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ueil Cedex, Fran
e

ABSTRACT

We present in this paper a generi
 algorithm to 
ompute the skeleton of an n-dimensional binary obje
t. Considering

the 
artesian hyper
ubi
 grid, we provide a mathemati
al framework in whi
h are given the expli
it Boolean 
onditions

under whi
h the iterative thinning pro
edure removes a point. This algorithm preserves the topology in a sense whi
h

mat
hes the properties usually used in 2D and 3D. Furthermore, it is based on an original kind of median hypersurfa
e

that gives to the skeleton good behavior with respe
t to both shape preservation and noise sensitivity. The algorithm

is fully parallel, as no spatial subiterations are needed. The latter property, together with the symmetry of the boolean

n-dimensional patterns leads to a perfe
tly isotropi
 skeleton. The logi
al expression of the algorithm is extremely


on
ise, and in 2D, a large 
omparative study shows that the overall number of elementary Boolean operations

needed to get the skeleton is smaller than for the other iterative algorithms reported in the literature.

Keywords: Skeleton, Fully Parallel Algorithm, n-dimensional, Dis
rete Topology, Boolean Complexity

1. INTRODUCTION

Representing a shape with a small amount of information is a major 
hallenge in 
omputer vision. Skeletonization

is one of the approa
hes to this purpose. It arises from the idea that a shape is faithfully represented if its topology

(
onne
ted 
omponents, holes...), as well as its geometry (elongated parts, rami�
ations...) and lo
ation are preserved.

The interest in skeleta for digital images is motivated by the usefulness of this representation as a prepro
essing step

in pattern re
ognition algorithms. A large number of papers has been published in the subje
t, for 2D images for

several de
ades, and for 3D images a little more re
ently. Skeletonization in nD seems to be a more exoti
 issue, but

it is of some interest in roboti
s, where it provides the safest traje
tories in a multi-parameter spa
e. The skeleton is

usually obtained through an iterative pro
edure 
alled thinning : the border points are removed as long as they are

not judged signi�
ant for the features stated above, until no more point 
an be deleted. The remaining shape is then


alled skeleton. We believe that the available knowledge about digital skeleta su�ers two important problems. Firstly,

the 
hara
terizations that are given in 2D are diÆ
ult to adapt to 3D, whi
h shows the need for unifying 
on
epts.

Se
ondly, these 
hara
terizations are 
ompli
ated, and in parti
ular in 3D, never easy to implement. We propose

in the present paper a new thinning algorithm, 
alled MB, whi
h is de�ned in the hyper
ubi
 grid, independently

of the dimension. Indeed, the 
onditions under whi
h a point is removed are de�ned by means of one removing


ondition (Fun
tion Alpha) and one remaining 
ondition (Fun
tion Beta), that are 
hara
terized in an adimensional

way. Getting the Boolean 
hara
terization of the thinning pro
ess in any dimension is then straightforward, and we

provide the 
orresponding pattern mat
hing form for dimensions 1 to 3. Under this form, our pro
edure lends itself

easily to 
omparison, and its 
ompa
tness 
an then be appre
iated. Indeed, in 2D, the overall number of elementary

Boolean operations needed to 
ompute the skeleton has proved, through a large study, to be lower than for all

other thinning algorithm we know of. In 3D, su
h a study is still to be done, but the 
on
iseness of the Boolean

de�nition, that makes it straightforward to implement, yet shows up. This paper is organised as follows. Se
tion 2
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provides the little theoreti
al ba
kground that is used in the other se
tions. We next present our thinning algorithm,

illustrating with some results. In Se
tion 4 we present the properties of the MB algorithm, in the following order:

(1) Isotropy and full parallelism (2) Topology preservation (3) Median hypersurfa
e preservation (4) Noise sensitivity

and re
onstru
tibility (5) Computational speed.

