T. M. Austin, M. L. Trew, and A. J. Pullan, Solving the Cardiac Bidomain Equations for Discontinuous Conductivities, IEEE Transactions on Biomedical Engineering, vol.53, issue.7, pp.1265-72, 2006.
DOI : 10.1109/TBME.2006.873750

M. Boulakia, E. Schenone, and J. F. Gerbeau, Reduced-order modeling for cardiac electrophysiology. Application to parameter identification, International Journal for Numerical Methods in Biomedical Engineering, vol.51, issue.10, 2012.
DOI : 10.1002/cnm.2465

URL : https://hal.archives-ouvertes.fr/hal-00644396

M. Boulakia, S. Cazeau, A. Miguel, J. Fernández, N. Gerbeau et al., Mathematical Modeling of Electrocardiograms: A Numerical Study, Annals of Biomedical Engineering, vol.98, issue.1???3, pp.1071-1097, 2010.
DOI : 10.1007/s10439-009-9873-0

URL : https://hal.archives-ouvertes.fr/inria-00400490

M. Boulakia, A. Miguel, J. Fernández, N. Gerbeau, and . Zemzemi, Numerical simulation of electrocardiograms, Modeling of Physiological Flows, pp.77-106, 2012.
DOI : 10.1007/978-88-470-1935-5_4

M. Boulakia, M. A. Fernández, J. Gerbeau, and N. Zemzemi, A Coupled System of PDEs and ODEs Arising in Electrocardiograms Modeling, Applied Mathematics Research eXpress, p.2, 2008.
DOI : 10.1093/amrx/abn002

Y. Bourgault, Y. Coudiere, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear analysis: Real world applications, pp.458-482, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00101458

D. Chapelle, A. Gariah, and J. Sainte-marie, Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples, ESAIM: Mathematical Modelling and Numerical Analysis, vol.46, issue.4, pp.46731-757, 2012.
DOI : 10.1051/m2an/2011053

URL : https://hal.archives-ouvertes.fr/hal-00654539

P. Colli-franzone, F. Luca, and . Pavarino, A parallel solver for reaction?diffusion systems in computational electrocardiology. Mathematical models and methods in applied sciences, pp.883-911, 2004.

Y. Coudiere, C. Pierre, O. Rousseau, and R. Turpault, A 2d/3d discrete duality finite volume scheme. application to ecg simulation, International Journal On Finite Volumes, vol.6, issue.1, pp.1-24, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00328251

H. Dal, S. Göktepe, M. Kaliske, and E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics, Computer Methods in Applied Mechanics and Engineering, vol.253, pp.323-336, 2013.
DOI : 10.1016/j.cma.2012.07.004

J. Delville, . Ukeiley, . Cordier, M. Bonnet, and . Glauser, Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition, Journal of Fluid Mechanics, vol.391, pp.91-122, 1999.
DOI : 10.1017/S0022112099005200

A. Miguel, N. Fernández, and . Zemzemi, Decoupled time-marching schemes in computational cardiac electrophysiology and ecg numerical simulation, Mathematical biosciences, vol.226, issue.1, pp.58-75, 2010.

T. Henri and J. Yvon, Convergence Estimates of POD-Galerkin Methods for Parabolic Problems, System Modeling and Optimization IFIP International Federation for Information Processing, pp.295-306, 2005.
DOI : 10.1007/0-387-23467-5_21

URL : https://hal.archives-ouvertes.fr/hal-00725127

S. Craig and . Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Critical reviews in biomedical engineering, vol.21, issue.1, pp.1-77, 1992.

M. Sunil and . Kandel, The electrical bidomain model: A review, Scholars Academic Journal of Biosciences, vol.3, issue.7, pp.633-639, 2015.

P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas, Bridging proper orthogonal decomposition methods and augmented Newton???Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.5-8, pp.850-866, 2011.
DOI : 10.1016/j.cma.2010.10.009

URL : https://hal.archives-ouvertes.fr/hal-00537900

K. Kunisch and S. Volkwein, Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics, SIAM Journal on Numerical Analysis, vol.40, issue.2, pp.492-515, 2002.
DOI : 10.1137/S0036142900382612

K. Kunisch and A. Marica, Well-posedness for the mitchell-scheaffer model of the cardiac membrane, 2013.

K. Kunisch and M. Wagner, Optimal control of the bidomain system (iv): Corrected proofs of the stability and regularity theorems, 2014.

G. T. Lines, P. Grøttum, and A. Tveito, Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso, Computing and Visualization in Science, vol.5, issue.4, pp.195-213, 2003.
DOI : 10.1007/s00791-003-0100-5

R. Gary, . Mirams, J. Christopher, . Arthurs, O. Miguel et al., Chaste: an open source c++ library for computational physiology and biology, PLoS computational biology, vol.9, issue.3, p.1002970, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00956373

C. Colleen, . Mitchell, G. David, and . Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of mathematical biology, vol.65, issue.5, pp.767-793, 2003.

R. Guyonnet, N. Aubry, and R. Lima, Spatio-temporal analysis of complex signals : theory and applications, J. Statis. Phys, vol.64, issue.34, pp.683-739, 1991.

C. Nagaiah, K. Kunisch, and G. Plank, On boundary stimulation and optimal boundary control of the bidomain equations, Math Biosci, vol.245, issue.2, pp.206-215, 2013.

S. A. Niederer, E. Kerfoot, A. P. Benson, M. O. Bernabeu, O. Bernus et al., Verification of cardiac tissue electrophysiology simulators using an N-version benchmark, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.367, issue.4, pp.3694331-4351, 1954.
DOI : 10.1093/bioinformatics/btg015

M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.
DOI : 10.1109/TBME.2006.880875

M. Rathinam, R. Linda, and . Petzold, A New Look at Proper Orthogonal Decomposition, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.1893-1925, 2003.
DOI : 10.1137/S0036142901389049

J. Sundnes, G. T. Lines, and A. Tveito, Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells, Mathematical Biosciences, vol.172, issue.2, pp.55-72, 2001.
DOI : 10.1016/S0025-5564(01)00069-4

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. Mardal et al., Computing the electrical activity in the heart, 2007.

A. Khwj-ten-tusscher and . Panfilov, Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Physics in medicine and biology, issue.23, p.516141, 2006.

L. Mark, . Trew, H. Bruce, . Smaill, P. David et al., A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes, Mathematical biosciences, vol.198, issue.2, pp.169-189, 2005.

L. Tung, A bi-domain model for describing ischemic myocardial dc potentials, 1978.

J. Edward, F. Vigmond, N. Aguel, and . Trayanova, Computational techniques for solving the bidomain equations in three dimensions, Biomedical Engineering IEEE Transactions on, vol.49, issue.11, pp.1260-1269, 2002.

E. J. Vigmond, R. Weber-dos-santos, A. J. Prassl, G. Deo, and . Plank, Solvers for the cardiac bidomain equations, Progress in Biophysics and Molecular Biology, vol.96, issue.1-3, pp.1-33, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.012

S. Volkwein, Model reduction using proper orthogonal decomposition Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz. see http://www. uni-graz, 2011.

Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison, Computer Methods in Applied Mechanics and Engineering, vol.237, issue.240, pp.10-26, 2012.
DOI : 10.1016/j.cma.2012.04.015

N. ´. Zemzemi, Etude théorique et numérique de lactivitélactivité´lactivitéélectrique du coeur: Applications auxélectrocardiogrammesaux´auxélectrocardiogrammes, 2009.