. The most common approach is to build a compatibility graph 

between the DFG that one wants to merge and to find the clique that maximizes a certain cost function 

[6]. The nodes of the compatibility graph represent the possible association between the DFGs and two 

nodes of the compatibility graph are linked if the two associations can be made simultaneously. The use 

of heuristics in the clique finding problem allows fastening the algorithm. Another method that gives good 

results is the use of pattern-matching [7]. This solution uses heuristic methods that were developed to find 

the longest common subsequence string. The average area reduction achieved by their algorithm for 

pipelined data path is 55%. The cost function that is optimized is very important as the DFG merge must 

lead to physical results once implemented in the FPGA (power saving, reduction of slices...). In [8] a cost 

function is developed that takes into account the whole merged circuit rather than single associations 

independently. This allows making better choices during the clique finding. To solve the clique problem, 

Integer Linear Programming can be used such as in [9] where this method is applied to save space in a 

dynamically reconfigurable application specific coprocessor.  
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Few solutions take into account the elongation of the critical path caused by the additional 

multiplexers during the clique finding. An elegant solution is presented in [4]. They formalize the clique 

finding problem with constraint programming. This allows the addition of a specific constraint that controls 

the data path latency elongation. Their methods that use the constraint programming solver JaCoP [10] 

gives an average area reduction of 50% without adding any additional delay. Hence efficient methods are 

available to perform resource sharing although the problem remains complex because the abstraction 

chosen (the grain for instance) can have an impact on the result, and no method is therefore fully 

exhaustive in the search of the optimal physical solution. 

Different methods also exit to perform DPR. Xilinx has proposed a simpler design for DPR [11] 

[12] compared with its basic architecture. The proposed architecture includes a Custom ICAP Processor 

to manage the ICAP interface without using the OPB_hwicap [13]. The aim of this idea is to alleviate the 

DPR process by employing a hardware accelerator instead of a Softcore (MicroBlaze). So it permits to 

reduce many control signals used by the bus interface. The advantage of this architecture is to manage 

the DPR as a hardware implementation to reduce software complexity. Despite this improvement, the 

used 100MHz frequency limits the user from obtaining a maximum throughput to transfer bitstreams 

through the ICAP interface. FaRM [14] is a high speed ICAP controller which is able to perform readback 

that reduces the configuration overhead. FaRM employ a DMA, ICAP overclocking and bitstream preload 

into controller. FaRm can operate with overclocked ICAP to 200 MHz and can reach 800 MB.s-1 

throughputs. However, FaRM is limited to a certain frequency with variable compression ratios. It 

depends on the uniformity of the Bitstreams, which explains the variation of maximum throughput. The 

UPaRC [15] is a controller able to enhance the reconfiguration throughput to 1.433 GB.s-1 at 362.5MHz. 

UPaRC can also auto-adapt to various performance and consumption conditions. The architecture tasks 

are managed by a MicroBlaze which provides a lot of control signals. Moreover, the application of a high 

frequency of 362.5MHz on BRAM reading interface can produce data integrity problems because the 

BRAM maximum frequency is about 300MHz. The use of the internal memories of the FPGA for such 

methodology is quite expensive since the size of a bitstream varies depending on the size of the 

reconfigurable region prompting designers to include a compression /decompression bitstream 

mechanism to reduce the on-chip BRAM occupied size. The decompression time can affect effectively 
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the speed of the bitstream transfer. The [16] enhance the UPaRC architecture including a DDR2/DDR3 

SDRAM interface managed by MicroBlaze through the MPMC [17] that can operate at 200 MHz of 64-bit. 

In addition, it includes an ICAP controller operating at 370MHz. It permits to obtain a maximum 

throughput of 1.48GB.s-1. The system we proposed exceeds all the maximum reconfiguration 

throughputs of state-of-the-art controllers and offers high-capacity of bitstream storage. These important 

features permit to construct powerful reconfigurable systems with a large choice of system architectures 

without the need of bitstream preloading and bitstream compression and decompression. On the other 

hand, it is clear that the proposed architecture provides a satisfactory flow for high performance 

applications but it remains dependent on the use MPMC interface which is limited to certain FPGAs. 

MERGING METHODOLOGY AND DYNAMIC PARTIAL RECONFIGURATION INTEGRATION IN 

HOMADE PROCESSOR 

HoMade processor 

We implemented the two reconfiguration methods in the context of the HoMade processor. This 

processor is an ultra RISC stack-based processor with only 12 instructions used essentially for controlling 

the execution flow (i.e. jumps, procedure call/return, master/slaves invocation...). One other instruction is 

used to trigger IPs via their identifier (ID). The IPs can be arbitrary complex, including ALU functions, 

register files, load/store units, or even other processors. Therefore it can be considered as an IP 

integrator. We made our experiments in HoMade in order to have a common ground to establish a 

comparison.  