2. PRELIMINARIES

2.1. The hyper
ubi
 grid.

Let Z be the set of integers, N the set of natural integers, R the set of real numbers. Let P(A) be the 
olle
tion of

all subsets of A, P

�

(A) = P(A) n ;. Let n 2 N , Z

n

is the n-dimensional dis
rete spa
e. The 
ubi
 grid is de�ned by

the immersion of Z

n

in the aÆne spa
e atta
hed to R

n

by means of the following appli
ation:

� : Z

n

�! P(R

n

)

z 7�! �(z) =

n

Y

i=1

[z

i

�

1

2

; z

i

+

1

2

℄

Thus a point z of the dis
rete spa
e is identi�ed to an hyper
ube of the quanti�ed aÆne spa
e, i.e. to the 
artesian

produ
t of the 
losed segments 
entered around z, z

i

being the i-th 
oordinate of z in the 
anoni
 basis.

2.2. Dis
rete hyber
ubi
 topologies.

Let 	 be the fun
tion de�ned on P

�

(R

n

) by 	(P ) = V su
h that V is the linear manifold generated by P . Then n

kinds of adja
en
y relations (and then topologies as well) 
an be de�ned on the hyper
ubi
 mesh, as follows:

De�nition Let z and z

0

be two points of Z

n

su
h that �(z) \ �(z

0

) 6= ;.

then z and z

0

are k-adja
ent (0 � k � n) if and only if:

dim(	(�(z) \ �(z

0

)) = k (1)

De�nition Let z and z

0

be two points of Z

n

. z and z

0

are k-neighbors if there exists j; k � j � n, su
h that z and

z

0

are j-adja
ent.

The adja
en
y of two points 
orresponds then to a non-empty interse
tion of two hyper
ubes, and the level of

adja
en
y, to the dimension of the manifold generated by the interse
tion. Please note the di�eren
e with the notion

of neighbor, whi
h mat
hes the de�nitions usually given in the literature. An example in 2D is provided on Figure 1.

x

z y

Figure 1. Conne
tivity relations in dimension 2: x and y are 1-adja
ent (and not 0-adja
ent). x and z are 0-adja
ent.

x and y are 1-neighbors, therefore 0-neighbors.

Let a binary image I be a subset of Z

n

.

De�nition Interior points of a binary image: I � Z

n

. z 2 I , z is a k-interior point of I if and only if: 8z

0

; z and

z

0

are k-neighbors ) z

0

2 I .

Counting the k-neighbors: Considering the origin O of Z

n

, a point is k-adja
ent to O if and only if it has n � k


oordinates in the set f�1;+1g, and the others equal to 0. Thus a point has A(n; k) k-adja
ent points, with:

A(n; k) = 2

n�k

C

n�k

n

(2)



and then V (n; k) neighbors (itself ex
luded), with:

V (n; k) =

n�1

X

i=k

A(n; i) (3)

Table 1 gives the V (n; k) numbers for n smaller than 4. For k = 0, we meet of 
ourse the overall number of neighbors

in dimension n:

W

n

= V (n; 0) =

n�1

X

i=0

2

n�i

C

n�i

n

= 3

n

� 1 (4)

We present these numbers to point out the fa
t that, in the literature, the terms that are usually employed are

Table 1. Numbers of k-neighbors in nD, for n � 4.

k n n 1 2 3 4

3 - - - 8

2 - - 6 32

1 - 4 18 64

0 2 8 26 80

V (n; k)-
onne
tivity, V (n; k)-neighbors, et
. Nevertheless, in this paper, with intent to meet both homogeneity and


on
ision, we will always use the single k- pre�x.

2.3. Dis
rete distan
es and median hypersurfa
es

Let Æ

n

k

denote the distan
e indu
ed by the k-th topology in dimension n. (or Æ

k

when there is no ambiguity regarding

the dimension). Let X � Z

n

. Let X




denote Z

n

nX , the ba
kground of X .

De�nition The distan
e map asso
iated with X and relative to Æ

k

is the fun
tion that asso
iates Æ

k

(x;X




) to every

x in Z

n

.

De�nition Let r 2 N . Let x 2 Z

n

. Let B

k

(x; r) = fy 2 Z

n

; Æ

k

(x; y) � rg be the ball of 
entre x and radius r. Let

X � Z

n

. B

k

(x; r) is a maximal ball of X if and only if:

8y 2 X;8q 2 N;B

k

(y; q) � X ) B

k

(x; r) 6� B

k

(y; q) (5)

De�nition Let S

k

(X) denote the 
olle
tion of all the 
entres of maximal balls of the distan
e Æ

k

. S

k

(X) is 
alled

the median hypersurfa
e asso
iated with distan
e Æ

k

.

