LocNet: Improving Localization Accuracy for Object Detection

Spyros Gidaris 1, 2, 3 Nikos Komodakis 4, 1, 2, 3
3 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
Abstract : We propose a novel object localization methodology with the purpose of boosting the localization accuracy of state-of-the-art object detection systems. Our model, given a search region, aims at returning the bounding box of an object of interest inside this region. To accomplish its goal, it relies on assigning conditional probabilities to each row and column of this region, where these probabilities provide useful information regarding the location of the boundaries of the object inside the search region and allow the accurate inference of the object bounding box under a simple probabilistic framework. For implementing our localization model, we make use of a convolutional neural network architecture that is properly adapted for this task, called LocNet. We show experimentally that LocNet achieves a very significant improvement on the mAP for high IoU thresholds on PASCAL VOC2007 test set and that it can be very easily coupled with recent state-of-the-art object detection systems, helping them to boost their performance. Furthermore, it sets a new state-of-the-art on PASCAL VOC2012 test set achieving mAP of 74.8%. Finally, we demonstrate that our detection approach can achieve high detection accuracy even when it is given as input a set of sliding windows, thus proving that it is independent of bounding box proposal methods.
Liste complète des métadonnées

Cited literature [35 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01245707
Contributor : Spyros Gidaris <>
Submitted on : Thursday, December 17, 2015 - 3:18:13 PM
Last modification on : Wednesday, October 3, 2018 - 1:17:04 AM
Document(s) archivé(s) le : Friday, March 18, 2016 - 2:00:28 PM

File

1511.07763v1.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01245707, version 1
  • ARXIV : 1511.07763

Relations

Citation

Spyros Gidaris, Nikos Komodakis. LocNet: Improving Localization Accuracy for Object Detection. [Technical Report] Ecole des Ponts ParisTech. 2015. ⟨hal-01245707⟩

Share

Metrics

Record views

464

Files downloads

1529