The HoMade IP frames is the following: there can be between zero and three 32-bit inputs plus a 

mandatory 10-bit IPcode input and between zero and three 32-bit outputs. The 32-bits inputs and outputs 

of all the IPs are linked to a common stack. An additional 1-bit output signal can be added if the IP 

performs in more than one cycle. The IP use it to notify the controller when it has finished. In other cases 

the IP should perform in less than a cycle. Lastly an IP is triggered when it receives its specific code on 

the IPcode bus. We integrate the run-time reconfiguration in this context by giving multiple configurations 

to a same IP. Hence we have chosen that all the configuration of a reconfigurable IP should have the 

same IPcode and the same number of inputs and outputs to have a similar effect on the stack. A special 

instruction is added to trigger the run-time reconfiguration of an IP. In the following parts we present the 
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application of the reconfiguration techniques to the case where we want to transform several IP with the 

same interface into one reconfigurable IP. 

Merging methodology 

To use circuit merging based run-time reconfiguration in HoMade we add registers into the 

reconfigurable IP to encode its configuration state. These registers are then used to control the different 

multiplexers that have been added. A reconfigurable IP is then given two consecutive IPcodes. When 

receiving the first one it performs its operation according to its configuration. When receiving the second 

one it reads the word on the top of the stack and uses it to set the configuration registers. The 

consecutiveness of the codes lessens the logic to control the IP. Hence it costs one cycle to perform the 

reconfiguration of the module.  

To perform the IP merging we used a method that is described in [4] and is based upon clique 

finding in a compatibility graph with constraint programming. This method is divided into three steps. The 

first one builds a compatibility graph. During the second, the clique that maximizes a given cost function is 

searched. The last step consists in building the merged circuit and adding the multiplexers.  

During the first phase, IPs that we want to merge are described as data flow graphs. This 

description defines the granularity of the merge. Nodes of the DFG are modules of the circuit (adders, 

multiplier...); they will be considered as black boxes during the rest of the methods: nodes of the DFG are 

fully shared or not shared at all, subcomponents are not considered. Nodes are abstracted to a type. We 

also have to define rules for the compatibility. Two nodes of the same type can obviously be associated, 

but sometimes it is also worth transforming two specialized modules into one more generic. For instance 

an adder and a subtractor can be merged into a component that can be configured as both. In a way 

these associations allow to consider finer grain merging without paying the computational price of 

opening the black box, but it requires some previous work (knowing how to merge an adder and a 

subtractor in our exemple). An exhaustive list of all the possible associations between two nodes is built. 

These form the nodes of the compatibility graph (GC). Two GC nodes are linked if the association can be 

made at the same time. The second phase consists in finding the clique in GC that maximizes the 

weights. A clique is a sub-graph where all nodes are linked to each other, hence in the case of GC, a 

clique is a set of compatible association. The cost of the clique is the sum of the weight of its nodes (it 
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can represent the occupancy saving for instance). The third step is the construction of the merged DFG 

from the input DFGs and the clique that has been found. It consists in applying the association choice that 

have been made and to add the necessary MUXs.  

The complete solution used more advanced techniques that can be found in [4]. We choose to 

base our algorithm on the method because it is easy to tune-up. During the first step it is possible to 

choose the grain and which associations are allowed and the second step allows you to control the critical 

path elongation. Yet, if the problem merging efficiently two data-flow graph is well resolved in [4], some 

questions remains before merging two circuits that will be implemented on a FPGA. The first question that 

arouses is at which level should we decide to share resources. The maximum sub graph isomorphism 

problem being NP hard [3], large optimal low-level resource sharing would be tedious. Furthermore we do 

not want to impose gate level synthesis to let some liberty to the FPGA vendor's compiler for optimization, 

hence we implemented resource sharing at high-level: we try to share adders and bigger modules and we 

see these modules as black-boxes. Then, FPGA are not ASIC and it is not an easy task to accurately 

predict which resources will implement a given module before the place and route process (PAR). This 

could be a problem because the merging tools needs accurate physical information to make decisions 

during the minimization of the cost function. The prediction of the delay is even harder. Indeed a great 

part of the delay comes from the interconnect and it cannot be predicted accurately before PAR[18]. 

Hence, even though the method [4] can control the logical delay, we chose to let it loose because up to a 

certain point we can suppose that the logical delay that we add will be negligible compared to the noise of 

the interconnect delay. 