This notion has been the only sheer de�nition of the skeleton.

1

But it does not mat
h the modern notion of skeleton,

sin
e, in the general 
ase, X and S

k

(X) do not have the same topology.

Property Let x 2 X . x belongs to S

k

(X) if and only if for every y k-neighbor of x, Æ

k

(y;X




) � Æ

k

(x;X




).

In other words, the 
olle
tion of the 
entres of maximal balls is equal to the set of lo
al maxima of the 
orresponding

distan
e map.

The interest of these notions is to formalize the need to represent the geometry and the lo
ation of the shape. Indeed,

we will guarantee that the skeleton lies right \at the middle" of the shape for some distan
e if it 
ontains the median

hypersurfa
e for this distan
e.

3. THINNING PROCEDURE

Our thinning pro
edure is de�ned by means of two binary fun
tions of the dis
rete spa
e: fun
tion Alpha and fun
tion

Beta. These two fun
tions are respe
tively de�ned in Table 2 and in Table 3. The 
omplete algorithm is given in

Table 4.

To express informally the de�nition given in Table 2, a point z of I su
h that �(z) = 1 must be k-adja
ent to a

(n�1)-interior point. If this 
ondition holds, these two points have a non-empty interse
tion, that generates a linear

manifold of dimension k. Let us now 
onsider the image of this manifold by the symmetry of 
entre z. It is a parallel

linear manifold of dimension k, equal to the interse
tion of n� k aÆne hyperplanes. Then �(z) = 1 if all the points



Table 2. Fun
tion Alpha.

Let I � Z

n

. Fun
tion � : I �! f0; 1g is de�ned as follows:

Let z 2 I . if there exists k; 0 � k � n� 1, su
h that:

(1) 9z

0

(n� 1)-interior point, z and z

0

are k-adja
ent

(2) ft, t (n� 1)-adja
ent to z and

\

t

	(�(z) \ �(t)) = S

z

(	(�(z) \ �(z

0

)))g � I




.

where S

z

denotes the symmetry of 
entre z.

then �(z) = 1.

else �(z) = 0.

Table 3. Fun
tion Beta.

Let I � Z

n

. Fun
tion � : I �! f0; 1g is de�ned as follows:

Let z 2 I . if there exists k; 0 � k � n� 2, su
h that:

There exist two 
ouples of k-adja
ent points (a; b) and (
; d) su
h that

a; b; 
; d are all k-neighbors of z, and su
h that the two following 
onditions hold:

(1) �(a) \ �(b) = �(
) \ �(d)

(2) fa; bg � I and f
; dg � I




then �(z) = 1.

else �(z) = 0.

(n� 1)-adja
ents to z and whose interse
tion with z generates one of those hyperplanes belong to the ba
kground of

I .

To express informally the de�nition given in Table 3, a point z of I su
h that �(z) = 1 must 
ontain in its k-

neighborhood two 
ouples of k-adja
ent points that have the same interse
tion, and su
h that one 
ouple belong to

the image, and the other to the ba
kground.

Figure 2 displays in a table the patterns mat
hed by the fun
tions Alpha and Beta, for dimensions from 1 to 3: in

Table 4. The MB algorithm.

Repeat for all points z 2 Z

n

within a parallel framework, until 
onvergen
e:

if �(z) = 1 and �(z) = 0, remove z.

dimension n, a point is removed if: (1) it mat
hes one of the pattern �

i

(or one of the �=2 rotated version around

one of the axis). Here the gray points belong to the image, the white ones to the ba
kground, the bla
k point is the

origin of the pattern. (2) it does not 
ontain any pattern �

i

within its i-neighborhood.

Some results of the MB algorithm are displayed in 2D on Figure 3, and in 3D on Figure 4. They illustrate the

properties and behavior of our thinning pro
edure, that we develop in the following se
tion.

