M. Akian, S. Gaubert, and R. Nussbaum, A collatz-wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones, arXiv preprint arXiv:1112, p.5968, 2014.

F. Andreu, J. M. Mazón, J. D. Rossi, and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, Journal de Math??matiques Pures et Appliqu??es, vol.90, issue.2, pp.201-227, 2008.
DOI : 10.1016/j.matpur.2008.04.003

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, Journal of Mathematical Analysis and Applications, vol.332, issue.1, pp.428-440, 2007.
DOI : 10.1016/j.jmaa.2006.09.007

H. Berestycki, J. Coville, and H. Vo, Persistence criteria for populations with non-local dispersion , ArXiv e-prints, 2014.

H. Berestycki, F. Hamel, and L. Roques, Analysis of the periodically fragmented environment model : I ??? Species persistence, Journal of Mathematical Biology, vol.121, issue.1, pp.75-113, 2005.
DOI : 10.1007/s00285-004-0313-3

URL : https://hal.archives-ouvertes.fr/hal-00003742

H. Berestycki, F. Hamel, and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains, Annali di Matematica Pura ed Applicata, vol.24, issue.3, pp.469-507, 2007.
DOI : 10.1007/s10231-006-0015-0

H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations, Journal of Mathematical Physics, vol.53, issue.11, p.115619, 2012.
DOI : 10.1063/1.4764932

URL : https://hal.archives-ouvertes.fr/hal-01080135

H. Berestycki, L. Nirenberg, and S. R. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Communications on Pure and Applied Mathematics, vol.17, issue.1, pp.47-92, 1994.
DOI : 10.1002/cpa.3160470105

H. Berestycki, J. Roquejoffre, and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Contin, Dyn. Syst. S, vol.4, issue.1, pp.1-13, 2011.

H. Berestycki, L. Rossi, N. Applications, and J. Eur, ) [11] , Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space, Discrete Contin, Math. Soc.JEMS) Dyn. Syst, vol.8, issue.21 1, pp.195-215, 2006.

H. Berestycki and L. Rossi, Generalizations and Properties of the Principal Eigenvalue of Elliptic Operators in Unbounded Domains, Communications on Pure and Applied Mathematics, vol.72, issue.6, pp.1014-1065, 2015.
DOI : 10.1002/cpa.21536

J. Bourgain, H. Brezis, and P. Mironescu, Another look at sobolev spaces, Optimal Control and Partial Differential Equations, Citeseer, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00747692

H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, Russian Mathematical Surveys, vol.57, issue.4, p.693, 2002.
DOI : 10.1070/RM2002v057n04ABEH000533

X. Cabré and Y. Sire, Nonlinear equations for fractional laplacians, i: Regularity, maximum principles, and hamiltonian estimates, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, pp.31-54, 2014.

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, vol.246, issue.1, pp.597-638, 2009.
DOI : 10.1002/cpa.20274

R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: population models in disrupted environments, Proc. Roy. Soc. Edinburgh, Section: A Mathematics, pp.293-318, 1989.

R. S. Cantrell and C. Cosner, The effects of spatial heterogeneity in population dynamics, Journal of Mathematical Biology, vol.38, issue.4, pp.315-338, 1991.
DOI : 10.1007/BF00167155

L. Collatz, Einschlie???ungssatz f???r die charakteristischen Zahlen von Matrizen, Mathematische Zeitschrift, vol.48, issue.1, pp.221-226, 1942.
DOI : 10.1007/BF01180013

A. Cornea, Finiteness Principle and Harnack Principle, pp.91-203, 1991.
DOI : 10.1007/978-94-011-1118-8_15

A. Cornea and J. Vesely, Martin compactification for discrete potential theory and the mean value property, Potential Analysis, vol.97, issue.5, pp.547-569, 1995.
DOI : 10.1007/BF01048068

C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski, How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems, Archive for Rational Mechanics and Analysis, pp.137-156, 2008.

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, Journal of Differential Equations, vol.249, issue.11, pp.2921-2953, 2010.
DOI : 10.1016/j.jde.2010.07.003

URL : https://hal.archives-ouvertes.fr/hal-00603471

J. Coville, J. Dávila, and S. Martínez, Existence and Uniqueness of Solutions to a Nonlocal Equation with Monostable Nonlinearity, SIAM Journal on Mathematical Analysis, vol.39, issue.5, pp.1693-1709, 2008.
DOI : 10.1137/060676854

URL : https://hal.archives-ouvertes.fr/hal-00603469

J. Coville, J. Davila, and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.30, issue.2, pp.179-223, 2013.
DOI : 10.1016/j.anihpc.2012.07.005

URL : https://hal.archives-ouvertes.fr/hal-00785039

J. Coville and L. Rossi, Relations between ? 1 and ? ? 1 for nonlocal operators in 1d, pp.private com- munication

M. D. Donsker and S. R. Varadhan, On a Variational Formula for the Principal Eigenvalue for Operators with Maximum Principle, Proc. Nat. Acad. Sci. U.S.A. 72, pp.780-783, 1975.
DOI : 10.1073/pnas.72.3.780

J. Engländer, E. Andreas, and . Kyprianou, Local extinction versus local exponential growth for spatial branching processes, Annals of probability, pp.78-99, 2004.