Dynamic Partial Reconfiguration 

We integrate DPR in HoMade through a dedicated IP to manage the transfer of a partial bitstream 

to a reconfigurable region (RR) included in a reconfigurable IP. Thanks to a standard interface of a 

reconfigurable IP, DPR can be easily implemented in HoMade processor. The reconfigurable IP 

illustrated in Figure 1 can handle several configurations using the same IP_Code. In order to perform 

DPR during run-time, the dedicated hardware HoMade-IP is called as a regular IP and activated when its 

specific IP_code is equal to the current execution code given by a user program. It then triggers the 

reconfiguration process to read a partial bitstream from an external memory to a specific RR. When the 
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reconfiguration is finished, the module notifies this information to the HoMade controller. With this 

approach, the reconfiguration is seen as a regular operation in the HoMade processor and it corresponds 

to a single instruction in the software. 

 

Fig.1: Structure of a reconfigurable IP 

Dedicated hardware is also added inside HoMade to store the partial bitstreams and to transfer 

them to the ICAP. It is a high speed controller based on DDR memory. It provides a rate of 1.425 GB/s at 

a frequency of 400MHz. 

 

Figure 2: The proposed architecture of the partial dynamic reconfiguration controller based on HoMade 
processor. 

The internal structure of the proposed architecture depicted in Figure 2 consists of two separate 

data transfer flows: the writing flow and the reading. Both transfer flows use the MIG [19] controller to 

read or write bitstream words from the DDR memory using a separate 512-bit bus. The writing flow is 

firstly processed during the initialization phase to transfer a set of bitstreams contained in a single file that 

contains its length as header trough UART. The file body contains the concatenation of a lot of partial 

bitstream with their relative length and written in the DDR memory. Next, the user binary program is sent 

to the HoMade instruction memory. HoMade is started at the end of this process. The reading flow is 

used during the DPR phase. When the reconfiguration IP is called, it triggers the reading flow with an 
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address corresponding to the target partial bitstream in the DDR memory. The target bitstream is read 

from DDR by pieces of 512-bit. These words are then split by a MUX into 32-bit words to be transferred to 

the ICAP. The first 32-bit word is used to determine the bitstream length. When all the bitstream has been 

transferred to the ICAP, the module notifies the reconfiguration IP by asserting the IP_Done signal. It then 

goes back into the initial state, waiting for the next reconfiguration. The "ICAP_FSM" module addressing 

can transfer a 512-bit in 16 clock cycles at 400MHz frequency. This allows to reduce the reconfiguration 

duration using burst and pipelined reads from the DDR memory which permit to double the throughput 

rate since the reading MIG interface is running at 200Mhz. 

COMPARISON OF THE TWO RECONFIGURATION TECHNIQUES 

The test bench 

To get a better understanding of the performance of the DPR and the circuit merging we used a 

set of six image processing filters: Gaussian, mean, Prewitt-diagonal, Sobel, Kramer and median. The 

size of the filters is described in Table 1. All these filters use a square matrix of nine 8-bit pixels encoded 

on three 32-bit words as an input and they all return a single 32-bit output. They are also all single cycle 

components in HoMade. 

Filter  Gaussian Mean Prewitt Sobe
l 

Kramer Median 

LUTs used 82 98 166 166 187 237 

Table 1: Size of the different filters 

The experiment made was to take HoMade with some of its basic IPs (adder/substractor, shifter, 

and/or…) and to test the methods on six different cases described in Table 2. 

Experiment  1 2 3 4 5 

LUTs used Gaussian 
Mean 

Gaussian 
Mean 
Prewitt 

Gaussian 
Mean 

Prewitt 
Sobel 

Gaussian 
Mean 

Prewitt 
Sobel 

Kramer 

Gaussian 
Mean 

Prewitt 
Sobel 

Kramer 
Median 

Table 2: Experiments of our test bench 



CIRCUIT MERGING VS DYNAMIC PARTIAL RECONFIGURATION  11 

We added a ―No reconfiguration‖ method to our study where each filter of a given experiment is 

implemented in a different IP, and all these IPs are added to HoMade. In the two reconfigurable methods, 

all the filters considered in an experiment are put in a single reconfigurable IP. We have chosen to add 

the filters to HoMade from the smallest to the biggest. The experiments were made inside HoMade but 

the following figures concern only the filters that where added with the different techniques. We chose to 

make the measures inside HoMade because the environment may have an impact during the PAR. 

HoMade occupancy without the filters is 2542 LUTs and 630 registers. The results were measured using 

Xilinx ISE and Plan Ahead 14.2 tools after the PAR for the virtex-7. 

Results 

LUTs and registers Occupancy: Figure 3 gives the occupancy in terms of LUTs and registers. 