4. PROPERTIES AND BEHAVIOR

4.1. Isotropy and full parallelism

In the hyper
ubi
 grid, isotropy means that all the dire
tions represented by the n axis must be treated the same way,

as well as the two dire
tions on every axis. Isotropy is one of the fundamental 
onstraints on whi
h our algorithm is

built. A natural out
ome of this 
onstraint is the presen
e of two-pixels thi
k surfa
es in the skeleta, as it 
an be seen

on Figures 3 and 4. In the de�nitions of the two Boolean fun
tions, no dire
tion get a spe
ial treatment. This property

appears 
learly on the pattern mat
hing form of the pro
edure, as all the patterns are 
ompletely symmetri
al. With

this property, isotropy in the sense we have just de�ned is guaranteed, as long as all the iterations have exa
tly
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α
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Figure 2. MB patterns in dimension 1 to 3.

the same a
tion. This is an important property of the MB-algorithm: the pro
edure is fully parallel, whi
h means

that all the iterations a
t exa
tly the same, removing points in the 2n 
ardinal dire
tions at the same time. The


onsequen
e is that the number of iterations before 
onvergen
e equals the radius of the biggest ball 
orresponding

to the strongest adja
en
y relation. As we are going to see in the following subse
tion, removing points within a

parallel framework in all dire
tions while preserving the topology is not trivial, as no Boolean 
hara
terization of the

points to remove is available, unlike in the 
ase of a sequential framework.

4.2. Topology preservation

To remove points from an obje
t without 
hanging its topology means that we aim at preserving the 
onne
tivity

relations that exist in the obje
t and in its ba
kground. We 
annot dis
onne
t a 
onne
ted 
omponent, and we


annot 
reate or delete a \hole". Now in a dis
rete topology, spe
ial 
are must be taken to deal with these notions.

For instan
e, a 
onne
ted 
omponent of the ba
kground may run a
ross a pie
e of surfa
e of the obje
t only if

there is a hole in it ! To keep this \natural" property meaningful, however, it is ne
essary to 
hoose two di�erent


onne
tivity levels for the obje
t and its ba
kground. In this paper we always 
onsider 0-
onne
tivity for the obje
t

(two hyper
ubes of the obje
t are neighbors as soon as they share a point) and (n�1)-
onne
tivity for the ba
kground

(two hyper
ubes of the ba
kground are neighbors only if they share a fa
e). We use the (0; n� 1)� pre�x to re
all

the 
hoi
e of the topology.

In this se
tion, we do not intend to prove that the MB-algorithm preserves the topology in n-D, as, to our knowledge,

no 
hara
terization in n-D has been re
ognized by the dis
rete topology 
ommunity. Nevertheless, the formalism

that we use in the following results is 
ompletely generi
 as for the dimension, and the results are true for dimensions

2 and 3.

We must �rst give some meaning to \preserving the topology". In the 2D and 3D 
ontinuous spa
es, topology 
an be

represented by means of the fundamental group, whi
h is the group of the equivalent 
lasses of homotopi
 ar
s (two

ar
s are said to be homotopi
 if there exists a 
ontinuous fun
tion mapping one to the other). Then two subsets of

R

2

have the same topology if and only if their fundamental groups are isomorphi
; in R

3

this property is no longer

suÆ
ient, as fundamental groups of the ba
kgrounds must be isomorphi
 too. In the next dimensions, homotopy

groups of higher orders are ne
essary to 
hara
terize the topology.

In dis
rete spa
es, the 
entral notion regarding topology preservation is simpli
ity. A subset A of a dis
rete image

X is said to be simple if X and X n A have the same topology. For a point x 2 X , \x is simple" means that fxg

is simple. In 2D and 3D there are expli
it 
hara
terizations to de
ide whether a point is simple or not. A very
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Figure 3. The results of the MB-2D algorithm. For 
omparison purposes are also displayed the results of the

algorithms of Jang and Chin,

2

Stewart,

3

the three algorithms of Guo and Hall,

4

and a previous algorithm of the

authors.
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The last line shows the di�erent lo
al maxima sets, to be de�ned in Se
tion 4.