P. C. Fife, An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math, vol.17797, pp.137-145, 1996.

S. Friedland, Characterizations of the spectral radius of positive operators, Linear Algebra and its Applications, vol.134, pp.93-105, 1990.
DOI : 10.1016/0024-3795(90)90008-Z

J. Garcia-melian and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Communications on Pure and Applied Analysis, vol.8, issue.6, pp.2037-2053, 2009.
DOI : 10.3934/cpaa.2009.8.2037

M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow, and G. T. Vickers, Non-local dispersal, Differential Integral Equations, vol.18, issue.11, pp.1299-1320, 2005.

V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers, The evolution of dispersal, Journal of Mathematical Biology, vol.47, issue.6, pp.483-517, 2003.
DOI : 10.1007/s00285-003-0210-1

L. I. Ignat, J. D. Rossi, and A. , Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space, Journal of Differential Equations, vol.252, issue.12, pp.6429-6447, 2012.
DOI : 10.1016/j.jde.2012.03.011

C. Kao, Y. Lou, and W. Shen, Random dispersal vs. nonlocal dispersal, Discrete and Continuous Dynamical Systems, pp.551-596, 2010.

S. Karlin and P. Operators, The existence of eigenvalues for integral operators, Transactions of the American Mathematical Society, vol.113, issue.1, pp.1-17, 1959.
DOI : 10.1090/S0002-9947-1964-0169090-0

K. Kawasaki and N. Shigesada, Biological invasions: Theory and practice, 1997.

M. A. Krasnoselskii, Mark Aleksandrovich) Integral operators in spaces of summable functions, 1976.

B. Lemmens and R. Nussbaum, Nonlinear perron-frobenius theory, 2012.
DOI : 10.1017/CBO9781139026079

F. Lutscher, E. Pachepsky, and M. A. Lewis, The Effect of Dispersal Patterns on Stream Populations, SIAM Review, vol.47, issue.4, pp.749-772, 2005.
DOI : 10.1137/050636152

G. Nadin, Existence and uniqueness of the solution of a space???time periodic reaction???diffusion equation, Journal of Differential Equations, vol.249, issue.6, pp.1288-1304, 2010.
DOI : 10.1016/j.jde.2010.05.007

G. Nadin, The principal eigenvalue of a space???time periodic parabolic operator, Annali di Matematica Pura ed Applicata, vol.129, issue.1, pp.269-295, 2009.
DOI : 10.1007/s10231-008-0075-4

R. D. Nussbaum and Y. Pinchover, On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications, Festschrift on the occasion of the 70th birthday of Shmuel Agmon. MR MR1226957, pp.161-17735049, 1992.
DOI : 10.1007/BF02790223

R. Pinsky, Second Order Elliptic Operators with Periodic Coefficients: Criticality Theory, Perturbations, and Positive Harmonic Functions, Journal of Functional Analysis, vol.129, issue.1, pp.80-107, 1995.
DOI : 10.1006/jfan.1995.1043

G. Ross and . Pinsky, Positive harmonic functions and diffusion, 1995.

R. G. Pinsky, Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions, The Annals of Probability, vol.24, issue.1, pp.237-267, 1996.
DOI : 10.1214/aop/1042644715

A. Ponce, An estimate in the spirit of poincarés inequality, J. Eur. Math. Soc.(JEMS), vol.6, issue.1, pp.1-15, 2004.

L. Rossi, Liouville type results for periodic and almost periodic linear operators, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.6, pp.2481-2502, 2009.
DOI : 10.1016/j.anihpc.2009.07.001

URL : http://doi.org/10.1016/j.anihpc.2009.07.001

H. Schaefer, A minimax theorem for irreducible compact operators inL p-spaces, Israel Journal of Mathematics, vol.149, issue.2-3, pp.196-204, 1984.
DOI : 10.1007/BF02761164

W. Shen and X. Xie, On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications, Discrete and Continuous Dynamical Systems, pp.1665-1696, 2015.

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proc. Am, pp.1681-1696, 2012.
DOI : 10.1090/S0002-9939-2011-11011-6

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, Journal of Differential Equations, vol.249, issue.4, pp.747-795, 2010.
DOI : 10.1016/j.jde.2010.04.012

J. Tan and J. Xiong, A harnack inequality for fractional laplace equations with lower order terms, Discrete and Continuous Dynamical Systems A 31, pp.975-983, 2011.

P. Turchin, Quantitative analysis of movement: Measuring and modeling population redistribution in animals and plants, Sinauer Associates, 1998.

H. Wielandt, . Unzerlegbare, and . Nicht-negative-matrizen, Unzerlegbare, nicht negative Matrizen, Mathematische Zeitschrift, vol.192, issue.1, pp.642-648, 1950.
DOI : 10.1007/BF02230720