During the first experiment, DPR consumes more LUTs than actually putting all the different modules. 

This can be explained by the overhead of the proxy logic that has to be added for each of the signal that 

is going between the static and the reconfigurable part. In our case we have four 32-bit buses, so we 

would expect 128 LUT in overhead. The result is slightly bigger; this might be explained by the shape of 

the reconfigurable region. It has to be a rectangle of slices. Hence there is a step effect and we can infer 

the following rule: the minimum number of LUTs used will be the number of LUTs of the smallest 

rectangle region of entire slices that contains at least the LUTs required by the biggest configuration plus 

the proxy logic. The solution to this formula is to take a rectangle with one side measuring one slice. But if 

the module is big, it might lead to a bigger delay because the maximum internal distance would grow 

linearly with the surface. A trade of has to be manually found.  

The experiment 2 to 4 also show the fact that adding many modules of similar sizes do not 

increase the DPR occupancy as all that as to be taken into account is the maximum module. During the 

merging of the first four modules, circuit merging is efficient. Indeed the modules of these filters are 

mainly composed of adders and their structures are close. During the fourth experiment, this solution 

rises suddenly because Kramer that is composed mainly of comparators does not share much of its logic. 

Yet during the fifth experience, the investment made by integrating Kramer in the merged module allows 
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to share many of the median filter comparators. The last two experiments show that DPR becomes 

competitive when there are enough configurations to compensate the proxy logic price. 

 

Figure 3: LUTs and registers occupancy in the different experiments 

Our filters do not need slice registers as they do not use any flip flop. The few slice registers in 

the non-reconfigurable test are used as logic element. This optimization made during PAR is more visible 

in the circuit merging case. We could suppose that there is an increase in the density to respect the 

timing in the merge module and that using slice registers as logic becomes necessary to follow the 

increase in density. The case of DPR is very different. There is exactly twice as much required slice 

registers as slice LUTs. This is because the RR is a rectangle of slice, and all the resources in this 

rectangle will be privatized for this module. Even though none of the configuration actually uses the RR 

slice registers, these registers are tied up to our reconfigurable IP. However, it would be inaccurate to say 

that all unused resources in RR are lost because routing can occur between two static zones through a 

reconfigurable area. 

Occupancy prediction for circuit merging:Figure 4 shows the comparison on the number of 

LUTs saved by merging circuit technique between the prediction at RTL level and the measure after PAR. 

The prediction at RTL level is made with Xilinx synthesis report. We believe that the gap that we can see 

is globally due to the fact that the synthesis report seems to assign an overestimate the cost of the MUX 

in terms of occupancy.  
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Figure 4: Prediction of the occupancy gain with merging 

The gap always tends to be in the same direction which underestimates the merged IP 

performance. This has less impact than the contrary because with this bias we can suppose that merged 

IP found during the merging process will save even more once implemented. 

Impact on the Critical path:The time measurement corresponds to the maximum delay of a 

combinatorial path in HoMade. We verified as shown in Figure 5 that this worst delay is always found in 

the filter IP that we are studying, which is what we expected because all the other IPs are very small in 

comparison. Hence this measure allows us to judge the impact of the merging techniques on the speed. 

We added a curve that corresponds to the prediction of the delay in the non reconfigurable case. We can 

easily make this prediction looking at the delay of each individual filter measured in HoMade (Thus 

containing a part of the interconnect influence). In every experiment, we could expect this delay to be the 

worst one of the filters considered because they are in parallel. The timing results are counter intuitive, we 

would expect the merging module to get worse result than none merged solution. But as we previously 

stated, the inter-connect and the PAR process has such an important impact that we cannot conclude 

over which solution is going to be better in our experiment. 

 

Figure 5: Maximum delay analysis in the case of merging 
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Even none merged predicted delay is false. One possible explanation in this case would be to 

accuse the bus interface between the IP and the controller. Adding IPs increases its capacity and 

increase the complexity of the BUF-T. In the experiment 1-4, this seems an interesting explanation, and 

indeed a precise measure in the experiment 4 shows that 3 ns were lost in the paths related to the bus 

compared to the merged solution that do not impact the buses. But the fact that the delay decrease in 

experiment 5, which is more complex shows that PAR and its optimization brings an imprecision which is 

bigger than the delay difference in terms of logic, making high-level small timing optimization useless or 

worse, counterproductive (Non merged in experiment 4). Hence we believe that in the case of design 

intended for FPGA, aggressive merging based on occupancy saving is worth trying. Obviously, this can 

sometimes give results with poor timing performance. In 4 and 5 we made an experiment to share the 

adder and comparator through the use of adder-substractor, the result delay was 29 ns. In the case of 

DPR the maximum delay is the one of the worst configuration. The results for DPR in terms of timing were 

good, between 10 to 12ns delay, but they may suffer from the same incertitude due to the PAR. 