Original MB-3D Original MB-3D
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Figure 4. The results of the MB-3D algorithm: on a simple home-made 3D obje
t (1) and on a three-dimensional

segmented image of lung (2).

important result is that the de
ision 
an be made lo
ally, examining only a �nite neighborhood. We now give the


hara
terization, for the (0,n-1)-
onne
tivity model:

Theorem Let X � Z

n

be a binary image. Let x 2 X . Let X

x

0

denote the set of all the 0-neighbors of x in X , ex
ept

x itself, and X

x

n�2

the set of all the (n-2)-neighbors of x in X




. x is simple in X for the (0,n-1)-
onne
tivity model

if and only if the two following 
onditions hold:

� x is 0-neighbor with one single 0-
onne
ted 
omponent of X

x

0

.

� x is (n-1)-neighbor with one single (n-1)-
onne
ted 
omponent of X

x

n�2

.

In 2D, this result 
orrespond to the 0-
onne
tivity number that has been de�ned by Yokoi,

6

but that had been used

earlier by Hildit
h.

7

In 3D, it is a result due to Bertrand and Malandain.

8

Thus, with the above theorem, we

propose a uni�ed expression of those two fundamental results.

Unfortunately, a union of simple points is not a simple set, in general, and this is the major diÆ
ulty for designing

parallel thinning algorithms. The �rst problem is to 
hara
terize simple sets. Ronse

9

did it �rst for 2D images, it was

then generalised by Kong

10

for higher-dimensional images. In these papers, it is shown that a set is simple for the

image X if and only if it 
an be ordered in a sequen
e of points fx

1

; : : : ; x

n

g su
h that for every i in f1; : : : ; ng, x

i

is

individually simple with respe
t to X n fx

1

; : : : ; x

i�1

g. From this property, Ronse proposed

11

very eÆ
ient suÆ
ient


onditions to prove the soundness of parallel thinning algorithm in 2D. This result has been extended to the 3D 
ase

by Ma.

12

For this topi
 also, we may give a uni�ed expression of these results as follows: Let a unit latti
e element

of dimension k, 0 � k � n, be a set of 2

k

points of Z

n

su
h that every pair of points is a pair of (n� k)-neighbors.

Theorem (Ronse 88, Ma 94)

Let X � Z

n

be a binary image. An algorithm that removes points in parallel from a binary nD shape X preserves

(0,n-1)-
onne
tivity if the two following 
onditions are satis�ed:

� Every subset of X that is 
ontained in a unit latti
e element of dimension (n� 1) and that is removed by the

algorithm is simple.

� No 
onne
ted 
omponent of X 
ontained in a unit latti
e element of dimension n 
an be 
ompletely removed.

This theorem allows to prove the soundness of a parallel thinning algorithm by 
he
king only a limited number of


on�gurations. In this 
ontext, the following proposition has been proved for n=2

13

and for n=3

14

:

Proposition

MB preserves the (0; n� 1)-topology.



4.3. Median hypersurfa
e 
onservation

In this se
tion, we are 
on
erned with the non-topologi
al side of skeletonization, whi
h is geometry 
onservation.

Ideally, we ensure that the skeleton lies at the middle of the shape, if the lo
al maxima of the eu
lidean distan
e

belong to the skeleton. This distan
e is, however, 
omplex to 
ompute, and as our former purpose was 
on
iseness,

our 
hoi
e was to deal only with the 
anoni
al distan
es of the hyper
ubi
 grid.

Let p � m � n. Let us de�ne the (m; p)-median surfa
e as follows:

De�nition

S

p

m

(X) = fx 2 X ;8y p� neighbor of x; Æ

m

(y;X




) � Æ

m

(x;X




)g (6)

Note that the (m;m)-median surfa
e of X 
orresponds to the 
lassi
al S

m

(X) de�ned in Se
tion 2.3. The behavior

of MB with respe
t to median surfa
e preservation is 
hara
terized by the following proposition:

Proposition Let n 2 N . Let X be a well-formed image.

The MB-nD skeleton of X 
ontains the set S

0

n�1

(X).

This important property is illustrated in 2D on Figure 5 and in 3D on Figure 6. On Figure 5, the upper pi
tures

show the distan
e fun
tions for the two di�erent 
onne
tivity models, where the value is represented by the grey

level. On the 
entre, the left and the right images show the 
orresponding lo
al maxima set, and at the middle, the

original median axis on whi
h the MB skeleton (bottom, 
entre) is built. For 
omparison purposes are also shown

other skeleta on the left and on the right, based on the lo
al maxima for the 1- and the 0- distan
e respe
tively. On

Figure 6, it 
an be seen as well that di�erent 3D skeleta 
an be obtained, depending on the median surfa
e. On

Figure (b), the restri
tion of the Alpha fun
tion of the MB thinning algorithm to the �

2

pattern leads to a skeleton

based on the lo
al maxima of the 2-distan
e. On Figure (
), restri
ting to patterns �

2

and �

1

leads to a skeleton

based on the (2; 1)�median surfa
e. Finally, the whole fun
tion Alpha is applied on Figure (d), and the resulting

skeleton is based on the (2; 0)�median surfa
e.

We must now tell about the \well-formed images", for whi
h the skeleton 
ontains the (n�1; 0)�median surfa
e.

A well-formed image is an image in whi
h the points are deleted by the thinning operator in the order of the (n� 1)-

distan
e fun
tion. In this 
ase, if we 
onsider the patterns �

i

; 0 � i � n�1 of Figure 2, we 
an see that they 
an only

remove a point that has in its 0-neighborhood a (n � 1)-interior point, whose (n � 1)�distan
e to the ba
kground

is stri
tly superior and thus the points of S

0

n�1

ne
essarily belong to the skeleton. It is worth observing that, for

usual images, points are examined a

ording to the order indu
ed by the distan
e fun
tion. Nevertheless, there

are ex
eptions, like those 
orresponding to ill-
onstru
ted images. We give an example of su
h an image in 2D on

Figure 7(a). These images 
orrespond to a 
on�guration that would \prote
t" a pie
e of surfa
e, forbiding a thi
k

volume to be thinned, as in the shape present in the upper right 
orner of the image on Figure 3.

Although rigorous proof is still to be provided, it seems that a suÆ
ient 
ondition for a n-D image to be well-formed

is not to 
ontain one-pixel holes mat
hing one of the patterns �

i

. An image X � Z

n

has a one-pixel hole if there

exist x 2 X




and V a linear manifold of dimension k, 2 � k � n su
h that x 2 V and 8y; y (n-1)-adja
ent to x, y 2 V ,

y 2 X .

Figure 7 shows the 
orresponding patterns: a 2D image is well-formed if it does not 
ontain any rotated version of

pattern (b), a 3D image if it does not 
ontain any rotated version of patterns (
) or (d), where at least one of the

two square points does not belong to X .

4.4. Noise sensitivity and re
onstru
tibility

The MB skeleton is based on a spe
ial kind of median surfa
e, the aim of whi
h is to treat more symmetri
ally the

di�erent kinds of distan
es in the 
ubi
 grid. In parti
ular, the thinning operator does not distinguish the balls of

the di�erent distan
es, produ
ing always one single point for any kind of ball. It also produ
e one single point for a

family of sets that are bounded (for the in
lusion) by two balls of di�erent distan
es, and of the same radius. Let

us 
all these sets Fuzzy balls. We show in Figure 8 some fuzzy balls of radius 7 in 2D, and their skeleton redu
ed to

their 
entre (superimposed as a white dot). In 2D, it 
an be proved that a fuzzy ball B (formally de�ned as a set

whose (1,0)-median axis is redu
ed to a point, 
alled its 
entre 
) is a set that is in
luded between a 1-ball and a

0-ball, su
h that for all x in B, B 
ontains the smallest re
tangle 
ontaining x and 
.

The behavior of the MB skeleton with respe
t to fuzzy balls is the 
ause of its good properties regarding noise

immunity and �=4 rotation invarian
e, as 
an be appre
iated on Figure 9, where the results are 
ompared to other

algorithms, already referen
ed in Figure 3. In return, it only allows partial re
onstru
tion. This fa
t is illustrated

on Figure 10: the shape is re
onstru
ted from the weighted skeleton (here, the value of the distan
e fun
tion on the

skeleton is represented by the gray level). Unlike the left skeleton (a previous algorithm proposed by the authors

5

),
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(a) (b) (
) (d)

Figure 7. An ill-
onstru
ted image in 2D (a) and the responsible patterns in 2D (b) and 3D (
,d)

Figure 8. Some fuzzy balls of radius 7 in 2D, and their skeleton redu
ed to their 
entre.

that is based on the (1,1)-median axis, and thus allows exa
t re
onstru
tibility, the MB-algorithm, represented here

on the right does not. We show here an approximate re
onstru
tion, based on o
tagons of the 
orresponding radius.