Reconfiguration time overhead: The last aspect that we compare is the reconfiguration 

duration. In the case of circuit merging, as we stated previously, the reconfiguration time is a cycle length 

because of our choice to use registers. In the case of DPR the reconfiguration time linearly depends of 

the partial bitstream size which is proportional to the surface of the RR. For instance, in the case of the 

5th experiment, the size of a partial bitstream is 50ko. With our method that allows a 1,425Go/s 

reconfiguration throughput it takes 35µs or 1750 cycles to perform the reconfiguration. 

Interpretation of the results 

Occupancy: Our test bench gives best results for the circuit merging. Of course this may be due in great 

part to the fact that the modules we studied are close. The 4th experience shows that when adding a very 

different module, the price to pay is high. On the other hand the more different types are merged together, 

the more likely a new module will find resource to share in it. For circuit merging, our results also show 

that the existing merging tools occupancy optimization translates into physical results on FPGA in our 

experiments.  
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It’s seems that DPR is not meant to be used with a few middle size modules and we have to acknowledge 

that our test bench is not optimal for DPR. The more there are configurations, the more it may become an 

interesting option. It can also be interesting with a few big modules with a high ratio of internal logic 

compare to the number of interface wires. To compensate the effect of the whole RR allocation, it would 

also seem more reasonable to put configuration that will occupy most of the RR resources. 

Impact on the Critical path: Even if it makes sense to say that DPR would result in a smaller critical path 

(once the proxy logic is balanced), our experiment shows that with middle size modules, the PAR process 

brings too much noise to draw an absolute conclusion here, though in our case DPR gave best results. 

Our experiments also allow questioning the usefulness of harsh critical path elongation control during the 

circuit merging process when implementing the solution on FPGAs. 

Reconfiguration time overhead: It is not a big surprise to observe that circuit merging is more than a 

thousand time faster than DPR. This means that DPR should not be used in an environment with a high 

frequency of reconfiguration operations. On the other hand, it seems sometimes acceptable to lose some 

micro seconds once in an interval of more than one second, if it does not impact a critical operation. This 

means that contrary to circuit merging, the DPR reconfiguration time have to be taken into account when 

designing the system. If well scheduled, the DPR reconfiguration time overhead could be masked. 

LIMITATION AND FUTURE WORKS 

Our test bench is limited to small to middle size module; hence we cannot draw a general 

conclusion from this comparison. Besides if our comparison is made easier thanks to the HoMade 

context, it may be a bias and the result could differ in another environment. However this limitation to 

small and middle size module makes sense to us as we are willing to use run-time reconfiguration in a 

massively parallel environment, where there would be many small reconfigurable modules rather than a 

big one. We are planning to expand this first comparison in a more detail approach in massively parallel 

HoMade, where a master can order the reconfiguration of all modules inside all its slaves in a single 

instruction. We can already predict that in this context, the DPR reconfiguration time would linearly grow 

with the number of slave cores because for now the DPR of all the RR as to be sequential, even-tough 

we hope it will not be the case with 3D FPGA. In this context, circuit merging reconfiguration with its 



CIRCUIT MERGING VS DYNAMIC PARTIAL RECONFIGURATION  16 

single cycle reconfiguration seems promising, but it remains to be tested in HoMade. Another limitation of 

this comparison is that we have only studied combinatorial modules. Indeed we have not yet built our 

theoretical approach of finite state machine merging and register sharing with the context switching 

problem it may bring to merging. Combinatorial function of different states should also be merged. We 

plan to build a more complete IP merging methodology and to test it. 

 

 

CONCLUSION 

DPR and circuit merging are two techniques to build run-time reconfigurable systems but our 

experiments show that they are not meant for the same reconfiguration style. DPR gives more flexibility to 

the designer because the configuration does not have to be close in terms of logic, and we can hope that 

in the future it will be easy to design new configuration without having to re-implement the whole system. 

Yet we have found that this technique is not very optimal for the small and middle size reconfigurable 

region with few configurations of our bench mark. Circuit merging methods can be scaled-up but the 

solution finding will take much more time. One of its drawbacks is also that contrary to DPR that is only 

impacted by the maximum, each configuration added makes it bigger. Yet our experiments show that it 

gives good occupancy results with small and middle size module and few configurations. Its cycle length 

reconfiguration time and the 50% space saving compared to none reconfigurable solution makes it an 

interesting option. 
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