4.5. Computational speed

Does 
on
eptual 
on
iseness imply 
omputational speed ? We have argued in earlier work

5

that the most fundamental

way to 
ompare 
omputational eÆ
ien
y of data parallel algorithm was by the so-
alled Shannon measure, i.e. the

overall number of elementary operations per pixel needed to perform the algorithm. The nature of the elementary

Original

Guo & Hall: AFP3

Stewart

MB

Jang & Chin

Manzanera & Bernard

Figure 9. Behavior of the MB algorithm in 2D, with respe
t to noise.



Figure 10. Exa
t re
onstru
tion for the skeleton based on the 1-distan
e balls (left), approximate re
onstru
tion

for the MB-skeleton based on the fuzzy balls (right).

operations depends on the 
omputer. However, we get a sound general measure by 
hoosing the most elementary

operation to be 
omputed in a digital algorithm: the Boolean fun
tion of two variables. Indeed, for any digital

algorithm, the 
ost of every elementary Boolean operation is found either at a software level, where it has an e�e
t

on the 
omputation time, or at a hardware level, under the form of an equivalent two-entries logi
 gate, where it has

an e�e
t on the expense in hardware resour
es. The Table 5 displays the Shannon measure of the MB algorithm in

2D and in 3D. In 2D, the measure is 
ompared to some of the most re
ent thinning algorithms found in the literature.

Table 5. Comparing the 
ost of parallel thinning algorithms. r stands for the maximal obje
t thi
kness (i.e. the

radius of the biggest (n� 1)�ball 
ontained in the image). The number of elementary operations given for the other

algorithms is sometimes only an estimation, as the quoted papers did not always provide a logi
 minimization of

their algorithm.

Algorithm Size of neighborhood Number of elementary

examined operations required

Jang & Chin

2

7 32� r

Cardoner & Thomas

15

7 40� r

Stewart

3

19 64� r

Wu & Tsai

16

11 60� r

Guo & Hall (AFP1)

4

11 73� r

Guo & Hall (AFP2)

4

11 81� r

Guo & Hall (AFP3)

4

11 91� r

Manzanera & Bernard

5

13 18� r

MB-2D 21 28� r

MB-3D 81 148� r

5. CONCLUSION

The MB thinning algorithm is, to our knowledge, the �rst thinning algorithm valid both in 2D and in 3D. Further

resear
hes in dis
rete topology for higher dimension meshes will allow to 
he
k its overall validity, sin
e the expression

in n-D is already available. More generally, we may hope that this work will suggest some resear
h tra
ks. In

parti
ular, we have proposed a uni�ed formalism to express the theorems of homotopy in n-D propositions: the

Yokoi/Bertrand andMalandain theorem for the simple point 
hara
terization, the Ronse/Ma theorem for the topology

preservation suÆ
ient 
onditions. Do these propositions make sense for dimensions higher than 3 ? One of our goals

is to arouse some rea
tions that will bring us the answer. Nevertheless, we think one of the best a
hievements of the

MB algorithm is its great simpli
ity, as the n-D thinning pro
edure is de�ned through two binary Boolean fun
tions,



and only (2n�1) Boolean patterns. We have shown in 2D that this simpli
ity had led to 
omputational eÆ
ien
y, and

we 
an justi�ably expe
t the same advantage in 3D. Finally we have 
hara
terized the median hypersurfa
e on whi
h

the skeleton is based, and shown that it provided some noise immunity to the skeleton. This median hypersurfa
e

implies a new kind of shape des
riptors: the fuzzy balls, that we have 
hara
terized in 2D. Further works will provide

a more general and rigorous view of this last issue.
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